A Appendix

A.1 Seastar

Seastar [9] is a system for programming GNN models using a vertex-centric user-defined function.
The benefit of this approach is two-fold. A deep-learning practitioner can implement the GNN logic
quickly, and a learner can ascertain the model’s purpose from the vertex-centric implementation.
Seastar also optimizes models like GCN [5] and GAT [6] by bridging the gaps in other GNN
frameworks like DGL and PyG. Seastar takes a vertex-centric program as input. It returns an executor
object capable of invoking a series of CUDA kernels during forward and backward propagation of
the GNN model. This process is made possible with the help of the following components:-

1. Tracer: infers all operations on the central node and its neighboring nodes from the vertex-
centric function and produces the graph-aware intermediate representation (GIR).

2. GIR: The Graph-aware Intermediate Representation (GIR) is a directed acyclic graph (DAG)
representing the computational graph. Each node in the DAG represents an operation, for
which the input and outputs are both tensors.

3. GIR Optimizations and Code Generation: GIR optimizations such as dead-code elimi-
nation, common subexpression elimination, and operator fusion are introduced before the
code generation phase. The code generation phase emits CUDA kernels for both forward
and backward propagation.

4. Runtime Executor The CUDA kernels for both forward and backward passes are wrapped
in an executor object. At runtime, the executor invokes the backend (PyTorch, TensorFlow,
etc.) to run the generated CUDA kernels for forward and backward propagation.

Seastar is successful in achieving lesser memory consumption and faster execution in comparison to
PyG and DGL. However, Seastar can only represent simple GNN models such as GCN and GAT,
with no support for TGNNs.

A.2 Other Frameworks

A majority of real-world graphs exhibit dynamic characteristics, as seen in social networks, traffic-
flow networks, etc. Dynamic graphs hold immense potential and are packed with rich information,
which necessitates the development of fast and efficient frameworks curated for writing and training
TGNN models. PyG-T [10] is the first open-source deep-learning tool for training TGNNs on
evolving graphs. However, PyG-T is built on top of PyG which suffers from performance and
memory issues itself. Additionally, when dealing with dynamic graphs, PyG-T stores each graph
snapshot separately which in turn incurs high memory overhead. Hence, there is a need for a fast and
memory-efficient framework for building TGNNSs. Table 1 summarizes properties of a list of deep
learning libraries on graphs. The STGraph framework is the only framework, listed in Table 1, that
offers a backend-agnostic approach to processing TGNNZ.

Table 1: Deep Learning Libraries on Graphs

Library Backend Static Graph ~ Temporal Graph
PyTorch Geometric (PyG) PyTorch v X
DGL Agnostic v X
GraphNets TensorFlow ' X
Spektral TensorFlow v X
Seastar Agnostic v X
PyTorch Geometric Temporal (PyG-T) PyTorch ' v
STGraph Agnostic ' v

A.3 Experimental Evaluation

The hardware platform used for the experimental evaluation of the proposed work is equipped with
an Intel(R) Xeon(R) Bronze 3204 CPU (1.90GHz) and an NVIDIA GeForce RTX 2080 Ti GPU with
device memory of 11GB. STGraph is written in Python 3.10 using Pytorch-2.0.0 [14] as the backend
and CUDA Python 12.1.0 as the CUDA host API. The generated kernels are compiled using CUDA

11.7. The graph abstractions use CUDA C++ routines exposed via PyBind11-2.10.4 [15]. Thrust [16]
and CUB libraries provide additional support in developing these routines.

Table 2: Summary of Benchmarking Datasets

S.No Dataset # Nodes # Edges Graph Type

1 Wikipedia Vital Mathematics (WVM) 1068 27K Static
2 Windmill Output (WO) 319 102K Static
3 Hungary Chickenpox (HC) 20 102 Static
4 Montevideo Bus(MB) 675 690 Static
5 Pedal Me (PM) 15 225 Static
6 sx-superuser 194K 1443K Dynamic
7 sx-stackoverflow * 194K 2000K Dynamic
8 sx-mathoverflow 25K 507K Dynamic
9 sx-askubuntu 159k 964K Dynamic

10 email-Eu-core 986 332K Dynamic

* The dataset has been pruned to the first 2 million edges, which is the maximum size supported on our experimental hardware

Datasets. We perform the experimental evaluation on a total of ten graph datasets (See Table 2), with
five being static-temporal datasets (1-5) [10], and the other five being dynamic graph datasets (6-10)
[12].

Baseline. The STGraph framework is compared against PyG-T v0.54.0. The model considered for
this comparison is the default configuration of TGCN [17] since it serves as a basic TGNN model
with both temporal and GNN components. Each test was run for hundred epochs. The first three
epochs were ignored to account for GPU warm-up time. The loss for models compiled with PyG-T
and STGraph are similar over all tests.

Tasks. The static-temporal graph datasets considered in this work contain node labels for each
timestamp, these datasets are hence trained on the node classification task using Mean Squared Error
as the loss criterion. The link prediction task is used for benchmarking on DTDGs because these
datasets mostly contain information about the presence/absence of edges at different timestamps. The
Binary Cross Entropy Loss with Logits criterion calculates the loss in this case.

Data Preprocessing. For static-temporal graphs no preprocessing was necessary. Dynamic graph
datasets considered in this benchmarking contain a list of edges with their corresponding timestamps.
The datasets are preprocessed to discrete-time snapshots. The first half of the dataset is the first
snapshot. Then the window is moved to obtain a second snapshot such that the percent change
between any two consecutive snapshots is always less than 10%. In the case of STGraph-GPMA, the
data is further processed to only contain changes between consecutive snapshots, i.e., the addition
and deletion of edges.

A4 Acknowledgement

This project is supported by the National Supercomputing Mission (NSM), Department of Science
and Technology (DST), India. Additionally, we thank Dr. Muralikrishnan K, the point of contact for
this project at the National Institute of Technology Calicut, for his guidance and support.

