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Compressed Sensing

Motivation

d Inverse problems seek to recover an unknown signal from the
given observations produced by a noisy process that
transforms the original signal:

y=f(x)+9

1 A wide range of applications can be posed under this
formulation with an appropriate choice of f(x) and 9, such as
compressed sensing, computed tomography, magnetic
resonance imaging, and image super-resolution.

A Since f(x) is not invertible in general, this problem is ill-posed
even in the noiseless case. Classically, this is dealt by
assuming a sparsity prior over the signal in some basis.

Compressed Sensing with a GAN

1 Bora et al. [1] proposed to replace the sparsity prior with a
GAN prior trained on the domain of interest. Since GANs are
capable of modeling complex high-dimensional signals, they
can be an effective learned prior for inverse problems.

A Thus the signal recovery is done by finding a point in the range
of GAN that minimizes reconstruction loss:

2 2
Lpoa(2;y) = |ly — AG(2)|” + A[|2]
where (7 is the generator from a pre-trained GAN and )\ is
a regularization coefficient.

Compressed Sensing with a Flow Model

d  Asim et al. [2] pointed out that GAN prior does not generalize
well to out-of-distribution samples, since it cannot represent
any signal that's outside its range. Thus they proposed to use
a flow prior instead where the generator (5 is invertible:

L(zy) = [ly — AG(2)|” + 7 ||z

3 Since ( is invertible, it can represent any signal in its range.
1 We show that this loss is related to a specific instance of our
general formulation for Gaussian noise § ~ A(0,~ I).
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MAP Formulation

Maximum a Posteriori Objective
4 We generalize Asim et al. [2] to the case of nonlinear forward

operator f(x)and general noise distribution PA . F§ =§
Lg(zy, 8) = —logpa(y — f(G(2))) — Blogp(G(2)) S
Theoretical Analysis <
d (Gaussian Denoising) We show that when the log likelihood of O
the flow model is p locally-concave around the ground truth
signal, the L2 reconstruction error is bounded as £ =
|z —z*| < 277 [16]] <5
d (Compressed Sensing) We show that the worst-case
reconstruction error for compressed sensing with Gaussian S
noise is bounded as E|& — z*|| < v8r (% +e), where w(-)isthe @& %
Gaussian mean-width and S(p) = {z|logp(x) > p}.
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Experimental Results

Denoising MNIST digits from CelebA-HQ faces and OOD images
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Experimental Results

Noisy Compressed Sensing
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Conclusion

We propose a novel method that generalizes [1,2] to
solve inverse problems for general differentiable forward
operators and structured noise. The power of our
approach stems from the flexiblity of flow models which
can be combined in a modular way to solve inverse
problems via MAP inference.
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