
Appendix

A Toy example

In this section, we provide and expand upon a toy example. Recall that the inputs x and x0 need not
correspond to real users but could instead represent hypothetical users.
Example 5. Suppose that the regulatory guideline requires that users in the same geographical
location receive similar weather forecasts. This can be written as “the weather forecasts that are
selected by F should be similar for all users in the same geographical location”, and S could be a
randomly generated set of user pairs, where each pair corresponds to two (hypothetical) users in the
same geographical location, and S could contain pairs across many locations.

Figure 1: Visualization of toy example.

Figure 1 visualizes counterfactual regulations. In the left-most panel, a filtering algorithm F takes in
counterfactual inputs x and x0 and produces the content Z and Z

0. The middle panel visualizes this
relationship graphically. Because a counterfactual regulation requires that F behave similarly under
x and x0, the regulation is effectively requiring that content Z and Z

0 are sufficiently similar (or,
graphically, that they are close in Z). The question of how to quantify “similarity” is addressed in
Section 2.1. The toy example in Example 5 is illustrated in the right-most panel. Requiring that the
weather information is similar for users in the same location can be tested by randomly selecting
pairs of users (x,x0) in the same location, placing these pairs in S , then running the audit over S .

Figure 2: Understanding the role of the MVUE (see Section 4.2).

Figure 2 visualizes the intuition behind the MVUE discussed in Section 4.2. Specifically, it illustrates
why the MVUE L+ corresponds to the user whose decisions are most sensitive to Z. Suppose that a
user’s content Z contains forecasts about the chance of rain and the user is deciding whether to bring
an umbrella. Suppose the content in Z = F(x) reflects the actual chance of rain while Z

0 = F(x0)
contains disproportionately more content suggesting that it will rain. Perhaps Z is shown to children
while Z 0 is shown to adults to encourage them to buy umbrellas. Let there be three hypothetical users
with estimators L+, L1, and L2, as indicated in the left-most panel. (As discussed in Section 4.2,
every user ingests their content differently. An estimator L is simply a mapping from content Z to
the user’s belief. In this toy example, we study three hypothetical users.)

In the left-most panel, each plot visualizes one of the user’s belief pz(·; ✓̂) about whether it will rain
U given Z (in solid blue) or given Z

0 (in dashed red), where U < 0 suggests that it will not rain
and U > 0 suggests that it will rain. L+ is the MVUE, L1 is a biased estimator (it is biased to the
right such that the user tends to believe it will rain today no matter what the forecasts say), and L2 is
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an unbiased estimator with higher variance than L+ (the user does not put much confidence in the
forecasts, so its belief is less “peaky” than the MVUE’s).

In the second panel, we write the decision of whether to bring an umbrella in terms of the setup in
Section 4.2. Specifically, if the user knew that the true chance of rain as given by ✓, they would bring
an umbrella if vyes(✓) > vno(✓) and would not bring an umbrella, otherwise, where vi denotes the
value that the user places on each option. For example, vi may balance the user’s dislike of carrying
an umbrella with the user’s dislike of walking in the rain, and vi may differ across individuals.

The third panel explains how the user would make a decision under the upper confidence bound
(UCB) decision model, a popular model in the bandit literature [18]. Here ✓ captures the reward and
sampling history of the bandit (i.e., the past experiences of a user with respect to rain and weather
forecasts), and vi(✓) would give the UCB of arm i (i.e., of the choices to and not to bring an umbrella).
As written in the third panel, under the UCB decision model, the user would choose to bring an
umbrella if the UCB of their belief is to the right of some threshold ⌘⇢ (for details on ⌘⇢, see Section
4.2) and would not bring an umbrella, otherwise.

In order to understand what decision each of the three users corresponding to L+, L1, and L2 would
do, examine the fourth (right-most) panel. Let the threshold ⌘⇢ be given by the thin vertical line,
as marked. Let the UCB for Z and Z

0 be given by the blue and red thick lines, as indicated in the
top-most plot (the blue line is always to the left of the red line). We see that, for this choice of ⌘⇢, the
MVUE would not choose to bring an umbrella under Z but would choose to do so under Z 0. We also
see that the users corresponding to L1 and L2 would choose to bring umbrellas under both Z and Z

0.
These choices are also written in the third-panel from the left.

The goal of Figure 2 is to provide intuition for why the MVUE corresponds to the “most gullible
user”: the hypothetical user whose decisions are most affected by their content. Recall that Z 0

indicates that it is more likely to rain than Z. As illustrated in the example, the MVUE is the only
estimator among the three for which the user’s decision is different when shown Z versus Z 0, whereas
the users corresponding to the other estimators are less affected by the content that they see: their
decisions remain the same under Z and Z

0. This example confirms the discussion in Section 4.2 that
the decisions of the MVUE are more sensitive to whether the content is Z or Z 0 than the decisions
of other users (i.e., other estimators). Therefore, if we wish to enforce similarity between users’
decision-making behavior under Z and Z

0—or, equivalently, under the inputs x and x0—then the
MVUE provides an “upper bound” on the sensitivity of users’ decisions to their content.

For intuition on why the MVUE is the “most gullible user”, recall that the MVUE is the unbiased
estimator with the lowest variance. Suppose that a user’s estimate L(Z) differs from L+(Z). By
definition, this estimate is biased or has higher variance. When biased, the user’s estimate is
consistently pulled by some factor other than Z. For example, a user who remains pro-vaccine
no matter what content they see has a biased estimator. When the user’s estimate has higher
variance than the MVUE’s, it is an indication that the user places less confidence than the MVUE
in what they glean from Z. For example, the user could be skeptical of what they see on social
media or scrolling very quickly and only reading headlines. In this way, the MVUE corresponds
to the user the user who “hangs on every word”—whose decisions are most affected by their content Z.

Figure 3: Visualizing the cost of regulation and the connection to content diversity.
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Figure 3 visualizes the cost of regulation and illustrates why increasing content diversity can reduce
the cost of regulation. In this example, suppose that pz(·;✓) are 1-D Gaussian, as in Example 4. We
examine how different choices of (Z,Z 0) affect (a) the feasible set and (b) the platform’s cost of
regulation. In the left-most panel, we re-iterate that Z = F(x) and Z

0 = F(x0). As stated above, we
assume that ⇥ parameterizes the family of 1-D Gaussian. The bottom of the left-most panel provides
an example of how an estimator L would behave if given Z and Z

0 where Z is a 1-D Gaussian
centered to the left of 0, Z 0 is a 1-D Gaussian centered to the right of 0, and both have the same
variance �2. For this example, we assume that the variance �2 is the same for Z and Z

0. Specifically,
the distribution under ✓̂ = L(Z) is plotted in solid blue while the distribution under ✓̂ = L(Z 0) is
plotted in dashed red. For the purposes of this example, one can assume that L = L+ is the MVUE,
and we denote the estimate of ✓ by ✓̃ to be consistent with the notation in the main text.

The middle and right-most panels visualize the cost of regulation under two different choices of
(Z,Z 0). In the middle panel, Z and Z

0 are chosen such that the distributions p(· ; ✓̃) under Z and Z
0

are given in the middle-bottom. Specifically, µ̃ and µ̃
0 are � apart, and the variance �2 is fairly small.

Suppose that, as in Example 4, R is a function of the means (i.e., of µ̃ and µ̃
0) but not of the variance

�
2. Furthermore, suppose that the platform maximizes its reward R when µ̃

0 � µ̃ = �, as visualized
by the green star in the top middle plot. As explained in Section 5, a regulation restricts the platform’s
choice of feeds (or collections of type-T content) from Z to the feasible set Z(S), which is a subset
of Z . In the top middle panel, we visualize the feasible set in purple. Specifically, for the given choice
of �2 (as plotted in the bottom middle), the feasible set does not include µ̃0 � µ̃ = �. The maximum
reward that the platform can achieve under the regulation for this choice of �2 is indicated by the
black dot, and the vertical distance between the green star and black dot is the cost of regulation.

However, if the platform still chooses Z and Z
0 such that µ̃0 � µ̃ = � but increase the variance �

2,
the story is different. In the right-most panel, we show that, for a larger �2, the feasible set expands
to include µ̃

0 � µ̃ = �. As such, the reward-maximizing solution is contained within the feasible
set, and there is no cost of regulation. In this way, adding a sufficient amount of content diversity
can reduce the cost of regulation, thereby allowing the platform to achieve high reward while also
complying with the regulation.

Mathematically, this example is explained by Theorem 3 and discussed in Example 4. Expanding
on the discussion in Example 4, recall that, when ✓ = (µ,�2), ⇥ = R ⇥ R�0, P = {N (µ,�2) :
(µ,�2) 2 ⇥} is the family of 1-D Gaussian distributions, and R is a function of µ but not �2 (as in
Figure 3), then I((µ,�2)) = diag(��2

,�
�4

/2), ✓̄⌦ = (0, 1), and
v>

I(✓ + ✓̄⌦)v = v
2
1/(�

2 + ) + v
2
2/(2(�

2 + )2). (5)
This quantity becomes very small if  is very large. It turns out that making this quantity small is
precisely what we want and that making  large is the same as increasing the content diversity because
✓ + ✓̄⌦ = (µ,�2 + ). To see this connection, recall that the pair Z and Z

0 passes regulation if
(L+(Z)�L+(Z 0))>I(L+(Z))(L+(Z)�L+(Z 0)) < 2

m
�
2
r
(1� ✏), Therefore, given content Z⇤ for

which L+(Z⇤) = ✓̃⇤ and R(Z⇤
,x) is the maximum achievable reward, one can create a new feed (or

collection of type-T content) Z that passes regulation by taking Z
⇤ and increasing its content diversity

such that L+(Z) = (µ⇤
, (�⇤)2 + ). By (5), the quantity (L+(Z)�L+(Z 0))>I(L+(Z))(L+(Z)�

L+(Z 0)) can be made arbitrarily small by taking  to be large, which means that Z is in the feasible
set. Moreover, since R does not depend on the variance, R(Z,x) = R(Z⇤

,x). Note that this example
is highly simplified as an illustration, but the intuition that it provides holds more generally.

B Technical details

Recall that the Fisher information matrix I(✓) 2 Rr⇥r is a positive semi-definite matrix, where the
(i, j)-th entry is given by:

[I(✓)]ij = Ez⇠pz(·;✓)


@

@✓i
log pz(z;✓)

@

@✓j
log pz(z;✓)

�

Recall that Z is generated by drawing m samples from pz(· ;✓), where ✓ 2 ⇥. Recall further that
L : Z ! ⇥ denotes an estimator. An estimator L is asymptotically normal and efficient if:

p
m (L(Z)� ✓)

d! N (0r, I
�1(✓)), (6)
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as m ! 1 for all ✓ 2 ⇥ where I
�1(✓) denotes the inverse of the Fisher information matrix at ✓.

Lastly, let P = {pz(· ;✓) : ✓ 2 ⇥}. The regularity conditions on P that are discussed in Theorem 1
are stated as follows.

1. ⇥ is a compact and open set of Rr.

2. Identifiability: z
i.i.d.⇠ pz(·;✓) for ✓ 2 ⇥ and ✓1 6= ✓2 implies pz(·;✓1) and pz(·;✓2) are

distinct.
3. Common support: The support of pz(·;✓) is independent of ✓ 2 ⇥.
4. Differentiability: All the second-order partial deriviates of log pz(z;✓) with respect to ✓

exist and are continuous in ✓.
5. For any ✓0 2 ⇥, there exists a neighborhood of ✓0 and a function ⇧(z), where

Ez⇠pz(·;✓0)[⇧(z)] < 1 and
����

@
2

@✓i@✓j
log pz(z;✓)

����  ⇧(z),

for all z 2 Z , all ✓ in the neighborhood of ✓0, and i, j 2 [r].
6. If ✓⇤ is the data generating parameter:

(a) @

@✓i
log pz(z;✓

⇤) is square integrable for all i 2 [r].

(b) Ez⇠pz(·;✓⇤)

h
@

@✓i
log pz(z;✓

⇤)
i
= 0

(c) The Fisher information at ✓⇤ satisfies:

[I(✓⇤)]ij = Ez⇠pz(·;✓⇤)


@

@✓i
log pz(z;✓

⇤)
@

@✓j
log pz(z;✓

⇤)

�

= �Ez⇠pz(·;✓⇤)


@
2

@✓i✓j
log pz(z;✓

⇤)

�

(d) Invertibility: Fisher information I(✓⇤) at ✓⇤ is positive-definite and invertible.
7. Either all distributions in P are lattice distributions on the same lattice or each pz(·;✓) 2 P

has a component such that, for a constant k that is independent of ✓, the k-fold convolution
has a bounded density with respect to the Lebesgue measure.

8. For all ✓ 2 ⇥, there exists an unbiased estimator L such that E[|L(Z)|] < 1.
9. ⇥ is a convex set.

There are variations on these regularity conditions, and we refer the reader to other works for further
details [5, 46, 50]. The compactness requirement in Condition 1 and the continuity requirement in
Condition 4 ensure the existence of the MLE. The remaining statements in Conditions 1 through 6
ensure the asymptotic normality of the MLE. Conditions 7-8 ensure the asymptotic normality of the
MVUE (cf. [59] for details). Condition 9 ensures the existence of I((✓ + ✓0)/2) for ✓,✓0 2 ⇥, and
this condition can be relaxed by providing a slightly different statement of Theorem 1 (e.g., letting
✓⇤ be ✓(x) or ✓(x0)).

C Proofs

C.1 Theorem 1

Theorem 1. Consider (1). Let ✓⇤ = (✓(x) + ✓(x0))/2. Suppose that zi and z0
i

are drawn i.i.d. from
p(· ;✓(x)) and p(· ;✓(x0)), respectively, for all i 2 [m] and P = {pz(· ;✓) : ✓ 2 ⇥} is a regular
exponential family that meets the regularity conditions stated in Appendix B. If Ĥ is defined as:

Ĥ = H1 () (L+(Z)� L+(Z 0))>I(✓⇤)(L+(Z)� L+(Z 0)) � 2

m
�
2
r
(1� ✏),

then P(Ĥ = H1|H = H0)  ✏ as m ! 1. If r = 1, then Ĥ is the UMPU test as m ! 1, i.e.,
limm!1 P(Ĥ = H0|H = H1) = ↵

⇤(✏).
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Proof. The regularity conditions required for Theorem 1 are stated in Appendix B. The definition of
asymptotic normality and efficiency is also given in Appendix B.

Under the regularity conditions, we have three results. First, under Conditions 1 and 4, the MLE
exists and, from Conditions 1-6, it is asymptotically normal and efficient [5, 46, 50]. Second,
under Conditions 1-8, the MVUE exists and is also asymptotically normal and efficient [59]. Third,
Condition 9 ensures the existence of I((✓ + ✓0)/2) for ✓,✓0 2 ⇥, and this condition can be relaxed
by providing a slightly different statement of Theorem 1 (e.g., letting ✓⇤ be ✓(x) or ✓(x0)).

By the second result,
p
m(L+(Z)� ✓(x))

d! N (0r, I
�1(✓(x)))

as m ! 1, where zi
i.i.d.⇠ p(·;✓) and Z = (z1, . . . , zm). Therefore, as m ! 1,

p
m(L+(Z)� ✓(x)� L+(Z 0) + ✓(x0))

d! N (0r, I
�1(✓(x)) + I

�1(✓(x0))) (7)

Recall the hypothesis test (1) from Section 2.2. When H = H0, ✓(x) = ✓(x0) = ✓⇤. Therefore, by
(7),

p
m(L+(Z)� L+(Z 0))

d! N (0r, 2I
�1(✓⇤)) (8)

as m ! 1 when H = H0, which implies that, as m ! 1, the two-sample, two-sided hypothesis
test in (1) becomes a two-sample, one-sided test of on the mean of a multivariate Gaussian random
variable. Under (8),

(L+(Z)� L+(Z 0))>I(✓⇤)(L+(Z)� L+(Z 0)) ⇠ 2

m
�
2
r

Therefore, if Ĥ satisfies:

Ĥ = H1 () (L+(Z)� L+(Z 0))>I(✓⇤)(L+(Z)� L+(Z 0)) � 2

m
�
2
r
(1� ✏) (9)

then Ĥ has a FPR  ✏, as desired.

Although Ĥ is not necessarily the UMPU for r > 1, it is well known that it is the UMPU test of size
✏ for the univariate Gaussian case, i.e., when r = 1 (cf. Section 8.3 of [21]).

One may have noticed that the hypothesis test in (9) (and (3)) uses Z and Z
0 to choose between

H0 and H1, whereas in the original problem statement in Section 2, the hypothesis test uses D and
D0. In other words, decision robustness requires that one cannot determine whether x 6= x0—or,
equivalently, ✓(x) 6= ✓(x0)—from D and D0 for any Q. Although D, D0, and Q do not appear in the
analysis above, the test in (9) ensures (approximate asymptotic) decision robustness by designing a
test that works for all Q and consequent decisions D and D0.

To see this, we first note that, if expressed as a Markov chain, the random variables of interest would
be written as x ! ✓ ! Z ! D. By the data processing inequality, any test that uses Z is stronger
(i.e., has a higher TPR and lower FPR) than the corresponding test using D. Intuitively, since D is
determine by Z and D0 from Z

0, if one cannot determine whether x 6= x (or ✓(x) 6= ✓(x0)) from Z

and Z
0, then one cannot do any better given D and D0 for any Q. We can therefore conclude that the

guarantees of (9) hold for all Q and the original hypothesis test in (1).

Note that the regularity conditions required in Theorem 1 are fairly mild. Recall that exponential
families capture a broad class of distributions of interest. In particular, they are the only families
of distributions that have finite-dimensional sufficient statistics, and a distribution almost always
belongs to an exponential family if it has a conjugate prior. Regular exponential families are canonical
exponential families if the natural parameter space is an open set in ⇥. The remaining regularity
conditions are common and often implicitly assumed in discussions of the MVUE or MLE.

Alternate result. We would like to remark that the audit could be modified to use the MLE instead
of the MVUE. Using the MLE would provide the same guarantee as Theorem 1. In fact, it would
require fewer conditions, as follows.
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Theorem C.1. Consider (1). Let ✓⇤ = (✓(x) + ✓(x0))/2. Suppose that zi and z0
i

are drawn i.i.d.
from p(· ;✓(x)) and p(· ;✓(x0)), respectively, for all i 2 [m] and P = {pz(· ;✓) : ✓ 2 ⇥} meets
Conditions1 through 6 stated in Appendix B. If Ĥ is defined as:

Ĥ = H1 () (L+(Z)� L+(Z 0))>I(✓⇤)(L+(Z)� L+(Z 0)) � 2

m
�
2
r
(1� ✏), (10)

then P(Ĥ = H1|H = H0)  ✏ as m ! 1. If r = 1, then Ĥ is the UMPU test as m ! 1.

Therefore, one may wish to use the MLE instead of the MVUE in Algorithm 1. The reason that one
may wish to use the MVUE is because it provides another guarantee (cf. Proposition 2).

C.2 Proposition 2

Proposition 2. Consider (4). Let G 2 {G0, G1} denote the true (unknown) hypothesis. Suppose
that v0, v1 : ⇥ ! R are affine mappings and there exists u : Rn ! U such that, for F(x) =
{z1, . . . , zm}, one can write u(zi) ⇠ pu(·; v1(✓(x))� v0(✓(x))) for all i 2 [m]. Then, if the UMP
test with a maximum FPR of ⇢ exists, it is given by the following decision rule: reject G0 (choose
A1) when the minimum-variance unbiased estimate ✓̃ = L+(Z) satisfies v1(✓̃)� v0(✓̃) > ⌘⇢ where
P(v1(✓̃)� v0(✓̃) > ⌘⇢|G = G0) = ⇢; otherwise, accept G0 (choose A0).

Proof. We begin with a result from Ghobadzadeh et al. [36].

Lemma C.2 ([36], Theorem 1). Consider a one-sided binary composite hypothesis test of Ḡ0 : w ⇠
pw(·; �), �  �b against Ḡ1 : w ⇠ pw(·; �), � > �b, where �b is known. Let �0 = {� : �  �b},
�1 = {� : � > �b}, and � = �0 [ �1. Let ⇢ be the maximum allowable false positive rate. If the
uniformly most powerful (UMP) test exists, then it is defined by the following decision rule: reject Ḡ0

when the minimum variance unbiased estimator (MVUE) of � 2 �, denoted by �̃+, satisfies �̃+
> �⇢,

where P (�̃+
> �⇢|H = Ḡ0) = ⇢.

Our result follows directly from two observations. First, since v0, v1 are affine, if ✓̃ is the MVUE of
✓, then v1(✓̃)� v0(✓̃) is also the MVUE of v1(✓)� v0(✓). Second, our setting is equivalent to that
in Lemma C.2 with the substitutions � = v1(✓)� v0(✓), �b = 0, and w = u(z).

C.3 Theorem 3

Recall from footnote 10 that R can be time-varying. For example„ the platform’s revenue sources
may change with time. As long as the time-varying objective function R

(t) satisfies the conditions in
Theorem 3 at every time step, then the result holds unchanged at every time step.
Theorem 3. Suppose there exists ⌦ ⇢ [r] where 1 < |⌦| < r such that R(✓1,x) = R(✓2,x) if
✓1,i = ✓2,i for all i /2 ⌦. Suppose that, for any ✓ 2 ⇥, � > 0 and v 2 Rr, there exist a vector ✓̄⌦

where ✓̄⌦,i = 0 for all i /2 ⌦ and a constant  > 0 such that v>
I(✓+✓̄⌦)v < � and ✓+✓̄⌦ 2 ⇥.

Then, if m < 1, there exists a Z such that the cost of regulation for x under Algorithm 1 is 0.

Proof. Let Z⇤ 2 argmaxW2Z R(W,x) be a reward-maximizing solution and ✓̃⇤ = L+(Z⇤). Sim-
ilarly, let Z 0

⇤ 2 argmaxW2Z R(W,x0) and ✓̃0
⇤ = L+(Z 0

⇤). Recall that, under the statement con-
ditions, there exists a vector ✓̄⌦ where ✓̄⌦,i = 0 for all i /2 ⌦ and a constant  > 0 such that
v>

I(✓ + ✓̄⌦)v < � and ✓ + ✓̄⌦ 2 ⇥ for any ✓ 2 ⇥, � > 0, and v 2 Rr. Let us take
✓ = ✓̃⇤ = L+(Z⇤), � = 2

m
�
2
r
(1 � ✏), and v = ✓̃0

⇤ � ✓̃⇤. Finally, let ✓̃ = ✓̃⇤ + ✓̄⌦, where ✓̄⌦ is
defined as given in the statement. Then,

(✓̃0
⇤ � ✓̃⇤)

>
I(✓̃⇤ + ✓̄⌦)(✓̃

0
⇤ � ✓̃⇤) <

2

m
�
2
r
(1� ✏).

Letting ✓̃0 = ✓̃0
⇤ + ✓̄⌦ and recalling ✓̃ = ✓̃⇤ + ✓̄⌦ gives

(✓̃
0 � ✓̃)>I(✓̃)(✓̃0 � ✓̃) <

2

m
�
2
r
(1� ✏),

21



which implies that, as long as Z is large enough such that there exist Z and Z
0 such that L+(Z) = ✓̃

and L+(Z 0) = ✓̃0, then both Z and Z
0 comply with the regulation. In other words, as long as Z

contains content that is expressive enough, we know that Z,Z 0 2 Z(S).
It remains to show that the cost of regulation is 0. To do so, we show that Z, which is in the feasible
set, achieves the maximum reward maxW2Z R(W,x) = R(✓̃⇤,x). That the cost of regulation is 0
follows from the fact that R(✓̃⇤,x) = R(✓̃⇤ + ✓̄⌦,x) because ✓̄⌦,i = 0 for i /2 ⌦.

D Additional discussion

D.1 Two remarks

Recall that we made two simplifications in the main text for readability. As noted in the main text,
these simplifications do not change our main findings, which implies that our results hold under
conditions more general than those given in the main text.

First, recall from footnote 10 that R can be time-varying, i.e., let the objective function that the
platform wishes to maximize at time step be given by R

(t). This allows our analysis to accommodate
settings in which the platform’s objectives (e.g., revenue sources) change with time. Allowing the
objective function to vary in time does not change our conclusions. Our findings with respect to R

appear in Theorem 3 and the discussion that follows. As apparent in the proof of Theorem 3, adopting
a time-varying R

(t) leads to the same result as long as R(t) satisfies the conditions in the theorem
statement at the time step t of interest.

Second, recall from footnote 9 that a user’s beliefs are often influenced by information other than
the content Z that they view on the social media platform. For instance, a user’s beliefs may depend
on conversations that they have offline or on their previous beliefs. One could incorporate this into
our setup by letting J 2 J denote any information other than Z that the user uses to form or update
their beliefs and the estimator L : Z ⇥ J ! ⇥ denote the user’s learning behavior (that incorporates
information both on and off the platform) such that the user’s belief after viewing Z and observing
information J is given by L(Z, J).
The outside information J does not affect our results because it can be absorbed into L. That is,
because we are only interested in how the user’s beliefs are affected when the user is shown Z

0

instead of Z, and vice versa, J can effectively be ignored. Another way to see this is by recalling
the definition of decision robustness. Decision robustness supposes that there are two identical
(hypothetical) users, one of whom is shown Z and the other Z 0. For the purpose of comparing the
outcomes under Z and Z

0, J could be treated as part of the original identical users.

D.2 Impact and additional considerations

Our hope is that this work can contribute to the ongoing conversations about social media and its
governance. In light of the difficulties in designing and enforcing a regulation, we focus on the latter
half of the process by proposing an auditing procedure. Auditing social media remains a challenging
topic because changes to the ecosystem can have far-reaching consequences. As such, we sought to
consider the various stakeholders in the system.

In particular, we studied our framework from the perspectives of the auditor, platform, and user.
The proposed test focuses on a given pair of inputs. We made this choice intentionally to prevent
issues that often arise when a regulatory test focuses only on average behavior, which can sometimes
result in good outcomes for most individuals but unsatisfactory outcomes for a small subset of the
population (i.e., a minority group). We considered the perspective of the auditor by acknowledging
the difficulties in designing regulations that are enduring and adaptable while also being precise and
implementable. To this end, our main contribution is a test that translates counterfactual regulations
into a principled regulatory procedure. We also consider the platform’s perspective by studying
how the audit affects the platform’s ability to maximize some objective function (e.g., revenue,
user engagement, a combination of these factors, and more). This discussion returns to the user’s
perspective by examining how the audit changes the content or feed that the platform is incentivized
to show users with particular attention to the diversity of the user’s content.
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To the best of our abilities, we attempt to acknowledge and address the impact of our work by
considering various perspectives of our proposal, explicitly mentioning what problems are within
the scope of this work and pointing to appropriate references. However, there may be angles that
we have missed. There is also the potential to misuse the proposed framework. For instance, if a
platform decided to adopt our procedure as a self-regulatory measure, the outcome would depend on
how seriously the platform engages in conversations on designing the counterfactual inputs. Another
potential misuse would be adversarially designing the features that represent content such that the
regulation is ineffective. However, a good-faith effort to choose and test these features appropriately
should resolve this issue. One might also be concerned with user privacy. In response, we provide
several comments. First, the proposed test does not require user-specific information. Second, the
inputs (x,x0) need not represent real users, and we would in fact recommend that they correspond
to hypothetical users. If the audit uses hypothetical users, then the main way that user information
is revealed to the auditor is via the content that appears in the feeds that the auditor uses to audit
because much of the content on social media is generated by users themselves. Although this issue
seems unavoidable, one encouraging feature of the audit is that the auditor only requires access to
the feature vectors (or embedding) of each piece of content. Therefore, as long as the auditor has no
intention of unmasking the identity of users, the test could be run over these features, and this data
could be immediately discarded afterwards. The only output that would be preserved is the outcome
of the audit. Lastly, one implicit source of bias could be in the selection of the model family ⇥, which
is a decision made by the auditor. We choose to leave ⇥ unspecified because doing so means that our
analysis can be generalized to any ⇥ of interest. However, the auditor should test different choices of
⇥ and observe the outcomes. Recall that ⇥ captures the set of possible generative models (or, in the
context of Section 4.2, possible cognitive models). In choosing the model family ⇥, a simple ⇥ is
more tractable and interpretable while a complex ⇥ is more general.
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