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Abstract001

Existing code generation benchmarks for Large002
Language Models (LLMs) such as HumanEval003
and MBPP are designed to study LLMs’ end-to-004
end performance, where the benchmarks feed005
a problem description in nature language as006
input and examine the generated code in spe-007
cific programming languages. However, the008
evaluation scores revealed in this way pro-009
vide a little hint as to the bottleneck of the010
code generation – whether LLMs are strug-011
gling with their problem-solving capability or012
language-coding capability. To answer this013
question, we construct PSEUDOEVAL, a mul-014
tilingual code generation benchmark that pro-015
vides a solution written in pseudocode as in-016
put. By doing so, the bottleneck of code017
generation in various programming languages018
could be isolated and identified. Our study019
yields several interesting findings. For exam-020
ple, we identify that the bottleneck of LLMs in021
Python programming is problem-solving, while022
Rust is struggling relatively more in language-023
coding. Also, our study indicates that problem-024
solving capability may transfer across program-025
ming languages, while language-coding needs026
more language-specific effort, especially for027
undertrained programming languages. Finally,028
we release the pipeline of constructing PSEU-029
DOEVAL to facilitate the extension to exist-030
ing benchmarks. PSEUDOEVAL is available031
at: https://anonymous.4open.science/r/032
PseudocodeACL25-7B74/.033

1 Introduction034

Large Language Models (LLMs) have exhibited035

impressive proficiency in aiding software develop-036

ment, particularly in the realm of code generation.037

Existing code generation benchmarks, such as Hu-038

manEval (Chen et al., 2021), typically present a nat-039

ural language description (e.g., “return a list with040

elements incremented by 1”) and require LLMs to041

generate code that fulfills the described functional-042

ity. On the HumanEval leaderboard, various LLMs043

have achieved scores close to perfection (at most 044

99.4% 1). However, on another benchmark known 045

for minimal contamination, LiveCodeBench (Jain 046

et al., 2024a), the highest score recorded is 76.5% 2. 047

The highest score drops to 52.2% for problems in 048

the hard category. 049

However, what do these scores truly imply? 050

When scores approach perfection, does it genuinely 051

imply that the LLMs have nearly attained the ca- 052

pability to replace Python developers? The answer 053

seems to be no. Numerous studies have revealed 054

significant shortcomings in LLMs’ code generation 055

capabilities, such as producing code with syntactic 056

errors, code that does not meet the intended require- 057

ments, or code with low-level implementation mis- 058

takes. Yet, merely summarizing these phenomena 059

as “hallucinations” (Li et al., 2023; Xu et al., 2024; 060

Zhang et al., 2023b; Dhuliawala et al., 2023; Zhang 061

et al., 2024) is an oversimplification. We seek to 062

understand what the bottleneck of code generation 063

is – Is it due to a lack of problem-solving capability 064

or language-coding capability, or both? 065

To facilitate this study, we constructed a multi- 066

lingual code generation benchmark, PSEUDOEVAL, 067

with 1,059 subjects with not only problem-solution 068

pairs but also intermediate solutions represented 069

as pseudocode, which serve to isolate the problem- 070

solving capability from the language-coding capa- 071

bility. Take Figure 1 for example. Given a problem 072

description (upper-left corner), the existing end-to- 073

end code generation benchmarks typically examine 074

whether the generated code (lower-left corner) is 075

implemented correctly and report a binary result 076

(pass or fail) as the evaluation output. However, 077

the binary result gives little hint of the bottleneck, 078

i.e., it is still unclear whether LLMs are incapable 079

of coming up with solutions for this problem or 080

1Result on Feb 13,2024, from https://paperswithcode.
com/sota/code-generation-on-humaneval

2Result on Feb 13, 2024, from https://livecodebench.
github.io/leaderboard.html
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You are given an integer array nums and an integer k.

An integer h is called valid if all values in the array 
that are strictly greater than h are identical. For 
example, ...

You can perform the following operation on nums:

* Select an integer h that is valid for the current 
values in nums.
* For each index i where nums[i] > h, set nums[i] to h.

Return the minimum number of operations required to make 
every element in nums equal to k. If it is impossible to 
make all elements equal to k, return -1.

def minOperations(nums: List[int], k: int) -> int:
    if k not in nums and any(num > k for num in nums):
        return -1
    unique_nums = sorted(set(nums), reverse=True)
    operations = 0
    for num in unique_nums:
        if num > k:
            operations += 1
        elif num == k:
            break
    return operations

function minOperations(nums, k):
  mn = minimum element in nums
  if mn < k:
    return -1
  unique = set of elements in nums
  ans = unique.size()
  if k is in unique:
    ans -= 1
  return ans

int minOperations(std::vector<int>& nums, int k) {
    int mn = *std::min_element(nums.begin(), nums.end());
    if (mn < k) { 
        return -1;
   }
    std::set<int> unique(nums.begin(), nums.end());
    int ans = unique.size();
    if (unique.find(k) != unique.end()) {
        ans -= 1;
    }
    return ans;
}

def minOperations(nums: List[int], k: int):
    mn = min(nums)
    if mn < k:
        return -1
    = set(nums)
    ans = len(unique)
    if k in unique:
        ans -= 1
    return ans

fn min_operations(nums: Vec<i32>, k: i32) -> i32 {
    let mn = *nums.iter().min().unwrap();
    if mn < k { 
        return -1;
   }
    let unique: HashSet<i32> = nums.into_iter().collect();
    let mut ans = unique.len() as i32;
    if unique.contains(&k) {
        ans -= 1;
    }
    ans
}

Direct Generation (Problem Solving + Coding)

Wrong Python Solution Python Impl

C++ Impl

Rust Impl

Step 2: Coding (Implementation)

Pseudocode

Step 1: Problem Solving

Problem

Step2

Figure 1: Motivating example

suffering from language-specific implementation081

such as writing syntactic- or semantic-correct code082

in certain programming languages such as C++ or083

Rust. With PSEUDOEVAL, the assessment would084

yield clearer results – by breaking the end-to-end085

task down into two steps. One could observe when086

providing the solution (Pseudocode in the middle087

of Figure 1), LLMs can successfully code it in three088

languages (Python, C++, and Rust), while all ex-089

perimental LLMs failed to solve this easy-tagged090

problem without the provided solution, indicating091

the bottleneck for this problem is more on the092

problem-solving than language-coding capability.093

Furthermore, to expand the usefulness of PSEUDO-094

EVAL, we explore four research questions (RQs).095

RQ1. To what extent can the provided pseu-096

docode improve the correctness of code genera-097

tion? This RQ provides an overall profiling of the098

performance from the question description and the099

pseudocode. Understanding performance differ-100

ences with and without pseudocode across differ-101

ent LLMs/programming languages/difficulties of102

the questions helps identify the bottleneck of code103

generation in different programming languages.104

RQ2. To what extent can the solution from one105

programming language benefit the code genera-106

tion in another programming language? This RQ107

extends the study from monolingual to multilingual108

observation. It explores whether the pseudocode109

derived from codes in one programming language110

could benefit the code generation in another pro-111

gramming language. The results could give hints112

of the possibility of transferring problem-solving113

capability across programming languages.114

RQ3. Can different inference strategies yield115

significantly different observations? Different116

promptings and attempts may yield different perfor- 117

mances. This RQ explores whether the observation 118

of the bottleneck (problem-solving or implementa- 119

tion) would significantly vary under different infer- 120

ence strategies. 121

RQ4. What is the difference between human- 122

written pseudocode and auto-extracted pseu- 123

docode? The pseudocode in PSEUDOEVAL is auto- 124

matically extracted from the solution code. How- 125

ever, no prior study has been made to examine 126

the quality of the pseudocode quantitatively. In 127

this RQ, we compare the difference between the 128

human-written pseudocode and the auto-extracted 129

pseudocode in terms of token lengths, lines of code, 130

and the LLMs’ performance with pseudocode gen- 131

erated in both ways. The study provides more 132

evidence to demonstrate the quality of the pseu- 133

docode in PSEUDOEVAL, and once assured, the 134

auto-extraction we proposed could facilitate the 135

extension to existing benchmarks. 136

Our study yields interesting observations. First, 137

the bottleneck in Python code generation is 138

problem-solving, while C++ and Rust struggle rel- 139

atively more in language-coding. Second, most so- 140

lutions are language-agnostic, indicating it may be 141

enough for LLMs to learn problem-solving skills 142

in certain programming languages and put more 143

effort into the coding capability in programming 144

languages. Third, the auto-generated pseudocode 145

is comparable or even better quality than human- 146

written ones. Thus, it is feasible to extend the exist- 147

ing benchmarks with pseudocode with our pipeline. 148

The contribution of this paper includes: 149

● Problem Decomposition: We break down the 150

end-to-end code generation (from problem descrip- 151

tion to implementation) into a two-step evaluation 152
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(from problem description in natural language or153

from solutions in pseudocode). By doing so, the154

bottleneck of code generation in various program-155

ming languages could be isolated and identified.156

● Benchmark PSEUDOEVAL: We constructed157

a multi-lingual (Python, C++, and Rust) code gen-158

eration benchmark with 1,059 subjects comprising159

not only problem description in natural language160

and corresponding tests, but also the intermediate161

solutions in the form of pseudocode. The bench-162

mark enables exploration of the bottleneck in code163

generation, provides clear criteria for pseudocode164

construction, and makes available a pipeline that165

implements a workflow automating the construc-166

tion process. With it, one could refurbish existing167

code generation benchmarks easily.168

● Insight: We isolate LLMs’ capabilities169

for code generation into problem-solving and170

language-coding. Our study finds that the bottle-171

neck of generating code in different programming172

languages is different. Our study further suggests173

that problem-solving capability may transfer across174

programming languages while the coding capabil-175

ity for programming languages beyond the most176

popular ones remains to be improved.177

2 Problem Definition178

2.1 Task Definition179

As shown in Figure 1, the problem of LLM code180

generation comprises two tasks.181

(1) Problem Solving, which analyzes the prob-182

lem and reasons a solution as output. The granu-183

larity of a solution can vary from a one-sentence184

description of the core algorithm to a pseudocode185

with a clear control flow and data manipulation.186

(2) Language Coding, which transforms the so-187

lution into a piece of compilable and executable188

code that implements the key logic and data manip-189

ulation in a target programming language.190

The two tasks exercise distinct abilities of LLMs,191

and previous code generation benchmarks such as192

LiveCodeBench (Jain et al., 2024a) evaluate them193

inseparably. This paper studies the coding ability194

of LLMs by isolating it from their problem-solving195

ability using pseudocode.196

2.2 Pseudocode Criteria197

Although there is no universal concrete standard for198

pseudocode, conventions such as guidebooks have199

been commonly adopted. To study the coding abil-200

ity of LLMs, we adopt a set of criteria to prepare201

the pseudocode for PSEUDOEVAL. The criteria are 202

designed based on the features of pseudocode in 203

textbooks, guidebooks, and research papers. 204

Completeness. The pseudocode should be mapped 205

to a piece of implementation code without ambigu- 206

ity, e.g., a competent programmer should be able to 207

implement the pseudocode solving the given prob- 208

lem in a specific programming language. If given 209

a piece of implementation code, one can obtain 210

a trivial but complete pseudocode by line-by-line 211

code translation (Kulal et al., 2019a). 212

Language-agnostic. The pseudocode should de- 213

scribe a language-agnostic solution. It should not 214

be tied to specific language features, such as the 215

yield expression in Python and the pointer manip- 216

ulations in C++. In particular, explicit type infor- 217

mation (e.g., vector in C++) and type conversion 218

should be absent. The language-agnostic criterion 219

facilitates a fair evaluation of LLMs’ coding abili- 220

ties in different target programming languages with 221

the same pseudocode. 222

Conciseness. A pseudocode should be concise, 223

which can be measured by the lines of code and 224

the number of tokens. In practice, software de- 225

velopers tend to sketch solutions concisely. Also, 226

verbose pseudocode with implementation details 227

may not help differentiate the abilities of stronger 228

models and weaker models. An interesting case 229

(Appendix C.2) in our study is to simplify a well- 230

known algorithm, Sieve of Eratosthenes, and cus- 231

tomize its use in pseudocode. LLMs with higher 232

coding capability can successfully implement the 233

pseudocode, while weaker LLMs have lower suc- 234

cess rates and even drop to zero when the target 235

language is Rust. 236

Following the above criteria, we define more spe- 237

cific rules (Appendix D) to prompt DeepSeek-R1 to 238

convert an implementation code into a pseudocode 239

to construct PSEUDOEVAL (Section 3). 240

3 Dataset Construction 241

To build PSEUDOEVAL, we design a pipeline im- 242

plementing an automated workflow in Figure 2 to 243

collect user-submitted solutions on LeetCode and 244

distill pseudocode solutions from them using a re- 245

cent reasoning model DeepSeek-R1. The pipeline 246

may also be adapted to refurbish other existing 247

code generation benchmarks. 248

Data Source. To lessen the data leakage 249

threat, we select user-submitted solutions based 250
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365 C++
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PseudoEval

(1059)

Figure 2: Workflow of constructing the PSEUDOEVAL dataset and empirical study

on the problems most recently collected by Live-251

CodeBench (Jain et al., 2024a). These are the latest252

programming problems released after the training253

cut-off dates of popular LLMs. In other words, we254

select the most recent subset of problems indexed255

by LiveCodeBench at LeetCode. We further collect256

the corresponding user-submitted solutions from257

LeetCode. For each problem, we manually collect258

the most popularly voted solutions in Python, C++,259

and Rust, respectively.260

Task Cleaning. To ensure the correctness of the261

collected user-submitted solutions, we run each262

solution via the LeetCode online judge to ensure263

the solution passes all mandated tests. If the most264

popularly voted solutions fail (usually due to the265

update of problems/tests), we collect another solu-266

tion that passes the updated tests. The study of our267

research questions requires evaluating the correct-268

ness of many generated codes. Submitting all of269

them to the LeetCode online judge for correctness270

validation is inappropriate. Therefore, we collect271

the published tests deduced by LiveCodeBench272

and use them to evaluate the correctness of the273

generated codes in our study. However, these Live-274

CodeBench tests are deduced by LLMs and subject275

to noises. We consider a deduced LiveCodeBench276

test noisy if it fails the collected solutions. In total,277

we find 16 noisy instances and exclude them from278

our study. After cleaning, we collect 365 solutions279

in C++ and Python and 351 solutions in Rust.280

Code to Pseudocode. Each pseudocode used to281

evaluate the coding capability of LLMs is gener-282

ated by the reasoning model DeepSeek-R1 (Guo283

et al., 2025) given a solution code and a detailed list284

of rules (Appendix D) that the output pseudocode285

needs to satisfy, i.e., the criteria in Section 2.2.286

For example, the pseudocode should not contain287

explicit types like 32-bit or 64-bit integers and288

language-specific operations like yield in Python. 289

We choose a reasoning model over a chat model 290

like GPT-4o. Our pilot experiments find that chat 291

models often fail to obey the rules in a long con- 292

text or just write the pseudocode line by line 293

without undergoing a substantial thinking pro- 294

cess. The prompt we use consists of only the user 295

query without a system message or few-shot ex- 296

amples, as suggested by the DeepSeek team (Guo 297

et al., 2025). We also follow their experiment set- 298

ting (temperature=0.6, top_p=0.95). One pseu- 299

docode sample is obtained for each selected user- 300

submitted solution due to the limited access to the 301

R1 service and the incurred time latency. 302

Pseudocode Quality Assessment. To remove in- 303

correct R1-generated pseudocode, we use LLMs to 304

generate code from the R1-generated pseudocode 305

using our study setup and remove the tasks where 306

NO LLMs can pass the task with ten attempts. Fi- 307

nally, we remove 22 subjects where R1 hallucinates 308

a pseudocode with incorrect logic (e.g., adding an 309

incorrect condition), and keep 1,059 subjects. Be- 310

sides, we compare the lengths and effectiveness of 311

pseudocode annotated by R1 and humans for ran- 312

domly sampled subjects in RQ4. The results also 313

suggest good quality of the retained pseudocode. 314

4 Experiment 315

Data. To facilitate the comparison across program- 316

ming languages, 999 (333 × 3) experiment subjects 317

are drawn from the intersected programming tasks 318

for C++ (355), Python (357), and Rust (347). 319

Metrics. The correctness of the generated pro- 320

grams is calculated by their Pass@k rates on the 321

tests published by LiveCodeBench. The concise- 322

ness of pseudocode is measured by their lengths 323

regarding the number of Byte-Pair Encoding (BPE) 324

tokens and lines of codes. 325
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Easy Med Hard Easy Med Hard Easy Med Hard Easy Med Hard Easy Med Hard Easy Med Hard

GPT-4o-mini 0.82 0.32 0.07 0.95 0.88 0.76 0.78 0.27 0.13 0.91 0.81 0.66 0.69 0.20 0.06 0.83 0.55 0.35
Qwen32B 0.90 0.56 0.20 0.93 0.94 0.79 0.86 0.50 0.20 0.92 0.86 0.66 0.80 0.45 0.16 0.90 0.68 0.57

Qwen32Bq4 0.87 0.56 0.22 0.92 0.94 0.79 0.84 0.51 0.20 0.91 0.86 0.68 0.80 0.42 0.13 0.89 0.68 0.54
Qwen14B 0.80 0.51 0.14 0.97 0.90 0.70 0.78 0.49 0.10 0.94 0.81 0.55 0.72 0.34 0.04 0.86 0.53 0.33
Qwen7B 0.68 0.34 0.11 0.86 0.81 0.53 0.69 0.36 0.09 0.86 0.71 0.37 0.54 0.22 0.00 0.70 0.42 0.13

Gemma9B 0.49 0.09 0.04 0.84 0.68 0.45 0.44 0.10 0.06 0.84 0.55 0.25 0.29 0.03 0.01 0.40 0.22 0.06
Llama3-8B 0.40 0.08 0.01 0.68 0.60 0.47 0.31 0.07 0.03 0.67 0.47 0.24 0.23 0.03 0.01 0.50 0.23 0.07
Llama3-3B 0.27 0.04 0.00 0.54 0.41 0.23 0.20 0.03 0.01 0.45 0.25 0.14 0.14 0.00 0.00 0.30 0.06 0.01
Phi4-14B 0.66 0.28 0.04 0.92 0.83 0.77 0.65 0.26 0.10 0.87 0.73 0.42 0.59 0.16 0.05 0.75 0.46 0.25

Phi3.5-3.8B 0.44 0.08 0.03 0.67 0.46 0.30 0.35 0.05 0.03 0.53 0.28 0.09 0.13 0.00 0.02 0.20 0.03 0.00

0.63 0.29 0.09 0.83 0.75 0.58 0.59 0.26 0.10 0.79 0.63 0.41 0.49 0.19 0.05 0.63 0.39 0.23
31%↑ 160%↑ 573%↑ 34%↑ 140%↑ 327%↑ 28%↑ 109%↑ 381%↑

Overall

Python C++ Rust

from Problem from Pseudocode from Problem from Pseudocode from Problem from Pseudocode

Average

0.38 0.75 (99%↑) 0.35 0.65 (85%↑) 0.27 0.45 (66%↑)

Table 1: Pass@1 of generations from problem descriptions and pseudocode for easy, medium, and hard tasks

Studied LLMs. We study the code generation per-326

formance of ten diverse popular LLMs, including327

Qwen-series (Qwen-2.5-Coder 7B, 14B, 32B, 32B-328

Int(q)4) (Hui et al., 2024), Gemma-series (Gemma-329

2-9b) (DeepMind, 2024), Llama-series (Llama-3.1-330

8B and -3.2-3B) (Meta, 2024), Phi-series (Phi-4-331

14B and -3.5-3.8B) (Microsoft, 2024), and GPT-332

series (GPT-4o-mini) (OpenAI, 2024). Relatively333

more LLMs evaluated are under 15B parameters.334

This is to understand the language-coding ability335

of lighter, more deployable models.336

Parameters. We follow the setting suggested by337

LiveCodeBench to sample ten times of generations338

for each problem using a temperature of 0.2 and339

top_p of 0.95. We compare one-shot and zero-shot340

prompts for pseudocode-based code generation.341

Experiment Environment. The experiments are342

conducted on a Linux server with two NVIDIA343

RTX 6000Ada GPUs. The commercial GPT-4o-344

mini and the primary DeepSeek-R1 are accessed345

via API calls. Other open-weight LLMs are de-346

ployed locally on the server with the vLLM engine.347

4.1 RQ1: Overall Performance348

To understand the language-coding capability of349

LLMs, we analyze the quality of the codes that350

LLMs generated from pseudocode. Each column351

in Table 1 presents the Pass@1 rate of LLMs in352

generating programs of a specified programming353

language based on the pseudocode derived from354

the solution codes in the same language. We also355

list LLMs’ Pass@1 rates when directly generating356

codes from problem descriptions using the prompt357

adopted by LiveCodeBench as a reference.358

Effect of Pseudocode. All ten LLMs achieve sig-359

nificantly higher Pass@1 rates on all programming360

PPy PC++ PRust PPy PC++ PRust PPy PC++ PRust

GPT-4o-mini 0.89 0.90 0.91 0.80 0.82 0.81 0.59 0.63 0.62
Qwen32B 0.91 0.90 0.90 0.81 0.85 0.84 0.69 0.73 0.74

Qwen32Bq4 0.91 0.90 0.90 0.80 0.85 0.84 0.68 0.72 0.73
Qwen14B 0.89 0.88 0.88 0.76 0.82 0.80 0.57 0.61 0.62
Qwen7B 0.78 0.83 0.81 0.64 0.71 0.67 0.43 0.48 0.47

Gemma9B 0.69 0.73 0.69 0.55 0.60 0.56 0.26 0.28 0.26
Llama3-8B 0.61 0.65 0.60 0.45 0.50 0.50 0.26 0.28 0.30
Llama3-3B 0.42 0.44 0.44 0.27 0.30 0.30 0.16 0.13 0.13
Phi4-14B 0.85 0.83 0.85 0.71 0.73 0.72 0.51 0.54 0.53

Phi3.5-3.8B 0.51 0.51 0.47 0.30 0.33 0.29 0.09 0.11 0.08

Average 0.75 0.76 0.75 0.61 0.65 0.63 0.42 0.45 0.45

→ Python Code → C++ Code → Rust Code

Table 2: Pass@1 of code generation with pseudocode
derived from different programming languages

languages when generating programs from pseu- 361

docode than from problem descriptions. Specifi- 362

cally, the overall Pass@1 rates on all difficulties 363

increase from 0.38, 0.35, 0.27 to 0.75, 0.65, 0.45 364

on Python, C++, and Rust, respectively. The results 365

suggest that the solutions encoded in pseudocode 366

help LLMs generate more correct programs. As 367

such, we consider that problem-solving ability is a 368

key bottleneck common to LLMs. Regarding pro- 369

gramming languages, all LLMs exhibit the largest 370

performance gain in Python programming (+99% 371

on average), followed by C++ (+85% on average). 372

Performance improvement on Rust is the least (66% 373

on average) yet is still significant. As Rust cod- 374

ing is lower in resource availability (Zheng et al., 375

2023; Cao et al., 2025), the result suggests the cor- 376

relation between language-coding ability and the 377

prevalence of the language in corpus. 378

Language-Coding Capability. LLMs’ language- 379

coding capability varies across programming lan- 380

guages. Given pseudocode, most LLMs can gener- 381

ate correct implementations in Python; while they 382

still cannot generate correct Rust implementations 383
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for many tasks. For example, given pseudocode,384

the Python, C++, and Rust Pass@1 rates are 0.89,385

0.82, 0.62 for GPT-4o-mini and 0.85, 0.73, 0.53 for386

Phi-4, respectively. It suggests that the bottleneck387

of LLMs in code generation is problem-solving,388

while as to Rust and C++, they are struggling rela-389

tively more in language coding.390

Model-Wise. Given pseudocode, the Python391

Pass@1 rates of the best-performing studied LLM,392

QWen32B (and its quantified variant QWen32Bq4),393

on easy, medium, and hard tasks significantly in-394

crease from around 0.90, 0.56, 0.20 to 0.93, 0.94,395

0.79, respectively, followed by QWen14B (0.80,396

0.51, 0.14 → 0.97, 0.90, 0.70) and GPT-4o-mini397

(0.82, 0.32, 0.07 → 0.95, 0.88, 0.76). Similar398

trends are observed in C++ and Rust. This indicates399

such powerful LLMs likely have mature language-400

coding capabilities, particularly in Python. Most of401

their bottleneck in solving LiveCodeBench tasks402

may reside in the problem-solving procedure. In403

comparison, although the smaller models show404

improvement in Pass@1 rates given pseudocode,405

their generations based on pseudocode are still406

error-prone. For example, almost all Pass@1 rates407

Llama-3.1-8B, Llama-3.2-3B, and Phi-3.5-3.8B for408

medium and hard tasks are still below 0.50. This409

suggests that regarding the ability to implement a410

given programming logic, smaller LLMs are much411

inferior to the larger LLMs.412

Difficulty-Wise. LLMs show the most improve-413

ment in Pass@1 rates on the hard tasks (573%↑,414

327%↑, and 381%↑ in Python, C++, and Rust, re-415

spectively), followed by the medium tasks (160%↑,416

140%↑, and 109%↑) and then the easy tasks (31%↑,417

34%↑, and 28%↑). Since hard tasks require more418

problem-solving ability, the result echos our con-419

clusion that problem-solving is a key bottleneck.420

Worsening Cases. We noticed a few cases where421

providing pseudocode degrades the models’ perfor-422

mance. For example, when writing Python code in423

16 problems, GPT-4o-mini shows a lower Pass@1424

when referring to pseudocode than solving prob-425

lems directly. Our analysis of the failure cases426

suggests that in some cases (e.g., Appendix C.4),427

LLM fails to understand expressions like “cumu-428

lative sums” of an array/list indicated in the pseu-429

docode, which is expected to be implemented with430

accumulate(). Such expressions may conversely431

mislead LLMs who were able to reason a correct432

solution from problem descriptions by themselves,433

particularly for easy problems. In practice, am-434

biguous natural language expressions are inevitable 435

in pseudocode or instructions, despite the semi- 436

structured format of pseudocode. It is an interesting 437

future work to detect and fix such noise. 438

In general, these interesting findings help us 439

understand the language-coding ability of LLMs. 440

They echo our motivation to gain a clearer picture 441

of LLMs’ coding capabilities by isolating the evalu- 442

ation of their problem-solving and language-coding 443

abilities by introducing pseudocode. 444

4.2 RQ2: Cross-Programming Language 445

Recalling that pseudocode abstracts language- 446

specific details of solutions (Section 2.2), we fur- 447

ther investigate if pseudocode manifests generaliz- 448

able effectiveness such that the pseudocode derived 449

from solution code in a programming language can 450

benefit LLMs in generating codes in another lan- 451

guage. Table 2 presents the comparison. 452

Language-Wise. The pseudocode derived from 453

solution codes written in any programming lan- 454

guage (Plang) effectively help LLMs gain much 455

higher Pass@1 rates in comparison to the perfor- 456

mance of generating from problems listed in Ta- 457

ble 1 (e.g., 0.75~0.76 v.s. 0.38 Pass@1 in Python 458

generation). The result suggests that pseudocode 459

can serve as a language-agnostic representation 460

to hint LLMs about solution logic and guide LLMs 461

generating programs in various programming lan- 462

guages, which may shed light on cross-language 463

tasks such as code translation and code search. Fur- 464

thermore, we surprisingly found from the compari- 465

son among Plang that the pseudocode derived from 466

C++ solutions help LLMs gain the highest Pass@1 467

in generating not only C++ but also Python and 468

Rust programs on average; meanwhile, pseudocode 469

of Python solutions show inferior effectiveness for 470

C++ and Rust generation. Our manual analysis 471

suggests the reason may be that Python codes often 472

implement logic with various libraries, and thereby, 473

the detailed idea to implement some features can- 474

not be extracted into pseudocode. As a result, when 475

there is no available corresponding library to use 476

in C++ and Rust, the LLMs cannot correctly im- 477

plement the logic. The analysis of the lengths of 478

pseudocode derived from different programming 479

languages also shows the trend as indicated in the 480

2nd~4th columns in Table 3. 481

Model-Wise. The studied LLMs consistently gain 482

improvement in Pass@1 rates with the help of pseu- 483

docode derived from any-language solution codes. 484
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Figure 3: Zero-/one-shot Pass@{1,5,10} rates of C++
programs generated from pseudocode of C++ solutions

Meanwhile, the most helpful programming lan-485

guage varies across LLMs. For example, Qwen14B486

and QWen32B work best when referring to the487

pseudocode derived from the solution code written488

in the target programming language, GPT-4o-mini489

prefers pseudocode of C++ or Rust solutions, and490

the others prefer C++. This may indicate distinct491

LLMs need unique logic information implied in492

solution codes of specific programming languages.493

4.3 RQ3: Effects of Inference Strategies494

We investigate if two typical configurations, i.e.,495

whether using in-context learning (zero-shot →496

one-shot) and increasing the attempts (1→5→10),497

help improve the performance. Figure 3 presents498

the Pass@{1, 5, 10} rates of LLMs when using499

zero-/one-shot prompts on generating C++ codes500

based on the pseudocode derived from C++ solu-501

tions. The results of other languages show consis-502

tent conclusions and are available at Appendix E.503

Zero-shot v.s. One-shot. One-shot prompting ben-504

efits most LLMs but may disturb poorer LLMs like505

Phi-3.5-3.8B and Llama-3.1-3B which may not ef-506

fectively handle long contexts. The result suggests507

using one-shot prompting to guide most LLMs bet-508

ter while driving smaller LLMs with more concise509

prompts. For consistency, in RQ1 and RQ2, we use510

one-shot prompts as a general setup for all LLMs.511

Pass@{1, 5, 10}. Increasing attempts also bring512

more chances of generating correct codes in the513

setup of pseudocode-based code generation, in par-514

ticular for smaller LLMs like Llama-3.2-3B. For515

larger LLMs, 5 attempts may be appropriate con-516

sidering cost-effectiveness.517

v.s. Generating from Problem. (abbr. direct) It518

is clear that Pass@1 rates of all LLMs when gener-519

Lang LoC Tokens LoC Tokens

Manual C++ 21.64 222.16 12.58 (-42%) 151.45 (-32%)
DeepSeek-V3 C++ 21.64 222.16 18.84 (-13%) 172.91 (-23%)
DeepSeek-R1 C++ 21.64 222.16 13.20 (-39%) 122.31 (-45%)
DeepSeek-R1 Rust 18.45 219.33 12.71 (-31%) 124.51 (-43%)
DeepSeek-R1 Python 15.47 156.89 11.93 (-23%) 111.29 (-29%)

Source Code Pseudocode

Table 3: Loc and tokens of a subset (55) of LCB tasks

ating from pseudocode have already surpassed the 520

effort of 10 attempts when generating from prob- 521

lem descriptions. The finding again echos our con- 522

clusion that problem-solving is the key bottleneck 523

of current LLMs in code generation. Besides, with 524

pseudocode to hint the solution logic, one attempt 525

enables all LLMs except Phi-3.5 and Llama3B to 526

outperform the Pass@10 rates achieved by the com- 527

mercial GPT-4o-mini generating from problems. 528

4.4 RQ4: Automatically-generated v.s. 529

Manually-written pseudocode 530

We compare the pseudocode annotated by humans 531

and DeepSeek-R1 on 55 sampled programming 532

tasks. The manual annotation involved six develop- 533

ers with over five years of C++ coding experience; 534

one pseudocode is annotated by an annotator and 535

validated with another two. We mainly compare 536

the simplicity and effectiveness of the two sets of 537

pseudocode, which are essential qualities clear to 538

measure based on lengths and pass rates. 539

Simplicity. Table 3 lists the lengths of pseudocode 540

annotated manually and automatically in the num- 541

ber of BPE tokens (Meta, 2023) and lines of codes 542

ignoring blank lines and comments. It is found 543

that pseudocode, particularly the ones annotated by 544

humans and DeepSeek-R1 (abbr. R1), are much 545

shorter than the source codes. This suggests that 546

pseudocode is a simplified format to express the so- 547

lution of programs. Besides, interestingly, although 548

the manually annotated pseudocode include fewer 549

lines than R1-generated ones, the manual ones are 550

found to include more tokens than R1’s. The reason 551

is R1 tends to describe the logic more concisely. 552

Effectiveness. We compare how effectively the 553

automatically and manually annotated pseudocode 554

guide LLMs in generating correct codes. As pre- 555

sented in Table 4, the manual pseudocode help 556

LLMs generate slightly more compilable codes on 557

the validation tasks. Meanwhile, surprisingly, the 558

pseudocode generated by R1 contribute to higher 559

Pass@k rates than the human-written ones. The 560

cause may be the gap between the expression style 561
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C@1 P@1 P@5 P@10 C@1 P@1 P@5 P@10

GPT-4o-mini 0.97 0.58 0.70 0.73 0.96 0.78 0.83 0.83
Qwen32B 1.00 0.65 0.71 0.71 0.99 0.81 0.86 0.86

Qwen32Bq4 0.99 0.63 0.71 0.75 0.99 0.79 0.87 0.88
Qwen14B 0.97 0.65 0.72 0.74 0.97 0.77 0.86 0.88
Qwen7B 0.94 0.55 0.66 0.69 0.92 0.64 0.75 0.78

Gemma9B 0.90 0.46 0.50 0.52 0.89 0.61 0.63 0.64
Llama8B 0.89 0.45 0.60 0.64 0.87 0.47 0.58 0.63
Llama3B 0.87 0.26 0.43 0.49 0.83 0.30 0.44 0.47

Phi4 0.95 0.60 0.70 0.73 0.94 0.63 0.75 0.80
Phi3.5 0.85 0.30 0.41 0.45 0.82 0.28 0.41 0.46

Average 0.93 0.51 0.61 0.65 0.92 0.61 0.70 0.72

Manual Pseudocode DeepSeek-R1 Pseudocode

Table 4: Compilation (C) and Pass (P) Rates of C++
code generation with pseudocode on 55 LCB tasks

and knowledge preferences of humans and LLMs562

as reported by existing studies (Gao et al., 2024).563

Based on these detailed clues, we consider cur-564

rent SOTA reasoning LLMs like DeepSeek-R1 an565

effective helper to abstract reference codes into566

concise pseudocode with high accuracy. They may567

offer feasible automation to abstract existing valu-568

able code resources in GitHub or code generation569

benchmarks and facilitate studies on pseudocode.570

5 Related Work571

Benchmarking End-to-End Code Generation.572

Various benchmarks have been developed to assess573

LLMs in end-to-end code generation – some bench-574

marks broader the programming languages to eval-575

uate. Classical benchmarks focus on Python pro-576

gramming (Chen et al., 2021; Cassano et al., 2022);577

later, benchmarks considering other programming578

languages, e.g., Java (Cao et al., 2024) and even579

multilingual (Zheng et al., 2023), emerge. Some580

studies evaluate LLM programming across differ-581

ent contexts, such as class-level (Du et al., 2023),582

project-level (Li et al., 2024), and repository-level583

(Zhang et al., 2023a; Liao et al., 2024), pushing584

the boundaries of LLM capabilities in real-world585

scenarios. The performance of generating code in586

different domains also attracts studies (Zhu et al.,587

2024). Several recent studies explored LLMs’ code-588

generation capabilities incorporating external tech-589

niques, for example, using RAG to retrieve codes590

(Liu et al., 2024; Chen et al., 2024) and documents591

(Jain et al., 2024b; Zhao et al., 2024), allowing592

LLMs to code with external resources.593

Though these studies assess LLM’s performance594

in various scenarios, they reveal relatively limited595

information about LLM’s ability at steps within the596

end-to-end pipeline, e.g., coding a solution logic.597

Benchmarking Code Generation Using Pseu- 598

docode. Only a few works have studied trans- 599

lating pseudocode into code. Dirgahayu et al. 600

(2017) propose a conceptual framework that breaks 601

down pseudocode into XML elements. Kulal et al. 602

(2019b) explore potential mappings of pseudocode 603

and C++ code using test cases. The SPoC dataset 604

with 18K line-to-line mappings is built in the work. 605

However, the fairly trivial line-by-line pseudocode 606

may not accurately reflect the human-written pseu- 607

docode typically appearing in real-world software 608

development. SPoC was later utilized by Achar- 609

jee et al. (2022) to train two basic deep-learning 610

models for pseudocode-to-code translation. These 611

studies worked on relatively small and trivial pseu- 612

docode snippets. They also barely compared the 613

performance of code generators (in particular the 614

advanced LLMs) or discussed the detailed abilities. 615

6 Insights from Study Results 616

❶ Code generation bottleneck differs across pro- 617

gramming languages (PLs). One can improve end- 618

to-end LLM programming performance for popular 619

PLs like Python by boosting problem-solving abili- 620

ties, whereas for less-trained languages like Rust, 621

enhancing language-coding skills is crucial. 622

❷ Problem-solving ability may transfer across 623

PLs, which may allow LLMs’ coding performance 624

to be improved in a unified manner across PLs. 625

❸ Reasoning models can effectively handle the 626

code-to-pseudocode transformation. This enables 627

easy creation of up-to-date benchmarks focusing on 628

problem-solving capability, which may help relieve 629

the current bottleneck and support cross-PL tasks. 630

These insights may shed light on enhancing 631

LLMs in code generation and other cross-PL tasks, 632

as well as guide human-LLM collaboration in the 633

era of AI-driven low/zero-code development. 634

7 Conclusion 635

To understand the bottlenecks in end-to-end code 636

generation for LLMs, we introduce PSEUDOEVAL, 637

a multilingual code generation benchmark incorpo- 638

rating pseudocode as input, isolating the evaluation 639

of language-coding from problem-solving capabil- 640

ities. Empirical study results with PSEUDOEVAL 641

reveal key insights about the bottlenecks identi- 642

fied for different programming languages, broad 643

applicability of pseudocode across programming 644

languages, and exceptional quality of automatically 645

derived pseudocode. 646
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8 Limitations647

Pseudocode Samples. Due to the limited access to648

DeepSeek-R1, the latency of response of reasoning649

models, and the costs of the subsequence inference,650

this study only sample one pseudocode for each651

problem. As revealed in Section 4.4, a small por-652

tion of the generated pseudocode could be not se-653

mantic preserving and is filtered out from the final654

benchmark. The thorough study on whether sam-655

pling multiple pseudocode or using a majority vote656

mechanism can further improve the pseudocode657

quality is left as future work.658

Problem Domain. The current PSEUDOEVAL se-659

lects subjects from LiveCodeBench and their so-660

lutions on LeetCode, which are mainly algorith-661

mic code for programming puzzles. Although this662

meets the purpose of using pseudocode to present663

algorithms in practice, the daily software devel-664

opment scenarios such as implementing business665

logic are not covered. It is unclear whether the666

performance gap between problem-to-code gener-667

ation and pseudocode-to-code generation is also668

significant in such scenarios. The future work669

to understanding this problem can be extending670

the workflow of PSEUDOEVAL to code generation671

benchmarks in different scenarios.672

Involved Programming Languages. The pro-673

gramming languages studied in this paper are674

Python, C++, and Rust. They represent three pop-675

ular imperative programming languages, with a676

major difference in the type system. Python is dy-677

namic, C++ is static but weakly typed, and Rust is678

known for having a rigorous type checking mecha-679

nism. The results in RQ2 may shed light on similar680

languages such as Java, but may not apply to func-681

tional languages such as Haskell or low-resourced682

languages such as domain-specific languages.683
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A Dataset 889

A.1 Legal Compliance and License 890

The problems we use are from the LiveCodeBench, 891

and the solutions we use to generate pseudocode 892

are from LeetCode, which are the publicly visible 893

portions. We did not include the user-submitted 894

solutions in our final benchmark but their extracted 895

pseudocode. Following Hendrycks et al. (2021) 896

and LiveCodeBench (Jain et al., 2024a), we abide 897

by Fair Use 107: “the fair use of a copyrighted 898

work, including such use by . . . scholarship, or re- 899

search, is not an infringement of copyright”, where 900

fair use is determined by the purpose and charac- 901

ter of the use, including whether such use is of a 902

commercial nature or is for nonprofit educational 903

purposes”, “the amount and substantiality of the 904

portion used in relation to the copyrighted work as 905

a whole”, and “the effect of the use upon the poten- 906

tial market for or value of the copyrighted work.” 907

The collected data in PSEUDOEVAL is used only 908

for academic purposes. Moreover, PSEUDOEVAL 909

is used for benchmarking, and we do not use it for 910

training models. 911

A.2 Basic Stats 912

Table 5 shows the number of files (pseudocode) 913

extracted from different source languages. The 914

statistics is consistent with the sampled subset in 915

Section 4.4. Each pseudocode corresponds to a 916

problem in LiveCodeBench and can use its test- 917

cases to test the correctness of the code generated 918

from the pseudocode. 919

Source LoC Tokens #Files

C++ 13.59 129.15 355
Rust 14.09 135.12 347

Python 11.64 111.93 357

Table 5: LoC and Tokens of pseudocode in PSEUDOE-
VAL from different sources

B Human Annotations 920

Six programmers with more than five years of C++ 921

experience participate in the annotation of pseu- 922

docode on 55 sampled C++ solution code. Each 923

annotated piece of pseudocode is validated by two 924

other participants from the same group. 925

The approval from the ethics review board is 926

exempted because the annotation procedure is not 927
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physically or mentally harmful and does not im-928

pose an intense workload in a short time. The par-929

ticipants have been compensated according to the930

local legislation. The consent to use the annotated931

data has been obtained from the participants.932

C Case Study933

C.1 Motivating Example934

Listing 1 lists the full problem and Listing 2 lists935

the user-submitted C++ solution where the pseu-936

docode is converted from. Note that the pseu-937

docode simplifies the solution by replacing the map938

structure with a set structure.939

C.2 Simplifying Common Procedures940

Listing 3 shows a user-submitted C++ solution with941

detailed steps, and Listing 4 shows a concise but942

semantic-preserving pseudocode converted from943

the long solution. Powerful LLMs such as GPT-4o-944

mini and Qwen32B can implement code correctly945

in all three languages, while smaller LLMs such as946

Phi-3.5 have lower success rates and even drop to947

zero when writing Rust codes.948

C.3 Underflow in Rust949

Listing 5 shows an example of a user-submitted950

Rust solution with the subtraction underflow prob-951

lem. Specifically, the variable pos is from .len()952

(line 5) and should be a usize (unsigned) variable.953

The user uses a nonstandard way to control the954

loop termination: when pos is 0 and subtracts 1955

from it in the release mode, it becomes the biggest956

unsigned integer, so the loop terminates because957

pos > arr.len(). However, such a coding style958

is not encouraged in Rust. In the debug mode, the959

Rust program will panic (i.e., running into an in-960

valid state because pos is unsigned and should not961

underflow) and terminate the execution.962

The pseudocode generated by DeepSeeek-R1963

(Listing 6) focuses on the solution logic, which964

does not contain such detailed type information965

and uses a more standard coding style (loop until966

pos is negative). Based on the pseudocode, only967

Qwen32B notices the possible sign problem and968

can generate code that correctly converts the type969

as isize (line 6, Listing 7), while all other less970

powerful models failed to do so.971

C.4 Worsening Pseudocode972

Listing 8, 9, and 10 show a case where the pseu-973

docode generated from a Python solution misleads974

LLMs and causes a lower pass@1 compared with 975

generating Python code from the problem. 976

C.5 Failure of Pseudocode Generation 977

Listing 11 and 12 show a case of a Python solution 978

and its generated pseudocode that is not semantic 979

preserving. The problem is at the last line, where 980

the Python code will return max_sum if it is nega- 981

tive but not -inf, while the pseudocode incorrectly 982

assumes max_sum to be non-negative, possibly due 983

to the hallucination problem in LLMs. 984

D Prompts 985

Generating Pseudocode. Listing 13 is the prompt 986

(a single user query as suggested by the DeepSeek 987

team (Guo et al., 2025)) we use to query DeepSeek- 988

R1 to generate pseudocode from Python code. The 989

prompts to generate pseudocode from C++ and 990

Rust are similar with minor difference in the exam- 991

ple code snippets. 992

Generating Code from Pseudocode. Listing 14 is 993

the zero-shot prompt, and Listing 15 is the one-shot 994

prompt for generating Python code. The prompts 995

to generate C++ and Rust code are similar with 996

language difference in the one-shot example. 997

E Additional Experiment Results 998

Figure 4, 5, and 6 show the pass@k of code gen- 999

eration from pseudocode from C++, Python, and 1000

Rust, respectively, compared with the Pass@k of 1001

code generation from the problem. 1002

12



You are given an integer array nums and an integer k.
An integer h is called valid if all values in the array that are strictly greater than h are

↪→ identical.
For example, if nums = [10, 8, 10, 8], a valid integer is h = 9 because all nums[i] > 9 are

↪→ equal to 10, but 5 is not a valid integer.
You are allowed to perform the following operation on nums:

Select an integer h that is valid for the current values in nums.
For each index i where nums[i] > h, set nums[i] to h.

Return the minimum number of operations required to make every element in nums equal to k. If
↪→ it is impossible to make all elements equal to k, return -1.

Example 1:

Input: nums = [5,2,5,4,5], k = 2
Output: 2
Explanation:
The operations can be performed in order using valid integers 4 and then 2.

Example 2:

Input: nums = [2,1,2], k = 2
Output: -1
Explanation:
It is impossible to make all the values equal to 2.

Example 3:

Input: nums = [9,7,5,3], k = 1
Output: 4
Explanation:
The operations can be performed using valid integers in the order 7, 5, 3, and 1.

Constraints:

1 <= nums.length <= 100
1 <= nums[i] <= 100
1 <= k <= 100

Listing 1: Full problem in the motivating example

1 class Solution {
2 public:
3 int minOperations(vector<int>& nums, int k) {
4 int mn = *min_element(nums.begin(), nums.end());
5 if (mn < k) {
6 return -1;
7 }
8 unordered_map<int,int> mp;
9 for (auto &it: nums) {

10 mp[it] = 1;
11 }
12 int ans = mp.size();
13 if (mp[k]) {
14 ans--;
15 }
16 return ans;
17 }
18 };

Listing 2: User-submitted C++ solution to Listing 1
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1 class Solution {
2 public:
3 int nonSpecialCount(int l, int r) {
4 // Calculate the limit up to which we need to find prime numbers
5 int lim = (int)(sqrt(r));
6
7 // Create a boolean array to mark primes up to lim using Sieve of Eratosthenes
8 vector<bool> v(lim + 1, true);
9 v[0] = v[1] = false; // 0 and 1 are not prime numbers

10
11 // Sieve of Eratosthenes to mark non-prime numbers
12 for (int i = 2; i * i <= lim; i++) {
13 if (v[i]) {
14 for (int j = i * i; j <= lim; j += i) {
15 v[j] = false;
16 }
17 }
18 }
19
20 // Count special numbers in the range [l, r]
21 int cnt = 0;
22 for (int i = 2; i <= lim; i++) {
23 if (v[i]) {
24 int square = i * i;
25 if (square >= l && square <= r) {
26 cnt++;
27 }
28 }
29 }
30
31 // Total numbers in the range [l, r]
32 int totalCount = r - l + 1;
33
34 // Calculate non-special numbers
35 return totalCount - cnt;
36 }
37 };

Listing 3: A C++ solution that can be simplified

1 function nonSpecialCount(l, r):
2 lim = floor of sqrt(r)
3 generate sieve for primes up to lim using Sieve of Eratosthenes
4 cnt = count of primes i in 2..lim where i^2 is in [l, r]
5 return (r - l + 1) - cnt

Listing 4: Pseudocode from Listing 3
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1 impl Solution {
2 pub fn maximum_points(mut arr: Vec<i32>, mut curr: i32) -> i64 {
3 arr.sort_unstable();
4 let mut res = 0;
5 let mut pos = arr.len() - 1;
6
7 while pos <= arr.len() && arr[0] <= curr {
8 res += (curr / arr[0]) as i64;
9 curr %= arr[0];

10 curr += arr[pos];
11 pos -= 1;
12 }
13
14 return res;
15 }
16 }

Listing 5: Example user-submitted Rust code with subtraction underflow problem (line 11)

1 function maximum_points(arr, curr)
2 sort arr in ascending order
3 res = 0
4 pos = arr.len() - 1
5
6 while pos >= 0 and arr[0] <= curr:
7 res += curr // arr[0]
8 curr = curr % arr[0]
9 curr += arr[pos]

10 pos -= 1
11
12 return res

Listing 6: Pseudocode converted from Listing 5

1 impl Solution {
2 pub fn maximum_points(enemy_energies: Vec<i32>, current_energy: i32) -> i64 {
3 let mut arr = enemy_energies.clone();
4 arr.sort();
5 let mut res: i64 = 0;
6 let mut pos = arr.len() as isize - 1;
7 let mut curr = current_energy;
8
9 while pos >= 0 && arr[0] <= curr {

10 res += (curr / arr[0]) as i64;
11 curr = curr % arr[0];
12 if pos >= 0 {
13 curr += arr[pos as usize];
14 }
15 pos -= 1;
16 }
17
18 res
19 }
20 }

Listing 7: Correct Rust code implemented from Listing 6
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1 class Solution:
2 def maximumSubarraySum(self, nums: List[int], k: int) -> int:
3 max_sum, prefix_sum, val_to_min_prefix_sum = -inf, 0, defaultdict(lambda: inf)
4 for i, num in enumerate(nums):
5 if val_to_min_prefix_sum[num] > prefix_sum:
6 val_to_min_prefix_sum[num] = prefix_sum
7 prefix_sum += num
8 max_sum = max(max_sum, prefix_sum - val_to_min_prefix_sum[num + k], prefix_sum -

↪→ val_to_min_prefix_sum[num - k])
9 return max_sum if max_sum > -inf else 0

Listing 8: Python code whose converted pseudocode has negative impact

1 function circularGameLosers(n, k):
2 s = {1, 2, ..., n}
3 for each mul in cumulative sums of integers from 0 to n-1:
4 position = (k * mul) mod n + 1
5 if position not in s:
6 break
7 remove position from s
8 return s as a list

Listing 9: Pseudocode converted from Listing 8

1 class Solution:
2 def circularGameLosers(self, n: int, k: int) -> List[int]:
3 players = set(range(1, n + 1))
4 mul = 0
5 while True:
6 position = (k * mul) % n + 1
7 if position not in players:
8 break
9 players.remove(position)

10 mul += 1
11 return sorted(players)

Listing 10: Wrong Python code generated from Listing 9

1 class Solution:
2 def maximumSubarraySum(self, nums: List[int], k: int) -> int:
3 max_sum, prefix_sum, val_to_min_prefix_sum = -inf, 0, defaultdict(lambda: inf)
4 for i, num in enumerate(nums):
5 if val_to_min_prefix_sum[num] > prefix_sum:
6 val_to_min_prefix_sum[num] = prefix_sum
7 prefix_sum += num
8 max_sum = max(max_sum, prefix_sum - val_to_min_prefix_sum[num + k], prefix_sum -

↪→ val_to_min_prefix_sum[num - k])
9 return max_sum if max_sum > -inf else 0

Listing 11: Python code being wrongly converted into pseudocode
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1 function maximumSubarraySum(nums, k):
2 max_sum = -infinity
3 prefix_sum = 0
4 val_to_min_prefix = empty map // default value is infinity
5 for each num in nums:
6 if val_to_min_prefix[num] > prefix_sum:
7 val_to_min_prefix[num] = prefix_sum
8 prefix_sum += num
9 candidate1 = prefix_sum - val_to_min_prefix[num + k]

10 candidate2 = prefix_sum - val_to_min_prefix[num - k]
11 max_sum = max(max_sum, candidate1, candidate2)
12 return max(max_sum, 0)

Listing 12: Pseudocode converted from Listing 11 with errors (line 12)
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I am a Python programmer.
Please help me convert Python code into a semantic-preserving and concise pseudocode.
Instead of translating line by line, you should simplify the pseudocode as much as possible

↪→ and also readable.
Below are specific rules:

1. Use indents to represent control structures.
```
if a == b:

c += 1
```

2. The pseudocode should not be tied to a specific programming language and should not
↪→ contain any language-specific stuffs such as `yield` in Python.

3. The pseudocode does not need to preserve concrete type info: (a) The concrete names such
↪→ as `vector` and `i64` should not appear. Usually, general names such as array/list
↪→ and int are enough for describing algorithms. (b) Do not involve type casting.

4. You should omit the implementation of common algorithms/data structures/operations.

For example, the customized binary search subroutine
```
def search_square_geq(nums, val):

left = 0
right = len(nums) - 1
while left < right:

mid = left + (right - left) // 2
if nums[mid]**2 < val:

left = mid + 1
else:

right = mid
return left

target = search_square_geq(xs, 9)
```
can be simplified as
```
target = binary search for the index i such that xs[i] * xs[i] >= 9
```

5. You can use natural language to simplify code, in particular loops. For example,
```
for x in xs:

if x == 233:
flag = true

```
can be simplified as `flag = whether 233 exists in xs`

6. Do not use natural language if that is verbose. For example, `let n be the size of list_a`
↪→ is less compact and readable than `n = list_a.size()`

7. A function definition should be formatted like `function max(a, b)`. Functions can be
↪→ nested and can use variables in the outer scope.

Finally, recall that the principles are **semantic-preserving** and **concise and readable**.
Do not change the name of the given function.
You can iterate the writing of pseudocode to ensure it follows the above rules.
Wrap only the final version with code blocks (```) in the response.

Below is the Python code to convert into pseudocode.
{code}

Listing 13: Prompt (a single user query) to generate pseudocode from DeepSeek-R1
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===System===
You are a proficient {lang} programmer and familiar with various algorithms.
Your task is to implement a {lang} code given a pseudocode illustrating an algorithm and a {

↪→ lang} signature.
If some subroutines are provided in the standard library, you can use them.
For subroutines that are not provided in the standard library, you need to implement them.

===User===
```
{pseudocode}
```

Please implement the above pseudocode with the following template.
```
{signature}
```

Listing 14: Zero-shot prompt to generate code from pseudocode
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===System===
You are a proficient Python programmer and familiar with various algorithms.
Your task is to implement a Python code given a pseudocode illustrating an algorithm and a

↪→ Python signature.
If some subroutines are provided in the standard library, you can use them.
For subroutines that are not provided in the standard library, you need to implement them.
Below is a simple example.

===User===
```pseudocode
Input:

nums is a list of positive integers;
k is a positive integer

Output:
return x such that x is the smallest in nums and x * x > k

function findTarget(nums, k):
sorted = sort nums in ascending order
res = binary search on sorted for the leftmost value res such that res * res > k
return res

```

Please implement the function with the following template.
```python
class Solution:

def findTarget(self, nums: List[int], k: int) -> int:

```

===Assistant===
The pseudocode involves two subroutines, sort and binary search.
Sort can be implemented using the standard libray, and binary search needs to be implemented

↪→ by ourselves.
Finally, the Python implementation is as follows.

```python
class Solution:

def findTarget(self, nums: List[int], k: int) -> int:
nums = sorted(nums)
left = 0
right = len(nums) - 1
while left < right:

mid = left + (right - left) // 2
if nums[mid] * nums[mid] <= k:

left = mid + 1
else:

right = mid
return nums[left]

```

===User===
```
{pseudocode}
```

Please implement the function with the following template.
```
{signature}
```

Listing 15: One-shot prompt to generate code from pseudocode
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0.0 0.2 0.4 0.6 0.8 1.0

directQwen32B  0-shot1-shot
directQwen32Bq4  0-shot1-shot
directQwen14B  0-shot1-shot
directQwen7B  0-shot1-shot

directLlama3B  0-shot1-shot

directLlama8B  0-shot1-shot

directPhi4  0-shot1-shot
directPhi3.5  0-shot1-shot

directGemma9B  0-shot1-shot

direct4o-mini  0-shot1-shot

pass@1
pass@5
pass@10

(a) To C++

0.0 0.2 0.4 0.6 0.8 1.0

directQwen32B  0-shot1-shot
directQwen32Bq4  0-shot1-shot
directQwen14B  0-shot1-shot
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Figure 4: Pass@k of code generation from pseudocode from C++ to all languages, compared with direct generation
from problems
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Figure 5: Pass@k of code generation from pseudocode from Python to all languages, compared with direct
generation from problems
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Figure 6: Pass@k of code generation from pseudocode from Rust to all languages, compared with direct generation
from problems
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