
Supplement to ‘Streaming algorithms for evaluating
noisy judges on unlabeled data - binary classification’

Anonymous Author(s)
Affiliation
Address
email

1 Introduction1

The methodology of using algebraic geometry for finite test evaluation is quite involved and uses2

mathematics not commonly mentioned in the ML literature. This supplement will try to gently guide3

the reader to understanding these tools as it provides proofs for the theorem’s mentioned in the paper.4

It then does a comparison with Theorem 1 from Jaffe et al. for independent classifiers that should be5

considered the probabilistic counterpart of the algebraic approach used here. Finally, it closes with6

a detailed discussion of the main experiments in the paper as well as some additional ones.7

1.1 The general idea of algebraic evaluation8

The paper focuses on binary classification but the methodology described is applicable to any num-9

ber of labels. In addition, it can be used to study decision data sketches for events besides those at10

the per-item level. This more general framework can be stated as follows -11

1. Define the decision event data sketch for the classification stream.12

2. Equate each possible decision event to a sum over the true labels.13

3. Use the true label indicators to construct exact polynomials describing a label’s contribution14

to the observed frequency.15

4. Compute the set of points in evaluation space, the evaluation variety, that can explain the16

observed data sketch.17

These steps are possible for finite tests because one can always find finite moment expansions for18

any sample statistic. In essence, we are guaranteed to be able to formulate and prove that a particular19

polynomial representation can explain all observable data sketches. These polynomial representa-20

tions may be quite involved but modern computer algebraic systems have no difficulty handling their21

construction. The last step, finding its corresponding variety is the hard part.22

The purpose of an evaluation is to get a ‘grade’ for the ensemble members - an actual number.23

We will abuse notation by using the same symbols to express the value in an actual test versus the24

variable used to carry out algebraic formulations. Thus, the prevalence of label α, P̂α, refers both to25

its actual value in a test and the variable that defines one of the dimensions in evaluation space - the26

space defined by variables associated to each sample statistic.27

1.2 The postulate of true or ground truth labels28

All the items in the stream have a true label. This ground truth is expressed by the ground truth29

indicator functions, 1s(ℓ).30
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Definition 1.1. For each item, s, in the stream there is a ground truth label indicator function, 1s(ℓ),31

given by,32

1s(ℓ) =

{
1 if ℓ = ℓ

(s)
true

0 otherwise
(1)

The existence of true labels for any one item is then expressed mathematically by,33 ∑
ℓi∈{α,β,γ,...}

1s(ℓi) = 1. (2)

For binary classification there are only two terms in this equation. We could thus choose to represent34

events by polynomials that use variables expressing the frequency of getting a label correct versus35

not. That is, there is only one way to be wrong. But for three or more labels there is more than one36

way to be wrong. In such cases, it would be more natural (i.e. result in more symmetric polynomials)37

if all decision events are expressed in terms of the frequencies of labels wrong. The paper chose to38

describe binary classification events in terms of variables quantifying the frequency of correct label39

decisions.40

1.3 Definitions of the data sketch and its associated sample statistics41

The black-box approach to noisy judges taken here is that the only information available for evalu-42

ation are observations of their decisions. In the classification task that means that for classifier i in43

the ensemble we can observe its decisions on the stream items,44

{ℓ(s)i }ns=1, (3)

where n is the number stream items observed so far.45

Definition 1.2. A per-item ensemble decision event for item s is the ordered tuple (ℓ(s)1 , ℓ(s)2 , . . . ).46

From these events we can construct a corresponding data sketch that forgets any information about47

decisions across items and just tallies the per-item decision events.48

Definition 1.3. The per-item decision data sketch for an ensemble of C classifiers is given by the49

integer counters for all possible per-item decision events. For L possible labels, LC , counters are50

needed.51

1.3.1 The label prevalences52

The prevalences of the labels in the stream are integer ratios defined using the true label indicator53

functions.54

Definition 1.4. The true prevalence of a label ℓ, P̂ℓ, in the observed stream items is given by,55

P̂ℓ =
1

n

n∑
s=1

1s(ℓ) (4)

It follows from the postulate of ground truth labels that,56 ∑
ℓ∈{α,β,γ,...}

P̂ℓ = 1 (5)

This equation is not mentioned again here because for binary classification we can make it disappear57

by focusing on just one of the two label prevalences. In general, this would not be possible and this58

equation would be part of the polynomial set that defines the evaluation ideal.59

Note that when one wants to evaluate performance across stream items, there would be prevalences60

for each of the true label tuples possible. For example, to evaluate accuracies on two consecutive61

stream items, four prevalences would be required during binary classification.62
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1.3.2 Classifier label accuracies63

The performance of an ensemble classifier for L labels requires as many sample statistics. But by64

Equation 2, one of these could be expressed in terms of the others. In binary classification it is65

sufficient to use the accuracies on each label.66

Definition 1.5. The α and β accuracies for classifier i are given by,67

P̂i,α =
1

nα

∑
1s(α)=1

1s(ℓ
(s)
i ) (6)

P̂i,β =
1

nβ

∑
1s(β)=1

1s(ℓ
(s)
i ) (7)

1.3.3 Classifier decision correlations68

The decision correlations during a finite test are defined as products of terms in the form,69

1s(ℓ
(s)
i )− P̂i,ℓ. (8)

For ensembles of three classifiers we only need two and three way correlation variables for each70

label. These are defined as follows.71

Definition 1.6. The 2-way or pair decision correlation for classifiers i and j on label ℓ is given by,72

Γi,j,ℓ =
1

nℓ

∑
1s(ℓ)=1

(1s(ℓ
(s)
i )− P̂i,ℓ)(1s(ℓ

(s)
j )− P̂j,ℓ). (9)

The 3-way decision correlation for classifiers i, j, and k on label ℓ is expressed as,73

Γi,j,k,ℓ =
1

nℓ

∑
1s(ℓ)=1

(1s(ℓ
(s)
i )− P̂i,ℓ)(1s(ℓ

(s)
j )− P̂j,ℓ)(1s(ℓ

(s)
k )− P̂k,ℓ). (10)

1.3.4 Finite moment expansions74

Other than carefully defining how these variables are defined in terms of the ground truth indicator75

functions, there is nothing novel or unusual here. Expansions of sample statistics in terms of data76

moments is well-known. For three classifiers we require the first moment variables (the label ac-77

curacies), the second moment variables (the pair correlations) and the third moment variables (the78

3-way correlations).79

2 Theorem 1: the polynomial generating set for independent classifiers80

It is possible to define mathematical objects that do not exist. Hence, formal mathematical treat-81

ments start by establishing that they exist - existence theorems. Another class of theorems are about82

completeness of representations - that we have a way of describing all possible objects. For exam-83

ple, the completeness of Fourier series in describing all possible piecewise continuous functions.84

Theorem 1 is a combination of these two types of theorems. It proves that the decision data sketch85

of independent classifiers is exactly described by polynomials using only the variables in the basic86

set of statistics: P̂α, {P̂i,α}3i=1, and {P̂i,β}3i=1. But because the proof is constructive and starts from87

the true evaluation point, it also proves that the constructed polynomials do define a variety that is88

non-trivial (not the empty set).89

Theorem 1. Each of the decision event frequencies, fℓ1,ℓ2,ℓ3 , derived from the per-item data sketch90

of three independent classifiers is given by a polynomial in the basic set of statistics. They are the91
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generating set of the evaluation ideal for independent classifiers,92

fα,α,α = P̂αP̂1,αP̂2,αP̂3,α + (1− P̂α)(1− P̂1,β)(1− P̂2,β)(1− P̂3,β) (11)

fα,α,β = P̂αP̂1,αP̂2,α(1− P̂3,α) + (1− P̂α)(1− P̂1,β)(1− P̂2,β)P̂3,β (12)

fα,β,α = P̂αP̂1,α(1− P̂2,α)P̂3,α + (1− P̂α)(1− P̂1,β)P̂2,β(1− P̂3,β) (13)

fβ,α,α = P̂α(1− P̂1,α)P̂2,αP̂3,α + (1− P̂α)P̂1,β(1− P̂2,β)(1− P̂3,β) (14)

fβ,β,α = P̂α(1− P̂1,α)(1− P̂2,α)P̂3,α + (1− P̂α)P̂1,βP̂2,β(1− P̂3,β) (15)

fβ,α,β = P̂α(1− P̂1,α) P̂2,α (1− P̂3,α) + (1− P̂α)P̂1,β(1− P̂2,β)P̂3,β (16)

fα,β,β = P̂αP̂1,α(1− P̂2,α)(1− P̂3,α) + (1− P̂α)(1− P̂1,β)P̂2,βP̂3,β (17)

fβ,β,β = P̂α(1− P̂1,α)(1− P̂2,α)(1− P̂3,α) + (1− P̂α)P̂1,βP̂2,βP̂3,β (18)
This generating set defines a non-empty evaluation variety that contains the true evaluation point.93

Proof. By the existence of true labels, it follows that any decision event by the classifiers has a count94

equal to the sum of times the true labels were α plus those were the true labels were β,95

nℓ1,ℓ2,ℓ3 = #(ℓ1, ℓ2, ℓ3 |α) + #(ℓ1, ℓ2, ℓ3 |β). (19)
Dividing this equation by n, the number of items classified and then multiplying each label term by96

unity in the form nℓ/nℓ, this becomes97

fℓ1,ℓ2,ℓ3 =
nα
n

(
1

nα
#(ℓ1, ℓ2, ℓ3 |α)) +

nβ
n
(
1

nβ
#(ℓ1, ℓ2, ℓ3 |β)) (20)

= P̂α(
1

nα
#(ℓ1, ℓ2, ℓ3 |α)) + P̂β(

1

nβ
#(ℓ1, ℓ2, ℓ3 |β)) (21)

= P̂α(
1

nα
#(ℓ1, ℓ2, ℓ3 |α)) + (1− P̂α)(

1

nβ
#(ℓ1, ℓ2, ℓ3 |β)) (22)

The construction of the generating set then proceeds by reformulating the number of times a decision98

event occurred given the true label in terms of the label accuracies of the classifiers. This is tedious99

but straightforward.100

Consider the decision event (α, β, α). When the true label is α the number of times this event101

occurred is equal to,102

#(α, β, α |α) =
∑

1s(α)=1

1s(ℓ
(s)
1 )(1− 1s(ℓ

(s)
2 ))1s(ℓ

(s)
3 ). (23)

Correspondingly, the composite indicator function for (α, β, α) events when the true label is β is103

given by,104

#(α, β, α |β) =
∑

1s(α)=1

(1− 1s(ℓ
(s)
1 ))1s(ℓ

(s)
2 )(1− 1s(ℓ

(s)
3 )). (24)

The proof now hinges on whether we can write averages of products of the true indicator functions105

as products of their averages when the classifiers are independent.106

Every decision event composite indicator function like those in Equations 23 and 24 will contain at107

most pair products,108

1s(ℓ
(s)
i )1s(ℓ

(s)
j ), (25)

and triple products,109

1s(ℓ
(s)
i )1s(ℓ

(s)
j )1s(ℓ

(s)
j ). (26)

Let us look at the pair product using the definition for the pair correlation variables and go through110

simplifications that should be familiar,111

Γi,j,ℓ =
1

nℓ

∑
1s(ℓ)=1

(1s(ℓ
(s)
i )− P̂i,ℓ)(1s(ℓ

(s)
j )− P̂j,ℓ) (27)

=

 1

nℓ

∑
1s(ℓ)=1

1s(ℓ
(s)
i )1s(ℓ

(s)
i )

− P̂i,ℓP̂j,ℓ. (28)
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Setting the pair correlation variables to zero then guarantees that averages of products are products112

of averages. In addition, it forms part of the definition of what ‘independence’ means when talking113

about sample statistics. Independent classifiers must have all pair correlation values, Γi,j,ℓ, set to114

zero.115

The triple product is more involved but follows accordingly from the definition of the 3-way corre-116

lation values and the pair ones,117

Γi,j,k,ℓ =
1

nℓ

∑
1s(ℓ)=1

(1s(ℓ
(s)
i )− P̂i,ℓ)(1s(ℓ

(s)
j )− P̂j,ℓ)(1s(ℓ

(s)
k )− P̂k,ℓ) (29)

=

 1

nℓ

∑
1s(ℓ)=1

1s(ℓ
(s)
i )1s(ℓ

(s)
j )1s(ℓ

(s)
k )

− P̂i,ℓ

 1

nℓ

∑
1s(ℓ)=1

1s(ℓ
(s)
j )1s(ℓ

(s)
k )

−

P̂j,ℓ

 1

nℓ

∑
1s(ℓ)=1

1s(ℓ
(s)
i )1s(ℓ

(s)
k )

− P̂k,ℓ

 1

nℓ

∑
1s(ℓ)=1

1s(ℓ
(s)
i )1s(ℓ

(s)
j )

+

2P̂i,ℓP̂j,ℓP̂k,ℓ

.

(30)

Repeatedly invoking Equation 28, the final expression for the 3-way correlation values is,118

Γi,j,k,ℓ =

 1

nℓ

∑
1s(ℓ)=1

1s(ℓ
(s)
i )1s(ℓ

(s)
j )1s(ℓ

(s)
k )

+ P̂i,ℓΓj,k,ℓ + P̂j,ℓΓi,k,ℓ

+ P̂k,ℓΓi,j,ℓ − P̂i,ℓP̂j,ℓP̂k,ℓ (31)

This defines the final condition for the sample independence of three classifiers - both Γi,j,k,α and119

Γi,j,k,β are equal to zero. This completes the proof that the generating polynomial set in the theorem120

is sufficient to explain all decision data sketches by independent classifiers using only polynomials121

of the basic set of evaluation variables.122

The proof quickly concludes by observing that the constructive part of the proof means that we have123

at least one point in the evaluation space defined by the basic set that satisfies all these equations124

when we go from thinking about them as actual values to treating them as variables. The set of125

points that satisfy the equations for a polynomial set is called the variety or as is being called here -126

the evaluation variety. It is non-empty and it contains the true evaluation point.127

3 Theorem 2: the evaluation variety for independent classifiers128

Theorem 1 constructed the polynomial generating set for independent classifiers and showed that129

the true evaluation point is contained in its variety. Theorem 2 now considers the question of how130

many points, besides the true evaluation point, could also explain an observed decision data sketch131

from independent classifiers.132

Theorem 2. The evaluation variety of the independent classifiers generating set contains exactly133

two points, one of which is the true evaluation point.134

Proof. Solving the generating set for independent classifiers is quite involved algebraically. The135

accompanying Mathematica notebook foo details the calculations. Here we describe the general136

strategy of the proof and add more explanations for the terms involved in the independent evaluator’s137

expression for P̂αthat appears in Table 1 in the paper.138

A strategy for solving multi-variable polynomial system is to obtain an equivalent representation of139

the polynomials that create an elimination ‘ladder’. At the bottom of the ladder is a single variable140

polynomial that, by the fundamental theorem of algebra, has as many roots (counting multiplicity) as141

the order of the polynomial. One then climbs up the ladder by finding polynomials that involve the142

solved variable and one more variable. In this manner, one systematically solves for the unknown143

values for the variables satisfying the polynomial system. This alternative representation is called144

the elimination ideal. It can be obtained by solving for the Gröebner basis of the generating set. The145
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Figure 1: Stages, from the bottom up, of the algebraic simplification of the ‘a’ coefficient in the
prevalence quadratic (Eq. 32). The bottom cell shows the expression using the eight data sketch fre-
quencies. The middle cell shows the simplification after introducing the β label decision frequencies
for each classifier, fi,β . The top cell was obtained by defining new variables, ∆i,j , as explained in
the main text.

term ‘basis’ is somewhat unfortunate since it may mislead the reader into thinking that a polynomial146

basis is like a vector basis. It is not. For example, the number of polynomials in a given basis for147

an evaluation ideal need not be the same as that in another basis. There is no concept of dimension148

when talking about evaluation ideals.149

Buchberger’s algorithm is a generic algorithm for finding the many Gröbner bases one may care to150

obtain. The Gröbner basis used in the notebook computations for this proof is also an elimination151

ideal. It contains at the bottom a quadratic polynomial in P̂αof the form,152

a(. . .)P̂ 2
α + b(. . .)P̂α + c(. . .) = 0. (32)

By the fundamental theorem of algebra, this has two roots. And by Theorem 1 we know that one153

must be the true prevalence for the α items. Because the elimination ideal also contains linear154

equations relating a single P̂i,ℓ variable with P̂α, it also follows that each root of the P̂αpolynomial155

is associated with a single value for all the P̂i,ℓ variables. This proves that the evaluation variety for156

independent classifiers contains exactly two points in evaluation space.157

The two points are related. Given a point that solves the independent generating set, the other one is158

given by the transformations159

P̂α → (1− P̂α) (33)

P̂i,α → (1− P̂i,β) (34)

P̂i,β → (1− P̂i,α) (35)

160

The ambiguity of the exact solution for independent classifiers has been noted before in the literature.161

It is inherent to all inverse problems and can be found in many fields such as tomography and error-162

correcting codes.163

The raw expression obtained by solving Equation 32 is unwieldy and would be impossible to present164

here. It would also hide some of the structure that is relevant to understanding the limitations of the165

formula and of the algebraic approach in general. In the accompanying Mathematica code (?), the166

necessary operations are carried out. For example, Figure 3 shows three stages of the simplifica-167

tions of the ‘a’ coefficient in the prevalence quadratic (Equation 32. The top cell was obtained by168
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introducing new variables. The fi,β variables are the decision frequencies by the classifier i for the169

β label. These actually define ‘blind spots’ in the independent evaluator as will be discussed during170

the proof of Theorem 3. The second set of new variables, the ∆i,j , are defined as follows,171

∆i,j = fi,j,β − fi,βfj,β . (36)

The new decisions frequencies, fi,j,β , keep track of how often the pair (i,j) both voted for label β172

on an item. Interestingly, it can be proven that173

fi,j,β − fi,βfj,β = fi,j,α − fi,αfj,α. (37)

So there is no need to define ∆ variables for each label.174

Finally, it should be noted that the 3 independent classifier solution solves the evaluation problem for175

any ensemble of three or more of them. This follows from marginalizing classifiers out. In addition,176

it can also be shown that 3 is the minimum number needed for this. The two and one independent177

classifiers have evaluation variety surfaces, not points.178

4 Theorem 3: the generating set for correlated classifiers179

The utility of working with sample statistics comes to the forefront in Theorem 3. Algebraic evalua-180

tion is easy in comparison to predicting. As will be shown by the theorem, we can write a generating181

set for data sketches of correlated classifiers that is complete. This is a universal representation of all182

data sketches no matter the setting. There is no theory of the phenomena that the classifiers analyzed183

in algebraic evaluation. How can there be when it has no free parameters? Because we are estimat-184

ing sample statistics, we can write complete representations. There are no unknown unknowns in185

evaluation because of this.186

Theorem 3. There is a polynomial generating set for all per-item data sketches by correlated clas-187

sifiers. It requires the basic set of evaluation statistics P̂α, {P̂i,α}ni=1, {P̂i,β}ni=1. In addition, it uses188

n choose two pair correlation variables per label, n choose three 3-way correlation variables and so189

on until it terminates at 1 n-way correlation variable. It defines an evaluation variety that contains at190

least one point - the true evaluation point.191

Sketch of the proof. The proof is constructive as in Theorem 1. We are starting at the true evaluation192

point. This point now exists in a space of dimension,193

1 + 2n+ 2

n∑
m=2

(
n

m

)
= 2n+1 − 1. (38)

The frequency of times any decision event occurs given the true label can be written as the average of194

a composite indicator function as was done in the proof of Theorem 1. For n classifiers, the largest195

product term possible in this composite indicator function would contain n indicator functions. But196

these can be reformulated in terms of the basic evaluation statistics, the n-way correlation variable197

for the label and averages of products with n − 1 indicator functions. Continuing in this way, the198

products of the n − 1 can be rewritten in terms of the (n-1)-way correlation variables and products199

with n− 2. This descent ends at n = 1.200

It follows trivially by the constructive nature of the proof that this generating set defines an evaluation201

variety that contains at least one point - the true evaluation point.202

The Mathematica notebook GeneratingPolynomialsCorrelatedClassifiers.nb contains ex-203

plicit formulations of the polynomial generating set for two and three classifier ensembles. One204

practical utility of these general polynomial sets is that they allow theoretical study of the proper-205

ties of functions based on the data sketch frequencies. In particular, one can use these polynomial206

expressions when correlation exists to study the behavior of the independent evaluator estimates.207

Consider the algebraic expression for P̂α under the independence assumption. It is an algebraic208

function of the data sketch frequencies,209

1

2
− 1

2

(fβ,β,β − (f1,β f2,β f3,β + f1,β ∆2,3 + f2,β ∆1,3 + f3,β ∆1,2))√
4∆1,2 ∆1,3 ∆2,3 + (fβ,β,β − (f1,β f2,β f3,β + f1,β ∆2,3 + f2,β ∆1,3 + f3,β ∆1,2))2

.

(39)
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Self-consistency under the independence assumption means that substituting the independent gen-210

erating polynomials for the frequencies into this expression will result in two solutions,211

P̂α, 1− P̂α. (40)

But the independent estimate is not correct for correlated classifiers. By using the generating set for212

such classifiers, a Taylor expansion on the variables Γi,j,ℓ can be done for the P̂α estimate. This213

work is not presented here except to remark that the first order terms have the generic form,214

Γi,j,ℓ

P̂k,α + P̂k,β − 1
. (41)

Therefore, the independent evaluator estimates errors grow as one approaches the line,215

P̂k,α + P̂k,β − 1, (42)

in evaluation space. The origin of this ‘blind spot’ and others in algebraic evaluation will become216

clearer in the next section where a Gröebner basis for correlated classifiers is discussed.217

5 Theorem 4: A Gröebner basis for three correlated classifiers218

The generating set for arbitrarily correlated classifiers quickly overwhelms current computational219

commutative algebra platforms such as Mathematica. They use Buchberger’s algorithm, a generic220

algorithm that is proven to always terminate in finite time but is known to take exponential time and221

memory for some polynomial systems, Cox et al. [2015]. Nonetheless, we can get a glimpse of how222

a general solution looks by solving for Gröebner bases for ensembles of three correlated classifiers.223

It is this basis that allows us to define a containing variety, larger than the evaluation variety, that224

contains the true evaluation point.225

More importantly, the polynomials in the basis are simplified by expressing them in terms of new226

variables, πi,ℓ and γi,j,ℓ, that are shifted versions of P̂i,ℓ and Γi,j,ℓ respectively,227

πi,ℓ = P̂i,ℓ − fi,ℓ (43)
γi,j,ℓ = Γi,j,ℓ −∆i,j . (44)

Theorem 4. A Gröbner basis for the generating set of three correlated classifiers exists. A subset of228

the basis consists of polynomials of the forms,229

P̂απi,α − P̂βπi,β (45)
πi,απj,β − πi,βπj,α. (46)

These define a containing variety guaranteed to contain the true evaluation point.230

Proof. The proof is constructive and is given in GroebnerBasis3CorrelatedClassifiers.nb. The in-231

clusion of the true evaluation point in the containing variety follows from the general theorem that a232

subset of generating polynomials must define a variety that includes the variety of the full set. That233

is, the set of points that satisfy a subset of the polynomials has to be equal to or larger than the set234

of points that satisfy all the polynomials.235

It is not proven here that the containing variety has dimension n + 1 in the 2n + 1 space of the236

basic evaluation statistics of n correlated classifiers. Since the containing variety does not require237

any knowledge of the correlation variables, this dimensionality reduction is universally available238

and can serve as a constraint for other methods such as the probabilistic approaches to evaluation.239

6 Theorem 5: Unresolved square roots signal correlation but seemingly240

correct estimates are no guarantee of sample independence241

Theorem 5 combines theorems 2 and 3 to prove that unresolved square roots in the independent eval-242

uators formula for P̂α can only occur when the ensemble classifiers are correlated in the evaluation.243

It signals, with no false positives, that an observed data sketch was not produced by an ensemble of244

independent classifiers. Unfortunately, the converse is not true precisely because of the blind spots245

in the algebraic evaluator discussed in the previous section.246
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Theorem 5. The presence of unresolved square roots in the independent evaluator estimate of P̂α247

means the classifiers are not sample independent. The converse is not true. Integer ratio estimates248

of P̂α are possible at the algebraic evaluator blind spots.249

Proof. An unresolved square root in the P̂αestimate cannot be produced by sample independent250

classifiers. This follows immediately from the exact solution in Theorem 2.251

7 Detailed comparison with Jaffe et al. [2015]252

The natural counterpart to the exact solution provided in Theorem 2 is Theorem 1 in Jaffe et al.253

[2015]. There are various reasons for this. As mentioned in the Previous Work section, their paper254

follows the spectral approach to evaluation started by Parisi et al. [2014]. As such, there are no255

hyperparameters as in Bayesian approaches to evaluation. But like all probability approaches for256

evaluation, their work is concerned with inferring unknown distributions in the limit of infinite257

sample sizes.258

The key to understanding the difference between any probabilistic approach and the one taken here259

is that they are discussing different notions of independence. The distributional independence as-260

sumption in Jaffe et al. [2015] is not equivalent to the sample independence assumption used in this261

paper. This is illustrated by the considering how to construct data sketches of independent classi-262

fiers under either approach. In the algebraic approach taken here you could use the generating set263

of polynomials in Theorem 1 to do this quickly. Set the prevalence and label accuracies to desired264

integer ratios, plug them into the polynomials and compute the resulting data sketch. The computed265

decision event frequencies can then be used to compute the minimum test size that would have given266

that data sketch - the GCD of the frequencies. We can then just do random shuffles of these decision267

events to create a very large number of stream simulations, all of which have zero correlation on the268

test and have exactly the same label prevalences and classifier accuracies. Consider now trying to269

get the same data sketch by simulating an i.i.d. process using the same settings as was done with just270

the algebra of the generating set. The resulting data sketch will almost certainly not be one that has271

zero sample correlations.272

Their solution to distributionally independent classifiers is based on three assumptions. They are,273

1. The stream items (‘instances’ in their paper) are assumed to be i.i.d. realizations of the274

marginal for them, pX(x), for an unknown joint distribution of the items and the classifiers275

decisions.276

2. The classifiers are conditionally independent for any pair - their joint decision distribution277

is the product of their individual distributions.278

3. More than half the classifiers are assumed to have label accuracies that sum to more than 1.279

Assumption 1 is irrelevant in algebraic evaluation. It does not matter if the stream items are not280

i.i.d. under any distribution. Sample statistics about per-item events have nothing to do with sample281

statistics across items. Assumption 2 is the distributional definition of independence. Assumption282

3, as they themselves mention, is strictly speaking not necessary. It relates to ‘decoding‘ the true283

evaluation point. The point of view of this paper is that this is a separate concern, as discussed in284

Section 6 of the paper. Identifying the true point will always require additional side-information.285

Assumption 3 is akin to error-correcting codes deciding that the least bit flips solution is the correct286

one when an error is detected and corrected. Relying on prevalence knowledge is another acceptable287

way to decode the true evaluation point.288

The terminology of Jaffe et al. [2015] uses specificity and sensitivity to describe what are here called289

the label accuracies. Interestingly, later in the paper, when they consider 3 or more label classifica-290

tion, they revert to using the terminology of confusion matrices - the one essentially used here. To291

continue the comparison with their work, we arbitrarily decide that what they call label ”1” is α and292

their label ”-1” is β. Under that identification. the mapping to sensitivity and specificity variables is,293

ψi → P̂i,α (47)

ηi → P̂i,β (48)
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But care must be taken not to equate the two. The specificity and sensitivity are referring to un-294

known, discrete distributions. The label accuracies in this paper refer to sample averages, not dis-295

tributions. The predictions of the classifiers are represented by functions, fi(X), that yield ‘1’ and296

‘-1’. This entanglement of labels and values then leads them to consider the infinite sample size297

quantities,298

µi = E [fi(X)] (49)
R = E [(fi(X)− µi)(fj(X)− µj)] (50)

The crux of the spectral approach is that the off-diagonal elements of the matrix R are identical to a299

rank-one matrix vvT where the vector v encodes the class imbalance in the labels and the average of300

the label accuracies. But these quantities are not known for any finite sample so they must consider301

their finite test averages and consequently obtain noisy estimates of the quantity v. They show that302

if one knows the class imbalance, denoted by b in their paper, then the specificities and sensitivities303

have consistent estimators with errors of order 1/
√
n.304

Let us briefly consider the relation between the finite sample estimate of the µi quantities to see their305

relation to the work here.306

µ̂i =
1

n

n∑
s=1

fi(xs) (51)

=
1

n

∑
1s(α)=1

(21i(ℓ
(s)
i )− 1) +

1

n

∑
1s(β)=1

(1− 21i(ℓ
(s)
i )) (52)

=− 1 + 2P̂α

(
P̂i,α + P̂i,β − 1

)
(53)

Note that this reformulation makes clear why the condition that the label accuracies must sum to a307

value greater than one is not just to decode the true point. As in the work here, the spectral method308

approach also has blind spots. The spectral blind spot is a line,309

P̂i,α + P̂i,β = 1. (54)

Finally, their solution for independent classifiers then finishes with their Theorem 1, a proof that a310

restricted likelihood estimator for the class imbalance will converge to its true value in probability311

as n → ∞. It is tempting to conclude that the independent evaluator is much better because it pro-312

vides sharp estimates that are exact for a finite sample. But this is not a fair comparison. As was313

remarked in the section discussing the unresolved square root in the estimate of P̂α by the inde-314

pendent evaluator, the experiments carried here never observed a sample independent test. A fairer315

comparison between the two methods would be one that considered the error in the independent es-316

timator for nearly sample independent ensembles versus the one provided by the spectral method for317

test sizes where classifiers independent in distribution would produce similar sample correlations.318

That comparison is not done here.319

8 General comments on the experiments320

All the code and data for the experiments is provided in accompanying files. The experiments were321

carried out on a MacBook Pro with an M1 chip. To greatly simplify the comparison and to mimic322

artificial constraints that may exist in production or field deployment the arbitrary decision was made323

that all the classifiers would use a logistic regression method with pinned settings as provided in the324

Mathematica implementations of the algorithm under their general function Classify. Similarly,325

the feature partitions used for all the experiments where exactly the same - each classifier used just326

three features completely disjoint from those used by the other ensemble members. In other words,327

no attempt was made to show that the experimental protocol is optimal or the best possible choice328

for any of the datasets.329

The timing for all the runs was dominated by training of the classifiers. Algebraic evaluation is es-330

sentially immediate - one of its great benefits. The time taken to train 300 different feature partitions331

10 times each over 10 different test sizes was about six hours.332
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8.1 The distance to the containing variety333

The hypothesis that the independent evaluator estimate has non-zero distance to the containing va-334

riety is only explored empirically in this paper. Given the small value of the distances that are com-335

puted, one may wonder if this due to floating point errors. Mathematica has the ability to compute336

this distance exactly when the surface is defined using integer ratios and the independent estimate337

is given as an algebraic number. These exact calculations take considerably longer than those done338

when floating point numbers are used. A few of these calculations were carried out to confirm the339

correctness of the floating point estimates.340

8.2 Some evaluations341

It is instructive to consider the actual evaluations that were carried out using the feature partitions in342

the experiments. The best evaluations were associated with the twonorm experiments. Something343

that the plots of algebraic failures would lead us to expect. If features are correlated, training proto-344

cols can only go so far in creating independent ensembles. The twonorm dataset is synthetic and its345

features were independently generated. The result of a single evaluation is shown in Figure 1. The346

evaluation was selected by performing 10 training/evaluation runs on the 100 feature partitions in-347

vestigated in the 2nd set of experiments. Those feature partitions that succeeded in giving seemingly348

correct values (all of them in the twonorm) for the 10 runs were then searched for the one closest to349

the containing variety for its evaluation. The next best results for the minimum distance evaluation350

were obtained in the mushroom dataset and are shown in Figure 2. And finally, the adult evaluation351

was the worst.352

If one is concerned with mitigating the principal/agent monitoring paradox, exhaustive searches353

of evaluating ensembles are hardly practical and are, therefore, not the focus of this paper. Much354

more practical when one is concerned about safe or profitable deployments is being able to handle355

evaluations were the classifiers are nearly independent. The algebraic approach presented here is356

a step in that direction but work remains on handling these cases. Knowing evaluations failed is357

hardly useful when that is the common case.358
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Figure 2: Estimated versus true values for the six label accuracies of three classifiers in a single
evaluation of the twonorm features partition that had the closest distance to the containing variety.
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Figure 3: Estimated versus true values for the six label accuracies of three classifiers in a single
evaluation of the mushroom features partition that had the closest distance to the containing variety.
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Figure 4: Estimated versus true values for the six label accuracies of three classifiers in a single
evaluation of the mushroom features partition that had the closest distance to the containing variety.

14


