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Appendix

A Multi-Head Self-Attention

In single-head self-attention, we compute attention based on queries Q € RP*9s, keys K € R9*%
and values V € R9*ds:

T

Vs

where p, g are lengths of query and key-value representations, usually we have p = g. d is the
dimension of the query/key/value features. In multi-head attentions, we define the query, key, value
functions of the ¢-th head for a sequence of representations X as:

Q;i(X) = XW)
Ki(X)=XW V,(X) = XW()

Attn(Q, K, V) = softmax( )V,

where X € RP*? jg a sequence of p hidden representations with the dim d, ng), W,(f), WS) S
R?*ds are projection matrices of queries, keys and values, respectively. The output of the multi-head
attention is a concatenation of outputs of all heads:

MHA(Q(X),K(X), V(X)) = cat(head, ..., head;)
headi = Attn(QZ (X), Kz (X), Vz (X))

where ¢ is the number of heads, and typically we have d = tds. The output is then projected by a
linear function f: R — R?, and followed by the layer normalization and residual connection to get
the final output of the layer.

B NeiReg: Explicit Regularization For Holistic Information

One property of the neighbor attention model is that neighbor representations correspond to each
input token. This makes it easier to guide the training of those representations than arbitrarily prompts.
Based on this, we further guide data representations to contain holistic information about the data,
which may benefit continual learning [3].

Context Regularization To encourage data representations to contain holistic information of tokens
in the data, we encourage sentence (data) representation opyask] at each layer to be close to each
token’s neighbor representations. Specifically, we maximize the cosine similarity between them,
which can be written as the loss:
— (new) (new)
Leontex (0"") = —Ey; [cos (0 sk » 59 (m;}ew )],

where sg means ‘stop gradient’. We estimate the expectation on neighbors by uniformly sampling a
neighbor from the k neighbors of h; at each time, when calculating the cosine similarity.

Neighborhood Regularization The context regularization above is directly influenced by neighbor
representations. If neighbor representations are too far away from original token representations, the
loss L¢ontext may not encourage the model to learn holistic information about data. To mitigate this
problem, we add regularization to discourage neighbor representations from moving too far away
from token representations. The regularization term is:

Lneigh(M®V) = *Ez‘jCOS(sg(O(new)) m(n‘ew))~

7 ’ 17
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This encourages each neighborhood M; = [m;1, ...;m;;] to stay nearby to its token representation
h;, and not easily migrate to arbitrary spaces.

With regularizations above, the overall objective is to minimize the original classification loss with
regularization 10sses Lieigh (0™™)) + Lontext (M T™™).

C Evaluation Metrics

Recall@k Denote the set of rationale tokens of the i-th sample as rel;, the set of top-%k tokens
predicted from the learned data representation as pred, @k. The metric Recall@F calculates the
proportion of rationale tokens rel; that are predicted in pred, @k, which is defined as:

]

Because each data instance in E-SNLI has 5-10 rationale tokens, we use Recall @20 for evaluation.

|pred, @k N rel,|

Recall@k = E; | el

Average Accuracy and Forgetting We use the average accuracy and average forgetting similar in
[1] to evaluate the performance in CL scenarios. The specific definitions are described below.

* Average Accuracy (Acc € [0,1]): Let a; ; be the performance of the model on the test set

of task j after the model is trained on task 7. The average accuracy after training on all task
T is:

1 T
Acer = T ; ar,j-

In this paper, we select T" as the end of CL task sequence.

* Average Forgetting (Forget < [-1,1]): Denote f; ; as the forgetting on task j after the
model is trained on task 4. f; ; is calculated by:

fz}j = c max ap,; — Qi j-

1e{1,...,i—1}
And the forgetting after training on the task 7" is:

=
Forgetr = T Z fr.j-
j=1

Our forgetting is slightly different from that in [1] by dividing the number 7" of all tasks
instead of 7' — 1. We do this to make the above metrics also indicate models’ capacities on
single tasks, i.e. single-task capacity ~ Accr + Forgetr.

D Examples of Representations with Global Prototypes

In this section, we provide examples to show: (1). our idea on NLP tasks; (2). connections between
learned data representations and global prototypes; (3). neighbors of hidden representations.

D.1 An NLP Example of Representations Learned with Global Prototypes

Figure 6 provides an example of representation learned with global prototypes in NLP tasks, which is
a special case of the main paper Figure 1.

For NLP data, their task-specific information can be described by tokens in the data which are
essential for task predictions, i.e. rationale tokens. For example, for the data ‘A boy in a red hooded
top is smiling. The boy is upset.” from ‘contradiction’ class, tokens in the set {smiling, upset} are
rationale tokens that convey the information of ‘contradiction’. After learning the global prototypes
of tokens, we learn data representations that have strong connections to prototypes of rationale
tokens. Because global prototypes are pre-learned to reflect (task-agnostic) semantic connections,
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representations learned from different tasks can connect to each other via the interconnection of
global prototypes.

| Task 1:{entailment, contradiction} # Task 2:{positive, negative} @ Task 3: {entertainment, computers} @ Global prototypes for tokens |
M Aboy in a red hooded top is smiling. The boy is upset. — < contradiction
W Some guys have so much charisma that you 'd be happy to listen to them reading the phone book . — @ positive

What is Denzel Washington's best movie? Man on fire was crazy! made me cry. — ¢ entertainment
M Do you know aboul.’ Aserverisa thal provides services to other computing systems over a network. — & computers

Rationale tokens
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Figure 6: Representations learned with global prototypes for NLP tasks. Shaded regions show ranges
of representations for specific classes. Dots are global prototypes, with different colors showing their
correlations to specific tasks. The global prototypes are pre-learned to reflect (task-agnostic) semantic
connections between them, which may already contain information for specific task learning. Dashed
lines show data representation’s connection to global prototypes. Specifically, the connection should
be strong to global prototypes of corresponding rationale tokens.

D.2 Tokens predicted from Data Representations

To evaluate models’ capacities for our desiderata of global alignment (the main paper Eq. (4)), we
predict top-20 tokens from the learned representation by the pre-trained decoder (global prototypes),
and compute the ratio of rationale tokens in the top-20 predictions (i.e. Recall@20). Here we provide
examples of top-10 predicted tokens in Table 1. For continual learning data (Yahoo 1 and DB), we
show examples from the first task using the model trained after the whole task sequence.

Table 1: Examples of top-10 predicted tokens after training on SNLI (single task), Yahoo 1 (CL) and
DB (CL). ‘Class’ shows the class text (we use class logits in the model); ‘Rationale’ shows essential
words annotated in E-SNLI for SNLI data. Underline tokens are rationale tokens in predictions.

SNLI  Sentence 1 Two women are embracing while holding to go packages.

Sentence 2 The sisters are hugging goodbye while holding to go packages after just eating lunch.
Class Neutral
Rationale The sisters hugging goodbye after just eating lunch

Top-10 FT ##dheim Ulysses ##book ##jay 2013 town bankruptcy Odyssey Napoleon Versailles
Adapter . One Diet Dinner and So Tonight " Today Morning
PT2 lunch dinner eating breakfast friends leaving food pizza reunion eat
NeiAttn lunch dinner new goodbye sweet winners miss friends fruit sister

Yahoo 1 Sentence 1 Who knows how the planets are currently aligned ? ?

(Task 1) Sentence 2 I know how they are aligned but it’s difficult to communicate through Yahoo! Imagine that you are in the northern

ecliptic sphere looking down on the solar system. Now imagine that there are points at the edge of the solar system
like the face of a clock. Let’s put the Earth at 90 degrees from the Sun. Mercury would be at approximately 4:00.

Class Science
Top-10 FT email emails download ##mail blog blogs downloads Twitter ##pository http
Adapter : the . Earth us times our - about and
PT2 planets stars orbits orbit bodies objects positions galaxies coordinates rotation
NeiAttn Earth Sun Universe earth astronomy celestial spacecraft Jupiter planets solar
DB Sentence 1 No One Man

(Task 1) Sentence 2 No One Man is a 1932 American drama film starring Carole Lombard and Ricardo Cortez and directed by Lloyd
Corrigan. It is based on a novel by Rupert Hughes.

Class Film
Top-10 FT Publishing publishing Publications Press Editorial imprint publications Books readers the
Adapter directed Film Movie . ! film Pictures ? won ##m
PT2 film . Film - : Pictures Story ! , Films
NeiAttn film production distance set screen release The short Film sets
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NeiAttn and PT2 consistently predict rationale tokens along with tokens related to rationale tokens;
Adapter can predict limited tokens related to rationale tokens, while many top-10 predicted tokens
are irrelevant to data. FT fails to include rationale tokens in its top-10 predicted tokens for most cases.
This shows representations of NeiAttn and PT2 can better connect to prototypes of rationale tokens.

D.3 Correlation between Hidden Representations and Embeddings

In the neighbor selection, we compare hidden representations with the embeddings of the pre-
trained model. Here we give an example to show why we can directly compare these two. After
transformations over several layers, we still observe a strong correlation between hidden representation
h and its embedding e at different layers of BERT-base. We hypothesize that it is partially because
of the residual connection [4]. In Table 2, by looking at tokens that have the nearest embeddings to
the given hidden representation at different layers, we find that embeddings of closely related tokens
can be retrieved from such direct comparison. However, after transformation over several layers, the
correlation between token embeddings and hidden representations may be decreased. This may call
for better neighbor selection strategies.

In Table 2, the top 10 tokens with nearest embeddings have very close meanings to the original
token ‘prepare’, which may not convey sufficient extra information for task learning. In this case, we
randomly select k tokens out of top-K nearest tokens for NeiAttn model, where K controls the range
of the neighborhood.

Table 2: Top 10 tokens with nearest embeddings of ‘prepare’ representations at the 1st, 6th and 12th
layers on the pre-trained BERT-base model.

Input: [CLS] A group of people prepare hot air balloons for takeoff. [SEP] A group of people are outside. [SEP]

Layer Top 10 Nearest Tokens of ‘prepare’
1 prepare, prepares, preparing, prepared, preparation,preparations, ready, assemble, organize, ##ilize
6 [CLS], prepare, [MASK], prepared, prepares,preparing, preparation, preparations, assemble, readiness
12 [CLS], [MASK], [SEP], preparation, readiness,assemble, runoff, ignition, ##itation, prepare

E Detailed Experimental Settings

We provide detailed experimental settings in addition to the main paper Section 5. For single-task
learning and task-incremental learning, we use the model settings below:

* FT: we select learning rates from {2e-5, 3e-5, Se-5} and train 3 epochs for each task.

* Adapter: we select learning rates from {5e-5, le-4, le-3} and train {5, 20} epochs for each
task. For all continual learning tasks, we train with the learning rate Se-5 and 20 epochs.

* BitFit: we select learning rates from {5e-4, 1e-3} and train {10, 20} epochs for each task.

* ProT and PT2: for prompt-based models (ProT and PT2), we have learning rate of le-3
and train for {20, 50} epochs for each task. Prompt lengths are selected according to their
papers. Specifically, we set prompt length as 100 for ProT and 50 for PT2.

* NeiAttn: we select learning rates from {2e-4, Se-4, le-3} and train {5, 8} epochs for each
task. Neighbor attentions are added on the 7-11 #h layers of the pre-trained model. The num-
ber of neighbors is k = 5, the initial neighborhood range is selected from K ={20,50,100}.

For single-task and task-incremental learning, our classifier contains a pooler in addition to the linear
classification layer (i.e. w, in Eq. (1)) for prediction, which follows the fine-tuning setting used in

[2]. The pooler contains a linear projection layer: R? — R¢ followed by a non-linear Tanh activation.

To reduce the forgetting caused by the classifier and focus on the evaluation of representations in
class-incremental learning, we pick the best encoder-classifier alignment for each model:

* FT, PT2: the same setting as task-incremental learning, no pooler in the classifier.

» Adapter: the same setting as task-incremental learning, with the pooler in the classifier.
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* NeiAttn: the same setting as task-incremental learning, no pooler in the classifier. For
DB, we only add the neighbor attention module on the 7-th layer, which has comparable
parameters to PT2.

F Additional Experimental Results

F.1 Ablation Study

We conduct ablation studies on specific settings of our NeiAttn model. We evaluate the influence of
hyperparameters including the number of neighbor attention layers, the ratio of neighbor information
in neighbor representations («, 3), and the range of the initial neighborhood (K'). We evaluate on
SNLI and task-incremental learning tasks. For each task, we select 1245 samples for each class.
Results are shown in Table 3. The standard model applies neighbor attention to 7-11 ¢h transformer
layers, with hyperparameters « = $ = 0.2 and initial neighborhood K = 20.

Table 3: Results for ablation studies. We evaluate on SNLI and three task-incremental learning tasks.

Ablation NeiAttn Variant SNLI Yahoo 1 DB News Series
Accsu Recall s Accsu  Forget su Accsu  Forget su Accsu  Forget s
Standard model 78.00052  38.61237  88.961.14 280112 973434 25434 719522 9.89 2.0
Number of Layers 7-Tth layers 73.06024 309759  90.41 0.8 1.55019  99.360 0.530.71 74.252.12 35121

7-9th layers 76.66076  38.51312  89.16044 255041 9947052 042052 72.50286 9.05 285

1-11th layers 77.52071 3430145 854952 6.28524 9553552 434551 6398120 1585105

Neighbor Information a=0,=1 77.86076  36.61260 87.39093 423097 91.84557 8.04 5538 70.04 3.66 11.64 356
a=0.2,68=0.8 779208 3859140 88.550s3 3.14053 95431 44543 69.65 395 12.24 44

a=083=0.2 77.670s0 3814122 89.3003 23303 97.5233 23633  69.525.14 11.8952

Range of Neighborhood K =5 77.67072 3531510 893307 240076 9511504 477525 69.533065 121330
K =100 777405  38.380 89.18063 246063  96.8745 3.02451 6947408 1243400

K =200 777409  39.04121  88.980.44 271042 98.85073 1.04 073 69.34 432 12.61 426

Number of Neighbor Attention Layers We evaluate NeiAttn models with fewer neighbor attention
layers (applied on the 7th and 7-9 th layers), and more neighbor attention layers (applied to 1-11
transformer layers). With fewer neighbor attention layers, models have less capacity for SNLI
but perform better on CL tasks. This may be because some CL tasks (Yahoo 1, DB) require less
capacity to learn compared to SNLI. And fewer neighbor attention layers may result in less risk of
deviating model parameters to overfit specific tasks. With more neighbor attention layers, the model
performance for SNLI does not increase, while the performance for CL tasks also drops. The above
results suggest the optimal selection of neighbor attention layers may vary for different tasks.

Ratio of Neighbor Information We utilize neighbor representations in Eq. (9) to improve the
model’s expressivity without sacrificing its capacity for global alignment (Eq. (4)). For initial neighbor
representations, we mix information of neighbor embeddings and pre-trained hidden representations
by the ratio « and [ respectively (Main Paper Section 4.2). We compare different ratios of mixed
information. When a = 0, 5 = 1, the model simply uses the gate A to combine self-attention
representations and a linear projection of hidden representations (without neighbors), as below:

Ognew) “ (1 _ >\)0i + /\A00i7 Agoi = Wyh,.

In Table 3, we observe a general performance drop of the model without neighbors compared to that
with neighbors. This validates the benefit of utilizing neighbors in the model.

When increasing the ratio of neighbor information («), tasks in Yahoo 1 and DB will have improved
performance. As analyzed above, NeiAttn with the standard setting has excess capacity for Yahoo
1 and DB, and can overfit single tasks in the sequence. With more neighbor information, models
may have less risk of overfitting and thus perform better in CL. On the other hand, when the model
does not have excess capacity (e.g., on SNLI and News Series), increasing the neighbor information
does not necessarily benefit the learning. In such cases, we may have to carefully set the o and 3 to
balance the information in neighbor representations.

Range of the Initial Neighborhood We evaluate the influence of the initial neighborhood range
K. When K = 5 which means the neighborhood contains the most similar neighbors, the model
performs better on Yahoo 1 while worse on other tasks compared to the standard model. When
expanding the initial neighborhood with K > 20, the model has relatively robust performance on
most tasks. However, on hard tasks like News Series, expanding the initial neighborhood may result
in more variance in the prediction.
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F.2 Mean and Standard Deviations of Main Paper Figure 3

Table 4 and Table 5 show the detailed scores (mean and standard deviation) for single task evaluation
on SNLI and GLUE datasets (Main Paper Figure 3). Table 4 shows the SNLI scores for Figure 3
bottom, Table 5 shows the GLUE scores for Figure 3 upper.

Table 4: Classification and regularization performance on different ratios of SNLI dataset. ‘A’
represents the accuracy for classification, ‘R’ means the Recall @20.

SNLI (549k) ‘ 10% 30% 50% 100%
‘ A R ‘ A R ‘ A R ‘ A R A R

FT 79.508 16.762 | 86.00.1 8.333 88.602 10223 | 89.703 6.533 90.606 3310
Adapter 78814 23.827 | 85.602 13326 | 88304 5328 | 89404 5500 | 90307 5709
BitFit 78705 38.509 | 84.806 35714 | 86.500 34904 | 88.102 30.60s8 | 88.904 28.514
ProT 74306 44410 | 82302 43409 | 84.602 41.815 | 85.601 39519 | 86.406 35314
PT2 78.602 39.600 | 85.102 38402 | 87301 37.109 | 88302 36303 | 88905 34315
NeiAttn 78506 41930 | 84904 37921 | 87401 35015 | 88301 32712 | 89.40 309138
NeiReg 78.605 46.611 | 85201 42.80s8 | 87300 40304 | 88.301 37.505 | 89206 34213

Table 5: Detailed results of the first row of Figure 3. Classification and regularization performance
on selected GLUE datasets. ‘A’ represents the accuracy for classification, ‘R’ means the Recall @20.

RTE (2.5k) SST-2 (67k) QNLI (105k) ‘ QQP (364k) ‘ MNLI-m (393k)
Poparams | A R A R A R | A R A R

FT 100 67.125 10360 | 91.804  9.025 | 90.803  9.534 | 90205  5.139 83301 11.630

Adapter 2.3% 65.534 14853 | 90.707 13283 | 90.103 8255 | 88.306 17.144 | 82306 10.115

BitFit 0.5% 64921 26249 | 90408 21.15 89.502 27313 | 87901 26361 | 80.702 33.807

ProT 0.5% 58616 9.83s | 87.60s8 1131 87402 151558 | 87.001 28.043 | 77.305 36.000

PT2 0.8% 65926 4l1.126 | 91.10 2990 90.00.1  20.51. 88.201  31.122 | 81.500 36.107

NeiAttn 5.4% 66.807 46817 | 90.405 33.120 | 90405 21.639 | 88.900 32.02> | 81.501 38.41:

NeiReg 5.4% 66.507 48.619 | 90405 32210 | 90403 15.025 | 88900 29236 | 81.501 30410
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