
Appendix

A Multi-Head Self-Attention1

In single-head self-attention, we compute attention based on queries Q ∈ Rp×ds , keys K ∈ Rg×ds2

and values V ∈ Rg×ds :3

Attn(Q,K,V) = softmax(
QKT

√
ds

)V,

where p, g are lengths of query and key-value representations, usually we have p = g. ds is the4

dimension of the query/key/value features. In multi-head attentions, we define the query, key, value5

functions of the i-th head for a sequence of representations X as:6

Qi(X) = XW(i)
q

Ki(X) = XW
(i)
k , Vi(X) = XW(i)

v

where X ∈ Rp×d is a sequence of p hidden representations with the dim d, W(i)
q ,W

(i)
k ,W

(i)
v ∈7

Rd×ds are projection matrices of queries, keys and values, respectively. The output of the multi-head8

attention is a concatenation of outputs of all heads:9

MHA(Q(X),K(X),V(X)) = cat(head1, ..., headt)
headi = Attn(Qi(X),Ki(X),Vi(X))

where t is the number of heads, and typically we have d = tds. The output is then projected by a10

linear function f : Rd → Rd, and followed by the layer normalization and residual connection to get11

the final output of the layer.12

B NeiReg: Explicit Regularization For Holistic Information13

One property of the neighbor attention model is that neighbor representations correspond to each14

input token. This makes it easier to guide the training of those representations than arbitrarily prompts.15

Based on this, we further guide data representations to contain holistic information about the data,16

which may benefit continual learning [3].17

Context Regularization To encourage data representations to contain holistic information of tokens18

in the data, we encourage sentence (data) representation o[MASK] at each layer to be close to each19

token’s neighbor representations. Specifically, we maximize the cosine similarity between them,20

which can be written as the loss:21

Lcontext(o
(new)) = −Eij

[
cos

(
o(new)
[MASK], sg(m

(new)
ij )

)]
,

where sg means ‘stop gradient’. We estimate the expectation on neighbors by uniformly sampling a22

neighbor from the k neighbors of hi at each time, when calculating the cosine similarity.23

Neighborhood Regularization The context regularization above is directly influenced by neighbor24

representations. If neighbor representations are too far away from original token representations, the25

loss Lcontext may not encourage the model to learn holistic information about data. To mitigate this26

problem, we add regularization to discourage neighbor representations from moving too far away27

from token representations. The regularization term is:28

Lneigh(M
(new)) = −Eijcos

(
sg(o(new)

i ),m(new)
ij

)
.



This encourages each neighborhood Mi = [mi1, ...mik] to stay nearby to its token representation29

hi, and not easily migrate to arbitrary spaces.30

With regularizations above, the overall objective is to minimize the original classification loss with31

regularization losses Lneigh(o
(new)) + Lcontext(M

(new)).32

C Evaluation Metrics33

Recall@k Denote the set of rationale tokens of the i-th sample as reli, the set of top-k tokens34

predicted from the learned data representation as predi@k. The metric Recall@k calculates the35

proportion of rationale tokens reli that are predicted in predi@k, which is defined as:36

Recall@k = Ei

[ |predi@k ∩ reli|
|reli|

]
.

Because each data instance in E-SNLI has 5-10 rationale tokens, we use Recall@20 for evaluation.37

Average Accuracy and Forgetting We use the average accuracy and average forgetting similar in38

[1] to evaluate the performance in CL scenarios. The specific definitions are described below.39

• Average Accuracy (Acc ∈ [0,1]): Let ai,j be the performance of the model on the test set40

of task j after the model is trained on task i. The average accuracy after training on all task41

T is:42

AccT =
1

T

T∑
j=1

aT,j .

In this paper, we select T as the end of CL task sequence.43

• Average Forgetting (Forget ∈ [-1,1]): Denote fi,j as the forgetting on task j after the44

model is trained on task i. fi,j is calculated by:45

fi,j = max
l∈{1,...,i−1}

al,j − ai,j .

And the forgetting after training on the task T is:46

ForgetT =
1

T

T−1∑
j=1

fT,j .

Our forgetting is slightly different from that in [1] by dividing the number T of all tasks47

instead of T − 1. We do this to make the above metrics also indicate models’ capacities on48

single tasks, i.e. single-task capacity ≈ AccT + ForgetT .49

D Examples of Representations with Global Prototypes50

In this section, we provide examples to show: (1). our idea on NLP tasks; (2). connections between51

learned data representations and global prototypes; (3). neighbors of hidden representations.52

D.1 An NLP Example of Representations Learned with Global Prototypes53

Figure 6 provides an example of representation learned with global prototypes in NLP tasks, which is54

a special case of the main paper Figure 1.55

For NLP data, their task-specific information can be described by tokens in the data which are56

essential for task predictions, i.e. rationale tokens. For example, for the data ‘A boy in a red hooded57

top is smiling. The boy is upset.’ from ‘contradiction’ class, tokens in the set {smiling, upset} are58

rationale tokens that convey the information of ‘contradiction’. After learning the global prototypes59

of tokens, we learn data representations that have strong connections to prototypes of rationale60

tokens. Because global prototypes are pre-learned to reflect (task-agnostic) semantic connections,61
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representations learned from different tasks can connect to each other via the interconnection of62

global prototypes.

Figure 6: Representations learned with global prototypes for NLP tasks. Shaded regions show ranges
of representations for specific classes. Dots are global prototypes, with different colors showing their
correlations to specific tasks. The global prototypes are pre-learned to reflect (task-agnostic) semantic
connections between them, which may already contain information for specific task learning. Dashed
lines show data representation’s connection to global prototypes. Specifically, the connection should
be strong to global prototypes of corresponding rationale tokens.

63

D.2 Tokens predicted from Data Representations64

To evaluate models’ capacities for our desiderata of global alignment (the main paper Eq. (4)), we65

predict top-20 tokens from the learned representation by the pre-trained decoder (global prototypes),66

and compute the ratio of rationale tokens in the top-20 predictions (i.e. Recall@20). Here we provide67

examples of top-10 predicted tokens in Table 1. For continual learning data (Yahoo 1 and DB), we68

show examples from the first task using the model trained after the whole task sequence.69

Table 1: Examples of top-10 predicted tokens after training on SNLI (single task), Yahoo 1 (CL) and
DB (CL). ‘Class’ shows the class text (we use class logits in the model); ‘Rationale’ shows essential
words annotated in E-SNLI for SNLI data. Underline tokens are rationale tokens in predictions.

SNLI Sentence 1 Two women are embracing while holding to go packages.
Sentence 2 The sisters are hugging goodbye while holding to go packages after just eating lunch.
Class Neutral
Rationale The sisters hugging goodbye after just eating lunch

Top-10 FT ##dheim Ulysses ##book ##jay 2013 town bankruptcy Odyssey Napoleon Versailles
Adapter . One Diet Dinner and So Tonight " Today Morning
PT2 lunch dinner eating breakfast friends leaving food pizza reunion eat
NeiAttn lunch dinner new goodbye sweet winners miss friends fruit sister

Yahoo 1 Sentence 1 Who knows how the planets are currently aligned ? ?
(Task 1) Sentence 2 I know how they are aligned but it’s difficult to communicate through Yahoo! Imagine that you are in the northern

ecliptic sphere looking down on the solar system. Now imagine that there are points at the edge of the solar system
like the face of a clock. Let’s put the Earth at 90 degrees from the Sun. Mercury would be at approximately 4:00.

Class Science

Top-10 FT email emails download ##mail blog blogs downloads Twitter ##pository http
Adapter : the . Earth us times our - about and
PT2 planets stars orbits orbit bodies objects positions galaxies coordinates rotation
NeiAttn Earth Sun Universe earth astronomy celestial spacecraft Jupiter planets solar

DB Sentence 1 No One Man
(Task 1) Sentence 2 No One Man is a 1932 American drama film starring Carole Lombard and Ricardo Cortez and directed by Lloyd

Corrigan. It is based on a novel by Rupert Hughes.
Class Film

Top-10 FT Publishing publishing Publications Press Editorial imprint publications Books readers the
Adapter directed Film Movie . ! film Pictures ? won ##m
PT2 film . Film - : Pictures Story ! , Films
NeiAttn film production distance set screen release The short Film sets
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NeiAttn and PT2 consistently predict rationale tokens along with tokens related to rationale tokens;70

Adapter can predict limited tokens related to rationale tokens, while many top-10 predicted tokens71

are irrelevant to data. FT fails to include rationale tokens in its top-10 predicted tokens for most cases.72

This shows representations of NeiAttn and PT2 can better connect to prototypes of rationale tokens.73

D.3 Correlation between Hidden Representations and Embeddings74

In the neighbor selection, we compare hidden representations with the embeddings of the pre-75

trained model. Here we give an example to show why we can directly compare these two. After76

transformations over several layers, we still observe a strong correlation between hidden representation77

h and its embedding e at different layers of BERT-base. We hypothesize that it is partially because78

of the residual connection [4]. In Table 2, by looking at tokens that have the nearest embeddings to79

the given hidden representation at different layers, we find that embeddings of closely related tokens80

can be retrieved from such direct comparison. However, after transformation over several layers, the81

correlation between token embeddings and hidden representations may be decreased. This may call82

for better neighbor selection strategies.83

In Table 2, the top 10 tokens with nearest embeddings have very close meanings to the original84

token ‘prepare’, which may not convey sufficient extra information for task learning. In this case, we85

randomly select k tokens out of top-K nearest tokens for NeiAttn model, where K controls the range86

of the neighborhood.

Table 2: Top 10 tokens with nearest embeddings of ‘prepare’ representations at the 1st, 6th and 12th
layers on the pre-trained BERT-base model.

Input: [CLS] A group of people prepare hot air balloons for takeoff. [SEP] A group of people are outside. [SEP]

Layer Top 10 Nearest Tokens of ‘prepare’

1 prepare, prepares, preparing, prepared, preparation,preparations, ready, assemble, organize, ##ilize

6 [CLS], prepare, [MASK], prepared, prepares,preparing, preparation, preparations, assemble, readiness

12 [CLS], [MASK], [SEP], preparation, readiness,assemble, runoff, ignition, ##itation, prepare

87

E Detailed Experimental Settings88

We provide detailed experimental settings in addition to the main paper Section 5. For single-task89

learning and task-incremental learning, we use the model settings below:90

• FT: we select learning rates from {2e-5, 3e-5, 5e-5} and train 3 epochs for each task.91

• Adapter: we select learning rates from {5e-5, 1e-4, 1e-3} and train {5, 20} epochs for each92

task. For all continual learning tasks, we train with the learning rate 5e-5 and 20 epochs.93

• BitFit: we select learning rates from {5e-4, 1e-3} and train {10, 20} epochs for each task.94

• ProT and PT2: for prompt-based models (ProT and PT2), we have learning rate of 1e-395

and train for {20, 50} epochs for each task. Prompt lengths are selected according to their96

papers. Specifically, we set prompt length as 100 for ProT and 50 for PT2.97

• NeiAttn: we select learning rates from {2e-4, 5e-4, 1e-3} and train {5, 8} epochs for each98

task. Neighbor attentions are added on the 7-11 th layers of the pre-trained model. The num-99

ber of neighbors is k = 5, the initial neighborhood range is selected from K ={20,50,100}.100

For single-task and task-incremental learning, our classifier contains a pooler in addition to the linear101

classification layer (i.e. wγ in Eq. (1)) for prediction, which follows the fine-tuning setting used in102

[2]. The pooler contains a linear projection layer: Rd → Rd followed by a non-linear Tanh activation.103

To reduce the forgetting caused by the classifier and focus on the evaluation of representations in104

class-incremental learning, we pick the best encoder-classifier alignment for each model:105

• FT, PT2: the same setting as task-incremental learning, no pooler in the classifier.106

• Adapter: the same setting as task-incremental learning, with the pooler in the classifier.107
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• NeiAttn: the same setting as task-incremental learning, no pooler in the classifier. For108

DB, we only add the neighbor attention module on the 7-th layer, which has comparable109

parameters to PT2.110

F Additional Experimental Results111

F.1 Ablation Study112

We conduct ablation studies on specific settings of our NeiAttn model. We evaluate the influence of113

hyperparameters including the number of neighbor attention layers, the ratio of neighbor information114

in neighbor representations (α, β), and the range of the initial neighborhood (K). We evaluate on115

SNLI and task-incremental learning tasks. For each task, we select 1245 samples for each class.116

Results are shown in Table 3. The standard model applies neighbor attention to 7-11 th transformer117

layers, with hyperparameters α = β = 0.2 and initial neighborhood K = 20.118

Table 3: Results for ablation studies. We evaluate on SNLI and three task-incremental learning tasks.
Ablation NeiAttn Variant SNLI Yahoo 1 DB News Series

Acc std Recall std Acc std Forget std Acc std Forget std Acc std Forget std

Standard model 78.00 0.52 38.61 2.37 88.96 1.14 2.80 1.12 97.34 3.41 2.54 3.41 71.95 2.20 9.89 2.29

Number of Layers 7-7th layers 73.06 0.24 30.97 5.96 90.41 0.18 1.55 0.19 99.36 0.71 0.53 0.71 74.25 2.12 3.51 2.14

7-9th layers 76.66 0.76 38.51 3.12 89.16 0.44 2.55 0.41 99.47 0.52 0.42 0.52 72.50 2.86 9.05 2.85

1-11th layers 77.52 0.71 34.30 1.45 85.49 5.27 6.28 5.24 95.53 5.52 4.34 5.51 63.98 12.12 15.85 10.52

Neighbor Information α = 0, β = 1 77.86 0.76 36.61 2.69 87.39 0.93 4.23 0.97 91.84 5.87 8.04 5.88 70.04 3.66 11.64 3.86

α = 0.2, β = 0.8 77.92 0.86 38.59 1.40 88.55 0.53 3.14 0.53 95.43 4.32 4.45 4.32 69.65 3.95 12.24 4.41

α = 0.8, β = 0.2 77.67 0.80 38.14 1.22 89.30 0.36 2.33 0.38 97.52 3.37 2.36 3.36 69.52 5.14 11.89 5.22

Range of Neighborhood K = 5 77.67 0.72 35.31 5.10 89.33 0.78 2.40 0.76 95.11 5.24 4.77 5.23 69.53 3.65 12.13 3.42

K = 100 77.74 0.86 38.38 0.74 89.18 0.63 2.46 0.63 96.87 4.51 3.02 4.51 69.47 4.08 12.43 4.00

K = 200 77.74 0.99 39.04 1.21 88.98 0.44 2.71 0.42 98.85 0.73 1.04 0.73 69.34 4.32 12.61 4.26

Number of Neighbor Attention Layers We evaluate NeiAttn models with fewer neighbor attention119

layers (applied on the 7th and 7-9 th layers), and more neighbor attention layers (applied to 1-11120

transformer layers). With fewer neighbor attention layers, models have less capacity for SNLI121

but perform better on CL tasks. This may be because some CL tasks (Yahoo 1, DB) require less122

capacity to learn compared to SNLI. And fewer neighbor attention layers may result in less risk of123

deviating model parameters to overfit specific tasks. With more neighbor attention layers, the model124

performance for SNLI does not increase, while the performance for CL tasks also drops. The above125

results suggest the optimal selection of neighbor attention layers may vary for different tasks.126

Ratio of Neighbor Information We utilize neighbor representations in Eq. (9) to improve the127

model’s expressivity without sacrificing its capacity for global alignment (Eq. (4)). For initial neighbor128

representations, we mix information of neighbor embeddings and pre-trained hidden representations129

by the ratio α and β respectively (Main Paper Section 4.2). We compare different ratios of mixed130

information. When α = 0, β = 1, the model simply uses the gate λ to combine self-attention131

representations and a linear projection of hidden representations (without neighbors), as below:132

o
(new)
i ← (1− λ)oi + λ∆θoi, ∆θoi := Wθhi.

In Table 3, we observe a general performance drop of the model without neighbors compared to that133

with neighbors. This validates the benefit of utilizing neighbors in the model.134

When increasing the ratio of neighbor information (α), tasks in Yahoo 1 and DB will have improved135

performance. As analyzed above, NeiAttn with the standard setting has excess capacity for Yahoo136

1 and DB, and can overfit single tasks in the sequence. With more neighbor information, models137

may have less risk of overfitting and thus perform better in CL. On the other hand, when the model138

does not have excess capacity (e.g., on SNLI and News Series), increasing the neighbor information139

does not necessarily benefit the learning. In such cases, we may have to carefully set the α and β to140

balance the information in neighbor representations.141

Range of the Initial Neighborhood We evaluate the influence of the initial neighborhood range142

K. When K = 5 which means the neighborhood contains the most similar neighbors, the model143

performs better on Yahoo 1 while worse on other tasks compared to the standard model. When144

expanding the initial neighborhood with K > 20, the model has relatively robust performance on145

most tasks. However, on hard tasks like News Series, expanding the initial neighborhood may result146

in more variance in the prediction.147
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F.2 Mean and Standard Deviations of Main Paper Figure 3148

Table 4 and Table 5 show the detailed scores (mean and standard deviation) for single task evaluation149

on SNLI and GLUE datasets (Main Paper Figure 3). Table 4 shows the SNLI scores for Figure 3150

bottom, Table 5 shows the GLUE scores for Figure 3 upper.151

Table 4: Classification and regularization performance on different ratios of SNLI dataset. ‘A’
represents the accuracy for classification, ‘R’ means the Recall@20.
SNLI (549k) 1% 10% 30% 50% 100%

A R A R A R A R A R

FT 79.5 0.8 16.7 6.2 86.0 0.1 8.3 3.3 88.6 0.2 10.2 2.3 89.7 0.3 6.5 3.8 90.6 0.6 3.3 1.0

Adapter 78.8 1.4 23.8 2.7 85.6 0.2 13.3 2.6 88.3 0.4 5.3 2.8 89.4 0.4 5.5 0.9 90.3 0.7 5.7 0.9

BitFit 78.7 0.5 38.5 0.9 84.8 0.6 35.7 1.4 86.5 0.0 34.9 0.4 88.1 0.2 30.6 0.8 88.9 0.4 28.5 1.4

ProT 74.3 0.6 44.4 1.1 82.3 0.2 43.4 0.9 84.6 0.2 41.8 1.5 85.6 0.1 39.5 1.9 86.4 0.6 35.3 1.4

PT2 78.6 0.2 39.6 0.0 85.1 0.2 38.4 0.2 87.3 0.1 37.1 0.9 88.3 0.2 36.3 0.3 88.9 0.5 34.3 1.5

NeiAttn 78.5 0.6 41.9 3.0 84.9 0.4 37.9 2.1 87.4 0.1 35.0 1.5 88.3 0.1 32.7 1.2 89.4 0.7 30.9 1.8

NeiReg 78.6 0.5 46.6 1.1 85.2 0.1 42.8 0.8 87.3 0.0 40.3 0.4 88.3 0.1 37.5 0.5 89.2 0.6 34.2 1.8

Table 5: Detailed results of the first row of Figure 3. Classification and regularization performance
on selected GLUE datasets. ‘A’ represents the accuracy for classification, ‘R’ means the Recall@20.

RTE (2.5k) SST-2 (67k) QNLI (105k) QQP (364k) MNLI-m (393k)

%params A R A R A R A R A R

FT 100 67.1 2.5 10.3 6.0 91.8 0.4 9.0 2.5 90.8 0.3 9.5 3.4 90.2 0.5 5.1 3.9 83.3 0.1 11.6 3.0

Adapter 2.3% 65.5 3.4 14.8 5.3 90.7 0.7 13.2 8.3 90.1 0.3 8.2 5.5 88.3 0.6 17.1 4.4 82.3 0.6 10.1 1.5

BitFit 0.5% 64.9 2.1 26.2 4.9 90.4 0.8 21.1 5.7 89.5 0.2 27.3 1.3 87.9 0.1 26.3 6.1 80.7 0.2 33.8 0.7

ProT 0.5% 58.6 1.6 9.8 3.8 87.6 0.8 11.3 1.2 87.4 0.2 15.1 5.8 87.0 0.1 28.0 4.3 77.3 0.5 36.0 0.9

PT2 0.8% 65.9 2.6 41.1 2.6 91.1 0.7 29.9 0.7 90.0 0.1 20.5 1.7 88.2 0.1 31.1 2.2 81.5 0.1 36.1 0.7

NeiAttn 5.4% 66.8 0.7 46.8 1.7 90.4 0.5 33.1 2.0 90.4 0.3 21.6 3.9 88.9 0.0 32.0 2.2 81.5 0.1 38.4 1.3

NeiReg 5.4% 66.5 0.7 48.6 1.9 90.4 0.5 32.2 1.0 90.4 0.3 15.0 2.5 88.9 0.0 29.2 3.6 81.5 0.1 30.4 1.0
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