A Proofs for Fat-Tailed Federated Learning

A.1 Proof of FAT-Clipping-PR
For notional clarity, we have the following update:
Local update: xk'H = xt i LVfZ(xt i ft ), k€ [K],
Clipping: xK+1 = xt’i — nrclipping( Z Vi Xf’i,fﬁi)),
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Lemma 1 (Bounded Variance of Stochastic Local Updates for FAT-Clipping-PR). Assume f;(x,§)
satisfies the Bounded a—Moment assumption[3] then for FAT-Clipping-PR we have:
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Note here the expectation is on the random samples fé‘i i
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where j = argmamie[m]]E[||At7i||2], and the first inequality is due to the clipping, i.e., | Az [ < A.
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i€[m] ke[K] JE[k] 1€[m]
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where 1. } is the indicator function, the last inequality follows from the fact that A;; = At,i
if [|Agill < X and E[|A¢ill 1gja, >3] < E[lAg:][*]AT"* < K2G*A'™%; the second last

inequality is due to L-smoothness, Jenson’s inequality (i.e.,E[A;; — Az ;]| < E|[[As; — At i]|) and
the clipping step. Then, we have
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Theorem 1. (Convergence Rate of FAT-Clipping-PR in the Strongly Convex Case) Suppose that
f () is a u-strongly convex function. Under Assumptlons 3} if ) K > =, then the output X1

of FAT-Clipping-PR bemg chosen in such a way that Xp = X; with probabtllty 7%_ where

.ie[T]

= (1= $umnrK)'™, satisfies:

1 K
J(xr) = f(x") < e p<2unnLKT) T G 2GR L G,
,u
where x* denotes the global optimal solution. Further, let 7777LK = 2:% where ¢ > 1isa

constant satisfying m2_a2a K% Tet== > 1, and let ng, < (mKT) . It then follows that

f&xr) = f(x7) = O((mT)

2—2a 2

a Ka).

Proof
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2
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The first inequality follows from the strongly-convex property, i.e., — (x; — z., Vf(x¢)) <
—(f(x¢) — f(x4) + 4llze — x.]|*), and the last inequality is due to Young’s inequality. Then
we have
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where the last inequality is due to Lemmal[l]
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Letw; = (1 — f;anK )1, %7 = x; with probability Zwﬁ
Jje[r] >a
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where the second inequality follows from w; < w;_1.
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where the last inequality follows from that nnp K > T

(1~ Luni )" < exp (~Lpmmo KT).

the second last inequality is due to
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Let nm K = 26 ln(T) (c > lisaconstant and T—¢~*% < m = K#a), A = (mKT)=, and
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Theorem 2. (Convergence Rate of FAT-Clipping-PR in the Nonconvex Case) Suppose that f(-) is
a nonconvex function. Under Assumptions ifmr KL < 1, then the sequence of outputs {xy}
generated by FAT-Clipping-PR satisfies:

2(f(x1) — f(xT>)
min BV (a)|* < =5
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Further, choosing learning rates and clipping parameter in such a way that nnp =
2a—2 —a—2 —a 11—« 4—4a
m3e—2 K3a—2T5-2 np < (mT)3e—2K3a-2, and \ = (mK*T) 52, e have

min B[V f(x,)||> = O((mT) 53 K 55-%).
te[T]

Proof. Due to the smoothness in Assumption |1} taking expectation of f(x;41) over the randomness
at communication round ¢, we have:

E[f(x¢1)] = f(xe) < (Vf(%e), E[xe11 — x]) + gE[thH — x¢||?]

= (V£ (), E[A]) + §n277%1@[||5t||2]
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where the last inequality follows from (—% + %) <0ifgm KL < 1.

From Lemmal[I} we have the bound of A; and A in (5)). By rearranging and telescoping, we have:
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E

A2 Proof of FAT-Clipping-PI

For FAT-Clipping-PI, we have the following notions:
At E ¢k © k = k ¢k
oo s V(X E600) V(%) = B[V fi(x 5, &)
IV fi(xt s 680 b " bl
Local steps: x; ' = x;, — eV fi(xF;, &80,k € [K];
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Lemma 2 (Bounded Variance of Stochastic Local Updates for FAT-Clipping-Pl). Assume f;(x,§)
satisfies the Bounded a—Moment assumption[3] then we have:

E[|A]°] < K2GN*7°,
~ ~ K
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m
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where the last inequality follows from the fact that E||V f; (x5, €F,) || < E||V fi(xF;, &F,)[[*A* <
G\2~% (see Lemma 9 in [22]).
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where the first inequality follows from the fact that {V f;(x};, &) — V fi(xF )} form a martingale
difference sequence (Lemma 4 in [3]), the second inequalities is due to E[|| X —E[X]||?] < E[|| X %]
and the third inequality follows from the fact that E||V f;(x¥;, &F,)|2 < B[V fi(xF,, &) [[“A*~ <
G\2 (see Lemma 9 in [22]). ’
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< 2G2(x>\—2(a—1) + 2L277%K2Ga)\2_a,

where the forth inequality is due to ||V f;(x) — Vi) < G2A727D (see Lemma 9 in [22]),
and the last inequality follows from the fact that E||V f; (xt i ft DII? < GeNZe O

Theorem 3. (Convergence Rate of FAT-Clipping-Pl in the Strongly Convex Case) Suppose that

f () is a u-strongly convex function. Under Assumptlons 3| if g K > uT’ then the output X

of FAT-Clipping-PI belng chosen in such a way that Xp = x; with probability = 7‘[’;] —, where
Jje J
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then follows that
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Proof. Similarly, we have the following one step iteration:
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where the last inequality follows from that nnp K >
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Theorem 4. (Convergence Rate of FAT-Clipping-Pl in the Nonconvex Case) Suppose that f(-) is a
non-convex function. Under Assumptions if i KL < 1, then the sequence of outputs {x}
generated by FAT-Clipping-P| satisfies:

. 2(f(x1) — f(z1)) —2(a— -
2 < 2ay —2(a—1) 2. 2 12 Yay2—«
win B[V f(x)|? < 50 (2622 + 220} K2GN )

L
Lnnr (GaAQ a) )
m
Further, choosing learning rates and clipping parameter in such a way that nmp =
2a—2 —a —a
m3e=2 (KT)3a=2 ny, < (mKT)%1, and A = (mKT) 552, we have
min B[V ()| < O((mKT)5%).
te

Proof. Due to the smoothness in Assumption |1} taking expectation of f(x;41) over the randomness
at communication round ¢, we have:

BIf (xea)] — f(xe) < (VF0x0), Bl —xil) + 2B{lxesr — )

= e (VFee) E[A) + ZoPndE(I A

K K 1 Ln?n? <
= TR VA2 = TENEA 2 + FE= 1V £(xe) — EIAI? + ZLALE] A, )

~ 202
_ nnLKHVf( o+ (-2 L2 ”L)HE[ A7 + T 9 ) — ZBIAIP + CETER]A, -

2K

L -
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Ay Az

where the last inequality follows from (7% + LnTzni) <0ifgm KL < 1.

From Lemma[2] we have the bound of A; and A; in (6). By rearranging and telescoping, we have:
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te 7] L KT
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2a—2 —a —a 1
Suppose nn, = m3=2(KT)3%=2 n;, < (mKT)%=1, and A = (mKT)3-2,
min B[V £(x,)|? < O((mKT)%%).
te[T]

A.3 Proof of FAT-Clipping-PR in Gaussian Noise

In this subsection, we utilize the classic bounded variance and bounded gradient assumption.

Assumption 4. (Bounded Stochastic Gradient Variance) There exists a constant o > 0, such that the
variance of each local gradient estimator is bounded by E[||V f;(x,£) — V f;(x)]|?] < 02, Vi € [m)].

Assumption 5. (Bounded Gradient ) There exists a constant G > 0, such that gradient is bounded
by IV fi(x)||* < G Vi € [m].

Lemma 3 (Lemma E.5 [18]]). Suppose there exists a constant o such that the variance of the
stochastic gradient of F has bounded variance, i.e., E[|VF(x,§) — VEX)|?] < o% and

[VF(x)||> < 3. then we have the following inequalities for the clipping VF (x;) = E[VF(x,£)] =
E[min{1, W}VF(X &)]:

~ 164
IBIVF(e,6)] = VEG|” < 5,

E|VF(x,£) — VF(x)|* < 180,
E|VEF(x,£) — E[VF(x,€)]||? < 1802

We remark that for any stochastic estimator satisfies the above conditions, the above inequalities hold.
The proof is the exactly same as that in original proof [18§]].

Lemma 4 (Bounded Variance of Clipping Stochastic Local Updates in FAT-Clipping-PR). Assume
fi satisfies the bounded variance assumption, then we have:

E[|As; — E[A]1°] < Ko?.

In addition, assume there exists a constant G such that gradient is bounded ||V fi(x)||* < G2, if we

set clipping parameter as X\* > 2K*G?, i.e., |V f;(x)|| < 3, then we have:

~ 2 16Ko*
Bl — Bl < =5
< < 18K
E||A; - E[A][* < 704-

Proof.
E(|Ar; — EIA|®) = E(IVS (] €]) — BIV(x )]
< Ko?,
where {V f (x{’i, ff’z) E[Vf(x] )} forms martingale difference sequence (Lemma 4 in [3]).

_ 2
Then by applying Lemma we have the bound of HIE[AH] —E[A]

2
EHAt [At ||2 Z Atz - Z Atz

18K
< 5t
m

where the last inequality follows from the fact that E[||A; ; — E[A,;]]|%] < Ko?, {Ar; — E[A]}
forms martingale difference sequence and Lemma 3] O
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Theorem 5. Suppose f is non-convex function, under Assumptions[I} 2| B and [} if yn KL < 1,
then the sequence of outputs {xy} generated by Algorithm FAT-Clipping-PR satisfies:

f(xo) — f(x 1 320 18Lnn
2 S Evstgl < 2B IO LS (a4 )+ 20) 4 (B ),
tE 1] L te[T) n

Choosing learning rates and clipping parameter as Ny, =
(mT)1/4K73/4,

/2 1
(Kn}wﬂh S iR and Ay >

min E[|Vf(x)|? < O((mKT)"?).
te[T]

Proof. Due to the smoothness in Assumption [1} taking expectation of f(x;1) over the randomness
at communication round ¢, we have the same inequality:

~ 2,2 ~ ~
Blf(eesn)] — f0x0) < ~ TRV FGe)I + T 9 ) - EIAJIZ +LE E]IA, ~ B,

Aq Az
)
where it requires nn KL < 1.
Note that the term A; in (7) can be bounded as follows:
1 -
Ay = |V f(x) - EIA?
1 22 e
—2|[vsoe) - EIA]] + 25 [Elad - BIAY
2 . 2
K >3 I VSixe) = Vilx H + K2 > HE [Ari] — E[A]
i€[m] ke[K] i€[m]
2
2L277% j 2
< =BT N BN VALED)| K2 > A - Bl
i€[m] ke[K] JE[K] 1€[m]
< 202 K2 (B VAo ) — VA + [V + 55
3204

2, 2 2 2 2
<2L nLK (0’ -‘rG)“rKT)\%

where the second inequality is due to smoothness assumption [T} the third inequality is due to

Lemmaf] and the last inequality follows from bounded variance assumption 4] and bounded gradient
assumption 5]

From Lemma[d] the term A, in ({7) can be bounded as follows:
18Ko”
—

As <

Putting pieces together, we can have the one communication round descent in expectation:

~ 22 ~ ~
Bl (i) - fx0) < ~ TR0 eI+ T 9 () — EIAIZ +LTE EIA, ~ BIAIP)

Ao
Ay
7777LK o LK 2.9 72/ 2 2 320! 18LK7)277% 2
< IV f(x¢)]] +72 <2L K=o+ G )+K2/\§ + o o”.

Rearranging and telescoping, we have the final convergence result:

f(x0) — f(x 1 3202 18L
- Z EIV(x)l? < 2 (n%) KT( 7)) , 7O (2R + G g ) + nfzma"‘ .
T L te[T] K
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ml/2 _
Suppose 7777L = (KT)I/Zan S (mT)1}2K5/2 ’ and A1: 2 (mT)1/4K 3/43

min E||V£(x,)|? < O(mKT)"2).
te[T]

O

Theorem 6. Suppose fis u-strongly convex function, under Assumpttons 3} if 7777LK > =, then

the outputs X7 in Algorithm 2 (FAT-Clipping-PR) by X = x; with probability S where
= (1 — JpmnL K)' 1 satisfies:

3204
A2 I

1 K 4
f@r) — f(x.) < %GXP <_2N7777LKT> + %02 + ;[2L277%K2(G2 +0°) +

Suppose mp K = %Eg} (¢ > 0is a constant and T~°t1 < (mK)~1), A > (mKT)%, and
3
2

nr < (mT)_%K_ ,

f@r) = f(x) = O(mKT)™).

Proof.

|-EIA) - VF()|? <2 HVﬂxt) - LE(A]

g—z > EIVAitx) - VA + o 3 [BlA] - EIA,]
m] ke[K] i€[m]
2

2L%n? P 3204
< TKL Z Z E Z Vii(xi:8.0)| + 2
i€[m] ke[K] JE[K]
3204
A2

+ 2 [eiad - A

2

<23 K2(G? 4 0%) +

Similarly, we have

1 1
f(xe) = f(x4) < oK _—E[IIXm — x|+ (1 - SHmmL ) [x — w*llz_
L T 2
T g A ZIE[=A, -V
+ 5 Ell A ]+MII (A = Vi)
1 2 1 2-
< LK _—]E[||Xt+1 — x|+ (1 — §W777LK)||Xt — Zu| |
K 4 3204
+ TG 4RI K(G 4 0%) + S

Letw; = (1 — 7;u7nLK) t %X = x; with probability = “["] —.
je[r) Wi

_ 1 Wi 2 1 2
— f(x.) < - — P+ (1= S K)|x; -z
for) =) £ tEE[Tj](MLK[ s =2+ (1= G ) = . ]

LK 2, 22 (2(G2 4 o2 320"
— G 2Ln; K*(G
+ TGP 4 LR )+ =]
1 1 MK o 4.9 9 .9, 9 9 3204
< X1 — 2|2 + G? + —2L*1n2 K*(G? + o) + )
gje[T] w; 21777LK|| I 2 u[ LK ) A2 )
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Same as that in heavy-tailed noise case, we have the same bound for 29, K 3, ¢ ) we:

2 1 -7
2L K E wy > — (1 - AanK> )
W 2
te[T]

. . 2
where it requires nnp K > T

T
1 K 4 3954
f@r) - fex) < 5 (1 - Q“WK> + PR G LRI RGP 4 o)+ S
1 K 4 3954
< Gow <_2’“7’7LKT> + e LRLMLK(G +0%) + !

Let nm K = %iﬂg% (c > 0is a constant and T—°t1 < (mK)™1), A > (mKT)z, and 5, <
(mT)"2K~3,

f@r) — f(x.) = O(mKT) ™).

B Experiments in Section

In this section, we provide experimental details to demonstrate the fat-tailed noise phenomenon in
federated learning. We conduct experiments with CNN on CIFAR-10 dataset as shown in Section
and provide additional results of RNN model on Shakespeare dataset. Furthermore, we verify the
accuracy of a estimation with logistic regression on MNIST dataset.

B.1 CNN on CIFAR-10 Dataset
B.1.1 Experiment details

We run a convolutional neural network (CNN) model on CIFAR-10 dataset using FedAvg. The
CNN architecture is shown in Table 2] To simulate data heterogeneity across clients, we manually
distribute the the data to each client in a label-based partition. Specifically, we split the data according
to the classes (p) of images that each client has. Then, we randomly distribute these partitioned
data to m = 100 clients such that each client has only p classes of images in both training and test
data, which causes the heterogeneity of data among different clients. For example, for p = 10, each
client contains training/test data samples with ten classes. Since CIFAR-10 has 10 classes of images,
p = 10 is the nearly i.i.d case. For the remaining p, each client contains data samples with class p.
Therefore, the classes (p) of images in each client’s local dataset can be used to represent the non-i.i.d.
degree. The smaller the p-value, the more heterogeneous the data between clients.

In this experimental setting, we use the global learning rate 2= = 1.0 and the local learning rate
nr = 0.1. The batch size is set to 500, and the communication round is 7" = 4000. We run this
experiment in different cases, including singleSGD and different local epochs {1, 2,5} and non-iid
index p € {1,2,5,10}. Single SGD means one local update step, which is equivalent to mini-batch
SGD.
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Table 2: CNN architecture for CIFAR-10.

LAYER TYPE SIZE
Convolution + ReLu 3x32x5b
Max Pooling 2x2
Convolution + ReLu 32x64 x5
Max Pooling 2x2

Fully Connected + ReLU 1600 x 512
Fully Connected + ReLU 512 x 128
Fully Connected 128 x 10

B.1.2 Additional experimental results

We provide additional distributions of the norms of the pseudo-gradient noises in different cases as
follows. From Fig.[7} [I0] the observation is that the gradient norm statistics are contracted together
for more iid cases while dispersed uniformly for more non-iid cases. This is
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Figure 7: Distributions of the norms of the pseudo-gradient noises for CIFAR-10 dataset in the case
of Single SGD.
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Figure 8: Distributions of the norms of the pseudo-gradient noises for CIFAR-10 dataset in the case

of Local Epoch=1.
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Figure 9: Distributions of the norms of the pseudo-gradient noises for CIFAR-10 dataset in the case
of Local Epoch=2.
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Figure 10: Distributions of the norms of the pseudo-gradient noises for CIFAR-10 dataset in the case
of Local Epoch=35.

B.2 RNN on Shakespeare Dataset
B.2.1 Experiment details

To provide more evidences of the fat-tailed noise phenomenon, we further run a recurrent neural
network (RNN) model on Shakespeare dataset.

Shakespeare dataset is a natural non-iid dataset, and it is built from The Complete Works of William
Shakespeare [1]]. The learning task is to predict next character, and there are 80 classes of characters
in total. We use a two-layer LSTM classifier containing 100 hidden units with an 8-dimensional (8D)
embedding layer. The model inputs a sequence of 80 characters, embeds each of the characters into a
learned 8D space, and then outputs one character per training sample after two LSTM layers and a
densely-connected layer. The dataset and model are taken from [45].

There are m = 143 clients participating in this experiment. The global learning rate is chosen as 1.0,
and the local learning rate is chosen as 0.8. The batch size is set to 10, and the communication round
is T = 150.

B.2.2 Experimental results

We show the results when local step is set to be one (Single SGD), and multiple local epochs {1, 2,5}.
In Fig. @ we observe that the o-value is smaller than 2, and it increases when the number of local
epoch increases. This implies that the gradient noise is fat-tailed. Fig.[T2]shows that the distributions
of the norms of the pseudo-gradient noises are fat-tailed.

B.3 Accuracy of Alpha Estimation (Logistic Regression on MNIST Dataset)

Accurate a-value computation requires the full-gradient calculation, and we have to compute both
full-gradient and stochastic gradient in each local step. This is computationally expensive. Instead,
we use an estimation to approximate the exact a-value. The full-gradient is replaced by the mean
value of the stochastic gradients. We verify the accuracy of this estimation method by running logistic
regression on MNIST dataset [46]. The details and the results are described as follows.

B.3.1 Experiment details

MNIST dataset contains ten classes of images, and it is manually partitioned using the same method
as to partition CIFAR-10 dataset (see details in Appendix [B.T.T). The number of classes (p) that each
client has can be used to represent the non-iid level.
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Figure 12: Distributions of the norms of the pseudo-gradient noises for Shakespeare dataset.

m = 100 clients participate in the experiment. The communication round is 7' = 150. The global
learning rate is set to 1.0, and the local learning rate is set to 0.1. The batch size is chosen to be 64.

B.3.2 Experimental results

Table |3 shows the error rate of c-value estimation in different cases, and this implies that the
estimation of a-value is within an acceptable margin of error.

C Experiments in Section 5]

In this section, we describe the details of the numerical experiments from Section [5|and provide some
extra experimental results.

C.1 Experiment details
C.1.1 Strongly Convex Model with Synthetic Data

In these experiments, we consider a strongly convex model for Problem (TJ) as follows:
fi(x) = E¢ [fi (2,8)]
12

where x € R3*! and ¢ is a random vector. The optimal solution is f (z*) = 0 with z* = [0;0; 0].

Table 3: Error rate (%) of a-value estimation.
NonlID Index (p)
| 2 5 10
Single SGD -2.82 -1.09 -0.12 3.12
Local Epoch=1 1.19 0.37 1.4 208
Local Epoch=2 1.8 1.4 143 174
Local Epoch=5 1.86 0.23 056 0.25
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Figure 13: Percentage of successful training over 5 trials when applying FedAvg, FAT-Clipping-
PR and FAT-Clipping-PI to CIFAR-10 dataset in non-i.i.d. cases.

To compare the performance of FedAvg, FAT-Clipping-PI and FAT-Clipping-PR , we consider the
noise £ to be a Cauchy distribution(a < 2, fat-tailed) with a location parameter of 0 and a scale
parameter of 2.1.

To compare the performance of FAT-Clipping-Pl and FAT-Clipping-PR under different scenarios,
we consider the noise ¢ having different tail-indexes (o = 0.5, 1.0, and 1.5) with the same location
parameters of 0 and the same scale parameters of 1.

For all the distributions of £ mentioned above, we use the same experimental setup. There are m = 5
clients participating in the training. We choose the starting point o = [2; 1; 1.5]. We set the global
learning rate 2t = 0.1 and the local learning rate 7, = 0.1. The local steps we use is K = 2,
and the communication round is 7" = 300. The clipping parameter in FAT-Clipping-P| we select is
A = 3, and the clipping parameter in FAT-Clipping-PR is A = 5.

C.1.2 CNN (Non-convex Model) on the CIFAR-10

To test the performance of FAT-Clipping-PI and FAT-Clipping-PR for non-convex function, we run
a convolutional neural network (CNN) on CIFAR-10 dataset. We compare FAT-Clipping-PIl and
FAT-Clipping-PR with FedAvg under different data heterogeneity.

In this experimental setting, we randomly select five clients from m = 10 clients to participate in each
round of the training. The local epoch we use is two. The clipping parameter in FAT-Clipping-Pl we
select is A = 50, and the clipping parameter in FAT-Clipping-PR is A = 2. All the remaining settings
are the same as described in Appendix [B.1.1}

C.2 Additional experimental Results

We provide two additional results when applying FedAvg, FAT-Clipping-Pl and FAT-Clipping-PR to
the CNN model on CIFAR-10 dataset. In Fig. we show the percentage of successful training over
5 trials in non-i.i.d. cases when the non-i.i.d. index p = 1 and p = 5. These results further support
our finding that FAT-Clipping methods and especially FAT-Clipping-Pl reduce catastrophic training
failures compared to FedAvg.
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