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A PYBULLET EXPERIMENT CONFIGURATIONS

Table 3 shows the configuration used for each of the experiments wiht the PyBullet environments
(Coumans & Bai, 2016). Then, specific details about the environments’ feature spaces are shown in
Table 4.

Table 3: Configuration used for the PyBullet experiments.

Parameter Value
Discount factor � 0.99

Maximum episode length 1,000
Algorithm PPO (Schulman et al., 2017)

Epochs 200
Steps per epoch 4,000

Clip ratio 0.2
Learning rate policy ⇡ 0.0003

Learning rate value function v 0.001
Training iterations ⇡ 80
Training iterations v 80

� 0.97
Target KL 0.1
Policy ⇡ MLP, 64 ⇥ 64

Value function v MLP, 64 ⇥ 64
Activation Tanh

Table 4: Feature space details for PyBullet environments.

Parameter Number of features
XYZ body position (all) 3
XYZ body velocity (all) 3

Roll (all) 1
Pitch (all) 1

Joint positions Hopper 3
Joint velocities Hopper 3
Contact points Hopper 1

Joint positions Ant 8
Joint velocities Ant 8
Contact points Ant 4

Joint positions Humanoid 17
Joint velocities Humanoid 17
Contact points Humanoid 2

B PADDLE ENVIRONMENT EXPERIMENT CONFIGURATIONS

Table 5 shows the environment configuration used for each of the experiments with the Paddle use
case. Then, specific details about the random policy sampling experiments’ configuration are shown
in Table 6.

C TRAFFIC SIGNAL CONTROL EXPERIMENT CONFIGURATIONS

Table 7 shows the configuration used for each of the experiments with the RESCO benchmark (Ault
& Sharon, 2021) for the Traffic Signal Control problem. Then, specific details about the experiments’
configuration are shown in Table 8.
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Table 5: Configuration used in the Paddle Environment.

Parameter Value
Discount factor � 0.95

Algorithm DQN
Batch size 32

Number of episodes 600
✏max 1.0
✏min 0.01

✏ decay 0.995
Policy 2-layer MLP

Hidden size 16
�x ball 3 (baseline), 9 (hard)
�y ball 3 (baseline), 9 (hard)

�x paddle 20 (baseline), 60 (hard)

Table 6: Paddle experiments configuration.

Parameter Value
Random policies 1,000

Rollouts per policy 150
Right tail filter Top 5%

Table 7: Configuration used for the Traffic Signal Control environments.

Parameter Value
Discount factor � 0.99

Algorithm DQN
Batch size 32

Number of episodes 100
Target network update frequency 500

Policy 2⇥2 conv. layer + MLP 64 ⇥ 64
Step length 10 seconds

Length yellow signal 3 seconds
Simulation length 1 hour

Table 8: Traffic Signal Control experiment configuration.

Parameter Value
Random policies 500

Rollouts per policy 7
Right tail filter Top 5%
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