
LobsDICE: Offline Learning from Observation via
Stationary Distribution Correction Estimation

Geon-Hyeong Kim1,3,∗,†, Jongmin Lee4,∗, Youngsoo Jang1,3,†,
Hongseok Yang1,2,5 Kee-Eung Kim1,2

1 School of Computing, KAIST
2 Kim Jaechul Graduate School of AI, KAIST

3 LG AI Research
4 University of California, Berkeley

5 Discrete Mathematics Group, Institute for Basic Science (IBS)

Abstract

We consider the problem of learning from observation (LfO), in which the agent
aims to mimic the expert’s behavior from the state-only demonstrations by experts.
We additionally assume that the agent cannot interact with the environment but
has access to the action-labeled transition data collected by some agents with
unknown qualities. This offline setting for LfO is appealing in many real-world
scenarios where the ground-truth expert actions are inaccessible and the arbitrary
environment interactions are costly or risky. In this paper, we present LobsDICE,
an offline LfO algorithm that learns to imitate the expert policy via optimization
in the space of stationary distributions. Our algorithm solves a single convex
minimization problem, which minimizes the divergence between the two state-
transition distributions induced by the expert and the agent policy. Through an
extensive set of offline LfO tasks, we show that LobsDICE outperforms strong
baseline methods.

1 Introduction

The ability to learn from experience is one of the core aspects of an intelligent agent. Reinforcement
learning (RL) [36] provides a framework to acquire such an intelligent behavior autonomously
through interactions with the environment while receiving reward feedback. However, the practical
applicability of RL to real-world domains has been limited for two reasons. First, designing a
suitable reward function for complex tasks can be extremely difficult. The RL agent learns behaviors
incentivized by the reward function rather than the ones intended, which can be nontrivial to specify
in terms of reward. Second, the need for online interaction with the environment during the RL
training loop has hindered its adoption in many real-world domains, where environment interactions
are costly or risky.

Imitation learning (IL) [1, 33, 34] circumvents the difficulty of reward design in RL by leveraging
demonstrations given by experts, where the goal is to mimic the expert’s behavior. However, the
standard IL requires the expert demonstrations to contain not only the state information (e.g. robot
joint angles) but also the precise action (e.g. robot joint torques) executed by the expert at each time
step. This demand for explicit action labels is in contrast to the way human imitates (e.g. learning
by watching videos) and precludes leveraging a massive amount of data in which the action label is
missing. Therefore, developing an imitation learning algorithm that can learn from observing the

∗Equal contribution.
†Work done while the authors were students at KAIST.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

experts’ state-only trajectories is a promising direction for creating a practical, autonomous intelligent
agent. Learning from observation (LfO) [2, 14, 26, 39, 45] concerns this particular learning scenario
and has been gaining interest in recent years.

In this paper, we are particularly interested in solving the LfO problem in an offline setting: Given the
state-only demonstrations by experts and abundant state-action demonstrations by imperfect agents
of arbitrary levels of optimality, we aim to find a policy that follows the sequence of expert’s states
without further interaction with the environment. This problem setting is appealing in many practical
situations where environment interactions are costly or risky. Yet, it cannot be straightforwardly
tackled by existing approaches. Most of the existing LfO methods are on-policy algorithms [25, 35,
39, 40], which is not directly applicable to the offline setting. One of the few exceptions is BCO [38],
which performs behavior cloning on the inferred action via an inverse dynamics model. This method
could be suboptimal unless the inverse dynamics disagreement is always zero, i.e. the underlying
environment dynamics is deterministic and injective. Another one is OPOLO [45], an off-policy LfO
algorithm, but it relies on nested min-max optimization as well as out-of-distribution (OOD) action
values, which can be unstable especially in the offline setting. IQ-Learn [8] solves an Inverse RL
and can be applied to the offline LfO by learning a state-only reward function. However, it suffers
from numerical instability due to using OOD action values in the offline setting. Lastly, RCE [5], an
example-based control algorithm, can in principle be applied to the offline LfO setting by providing
the expert trajectories as successful example states; however, its empirical performance is known to
be limited without online data collection.

We present an offline LfO algorithm that minimizes the divergence between state-transition dis-
tributions induced by the expert and the learned policy, without requiring an inverse dynamics
model. Our algorithm, offline Learning from OBServation via stationary DIstribution Correction
Estimation (LobsDICE), essentially optimizes in the space of state-action stationary distributions
and state-transition stationary distributions, rather than in the space of policies. We show that our
formulation can be reduced to a single convex minimization problem that can be solved efficiently in
practice, unlike existing imitation learning (from observation) algorithms that rely on nested min-max
optimization. In the experiments, we demonstrate that LobsDICE can successfully recover the state
visitations by the expert, outperforming strong baseline methods.

2 Preliminaries

2.1 Markov decision process

We consider an environment modeled as a Markov Decision Process (MDP), defined by M =
⟨S,A, T,R, p0, γ⟩ [36], where S is the set of states, A is the set of actions, T : S × A → ∆(S) is
the transition probability, R : S×A→ R is the reward function, p0 ∈ ∆(S) is the distribution of the
initial state, and γ ∈ (0, 1) is the discount factor. The policy π : S → ∆(A) is a mapping from states
to distribution over actions. For the given policy π, its state-action stationary distribution dπ(s, a)
and state-transition stationary d̄π(s, s′) are defined as:

dπ(s, a) := (1− γ)
∞∑
t=0

γt Pr(st = s, at = a), d̄π(s, s′) := (1− γ)
∞∑
t=0

γt Pr(st = s, st+1 = s′),

where s0 ∼ p0, at ∼ π(·|st), and st+1 ∼ T (·|st, at) for all timesteps t ≥ 0. For brevity, the bar
notation (̄·) will be used to denote the distributions for (s, s′), e.g. d̄π(s, s′).

We assume offline LfO setting, where direct, online interactions with the environment are not allowed,
and the policy should be optimized solely from a pre-collected dataset. We denote the dataset
of state-only demonstrations collected by experts as DE = {(s, s′)i}NE

i=1 and the dataset of state-
action demonstrations by some imperfect agents as DI = {(s, a, s′)i}NI

i=1. That is, we do not have
information about the actions taken by the expert, but instead, we have additional action-labeled
transition data collected by some other agents with unknown levels of optimality. We denote the
corresponding distributions of the datasets DE and DI by d̄E and dI , respectively. For brevity, we
will abuse notation dI to represent (s, a) ∼ dI , (s, a, s′) ∼ dI , and (s, s′) ∼ d̄I unless ambiguous.

2

2.2 Imitation learning and learning from observation

Imitation learning (IL) aims to mimic the expert policy from its state-action demonstrations. IL can
be naturally formulated as a distribution matching problem that minimizes the divergence between
state-action stationary distributions induced by the expert and the target policy [11, 13]. For example,
one can consider minimizing KL-divergence [17]:

min
π
DKL(d

π(s, a)∥dE(s, a)) = E(s,a)∼dπ
[
log dπ(s,a)

dE(s,a)

]
. (1)

However, the standard IL requires action labels in the expert demonstrations, which may be a too
strong requirement for various practical situations. Learning from observation (LfO) relaxes the
requirement on action labels, and aims to imitate the expert’s behavior only from the state observations.
Since the expert’s action information is missing in the demonstrations, the distribution matching for
state-action stationary distribution is no longer readily applicable. Therefore, LfO is reformulated
as another distribution matching problem that minimizes the divergence between state-transition
stationary distributions induced by the expert and the target policy [39, 40, 45]1:

min
π
DKL(d̄

π(s, s′)∥d̄E(s, s′)) = E(s,s′)∼d̄π
[
log d̄π(s,s′)

d̄E(s,s′)

]
. (2)

Still, optimizing Eq. (2) in a purely offline manner is challenging since naively estimating the
expectation would require the knowledge of T (·|s, a) for the OOD action a ∼ π(s) by the target
policy, which is inaccessible in the offline LfO setting; see Section 9.8 in [45] for more discussions.
OPOLO [45], an off-policy LfO algorithm, mitigates this challenge by minimizing the following
upper bound of the divergence DKL(d̄

π(s, s′)∥d̄E(s, s′)):

(2) ≤ Ed̄π(s,s′)
[
log d̄I(s,s′)

d̄E(s,s′)

]
+DKL(d

π(s, a)∥dI(s, a)) (3)

and applying DualDICE trick [29] to the RHS of (3). The upper bound gap is given by the inverse
dynamics disagreement between the target policy and the imperfect demonstrator:

(3)− (2) = DKL(d
π(a|s, s′)∥dI(a|s, s′)), (4)

which usually gets larger as the stochasticity of the environment transition increases.

3 LobsDICE

We present offline Learning from OBServation via stationary DIstribution Correction Estimation
(LobsDICE), a principled offline LfO algorithm that further extends the recent progress made by the
DIstribution Correction Estimation (DICE) methods for offline RL. LobsDICE essentially optimizes
the stationary distributions of the target policy to match the expert’s state visitations.

In the context of offline RL, the policy constraint principle (i.e. prevent deviating too much from the
data support) is one of the common approaches to avoid severe performance degradation [7, 12, 18,
22, 30]. In the same manner, we use KL divergence minimization between d̄π(s, s′) and d̄E(s, s′)
with additional KL regularization on the deviation from dI :

min
π
DKL(d̄

π(s, s′)∥d̄E(s, s′)) + αDKL(d
π(s, a)∥dI(s, a)). (5)

Here the hyperparameter α > 0 balances between encouraging state-transition matching and prevent-
ing distribution shift from the distribution of imperfect demonstrations. All the proofs can be found
in Appendix F.

3.1 Lagrange dual formulation

The derivation of our algorithm starts by rewriting the (regularized) distribution matching problem (5)
in terms of directly optimizing stationary distribution, rather than policy:

max
d,d̄≥0

−DKL(d̄(s, s
′)∥d̄E(s, s′))− αDKL(d(s, a)∥dI(s, a)) (6)

s.t.
∑
a′
d(s′, a′) = (1− γ)p0(s′) + γ

∑
s,a
d(s, a)T (s′|s, a) ∀s′, (7)∑

a
d(s, a)T (s′|s, a) = d̄(s, s′) ∀s, s′, (8)

1See Appendix A for a discussion of why d̄π(s, s′)-matching is preferable to d̄π(s)-matching.

3

The Bellman flow constraint (7) ensures d(s, a) to be a valid state-action stationary distribution of
some policy, where d(s, a) can be interpreted as a normalized occupancy measure of (s, a). The
marginalization constraint (8) enforces d̄(s, s′) to be the state-transition stationary distribution that
is directly induced by d(s, a). In essence, the constrained optimization problem (6-8) seeks the
stationary distributions of an optimal policy, which best matches the state-transition trajectories of
the expert. Once we have computed the optimal solution (d∗, d̄∗), its corresponding optimal policy
can also be obtained by normalizing d∗ for each state [32]: π∗(a|s) = d∗(s,a)∑

a d
∗(s,a) .

Note that DemoDICE [15] considers a similar optimization problem to ours, but it deals with the
offline IL (i.e. state-action stationary distribution matching), whereas we consider the offline LfO
(e.g state-transition stationary distribution matching). Accordingly, the optimization variable d̄(s, s′)
and the marginalization constraint (8) are newly added in our formulation.

We then consider the Lagrangian for the constrained optimization (6-8):

min
µ,ν

max
d,d̄≥0

− Ed̄
[
log d̄(s,s′)

d̄E(s,s′)

]
− αEd

[
log d(s,a)

dI(s,a)

]
+

∑
s,s′

µ(s, s′)
(
d̄(s, s′)−

∑
a
d(s, a)T (s′|s, a)

)
+
∑
s′
ν(s′)

(
(1− γ)p0(s′) + γ

∑
s,a
d(s, a)T (s′|s, a)−

∑
a′
d(s′, a′)

)
, (9)

where ν(s) ∈ R are the Lagrange multipliers for the Bellman flow constraints (7), and µ(s, s′) ∈ R
are the the Lagrange multipliers for the marginalization constraint (8). Note that the Lagrangian
(9) cannot be naively optimized in an offline manner since it requires evaluation of T (s′|s, a) for
(s, a) ∼ d, which is not accessible in the offline LfO setting. Therefore, we rearrange the terms in (9)
to eliminate the direct dependence on d and d̄, introducing new optimization variables w and w̄ that
denote stationary distribution correction ratios for (s, a) and (s, s′), respectively:

(9) =min
µ,ν

max
d,d̄≥0

(1− γ)Es0∼p0 [ν(s0)] + E(s,s′)∼d̄

[
µ(s, s′)

=− log
d̄(s,s′)

dE(s,s′)︷ ︸︸ ︷
− log d̄(s,s′)

d̄I(s,s′)︸ ︷︷ ︸
=:w̄(s,s′)

+ log d̄E(s,s′)

d̄I(s,s′)︸ ︷︷ ︸
=:r(s,s′)

]

+ E(s,a)∼d

[
Es′ [−µ(s, s′) + γν(s′)]− ν(s)︸ ︷︷ ︸

=:eµ,ν(s,a)

−α log d(s,a)
dI(s,a)︸ ︷︷ ︸
=:w(s,a)

]
(10)

=min
µ,ν

max
w,w̄≥0

(1− γ)Es0∼p0 [ν(s0)] + E(s,s′)∼d̄I
[
w̄(s, s′)

(
r(s, s′) + µ(s, s′)− log w̄(s, s′)

)]
+ E(s,a)∼dI

[
w(s, a)

(
eµ,ν(s, a)− α logw(s, a)

)]
=: L(w, w̄, µ, ν). (11)

Similar to the assumption of full coverage which is fairly standard across a broad set of recent offline
RL approaches [19, 22, 27], we make a milder assumption that d̄I(s, s′) > 0 whenever d̄E(s, s′) > 0.
This assumption is necessary to recover the expert’s behavior successfully. We introduce the log ratio
r(s, s′) = log d̄E(s,s′)

d̄I(s,s′)
in (10) to take an expectation under d̄I (instead of d̄E), which is assumed to

have a broader support than d̄E . This log ratio r(s, s′) can be easily estimated using a pretrained
discriminator for two datasets DE and DI , which will be explained in detail in the following section.

In summary, LobsDICE aims to solve the minimax optimization,
min
µ,ν

max
w,w̄≥0

L(w, w̄, µ, ν). (12)

The optimal solution (w∗, w̄∗) of (12) represents stationary distribution corrections of an optimal

policy π∗: w∗(s, a) = dπ
∗
(s,a)

dI(s,a)
and w̄∗(s, s′) = d̄π

∗
(s,s′)

d̄I(s,s′)
.

3.2 Log ratio estimation via a pretrained discriminator

To optimize (11), an estimate of the log ratio r(s, s′) = log d̄E(s,s′)

d̄I(s,s′)
is required. The log ratio

estimation is straightforward for tabular MDPs since we can use empirical distributions from the
datasets to estimate d̄E(s, s′) and d̄I(s, s′). For continuous MDPs, we train a discriminator c :
S × S → [0, 1] by solving the following maximization problem [9, 45]:

c∗ = argmax
c:S×S→[0,1]

E(s,s′)∼d̄E [log c(s, s
′)] + E(s,s′)∼d̄I [log(1− c(s, s′))]. (13)

4

It is easy to show that the optimal discriminator satisfies c∗(s, s′) = d̄E(s,s′)

d̄E(s,s′)+d̄I(s,s′)
. Thus, r(s, s′)

can be derived from the optimal discriminator c∗ as,

r(s, s′) = − log
(

1
c∗(s,s′) − 1

)
. (14)

3.3 Minimax to min: a closed-form solution

Exploiting the strict convexity of x log x, we can derive a closed-form solution to the inner maximiza-
tion for (w, w̄) in (11).
Proposition 3.1. For any (µ, ν), the closed-form solution to the inner maximization of (11), i.e.
(wµ,ν , w̄µ) = argmaxw,w̄≥0 L(w, w̄, µ, ν), is given by:

wµ,ν(s, a) = exp
(
1
αeµ,ν(s, a)− 1

)
and w̄µ(s, s

′) = exp(r(s, s′) + µ(s, s′)− 1). (15)

Based on the above result, we reduce the nested min-max optimization of (11) to a single minimization
by plugging the closed-form solution (wµ,ν , w̄µ) into L(w, w̄, µ, ν):

min
µ,ν
L(wµ,ν , w̄µ, µ, ν) = (1− γ)Es∼p0 [ν(s)] + E(s,s′)∼d̄I

[
exp

(
r(s, s′) + µ(s, s′)− 1

)]
+ αE(s,a)∼dI

[
exp

(
1
αeµ,ν(s, a)− 1

)]
. (16)

We can even show that L(wµ,ν , w̄µ, µ, ν) is a convex function of µ and ν.
Proposition 3.2. L(wµ,ν , w̄µ, µ, ν) is convex with respect to µ and ν.

In short, by operating in the space of stationary distributions, offline LfO can, in principle, be resolved
by solving a convex minimization problem. This is in contrast to the existing LfO algorithms, which
typically involve either an adversarial training that optimizes the policy and the discriminator [14, 39,
40] or a nested min-max optimization for the policy and the critic [45].

3.4 Policy extraction

So far, we have derived an algorithm that essentially solves the state-transition distribution matching
problem via convex minimization. However, we obtain (µ∗, ν∗) as the solution of (16), instead of the
optimal policy π∗. The remaining problem is to extract the optimal policy from (µ∗, ν∗). The first step

is to see that we can obtain the state-action stationary distribution correction wµ∗,ν∗(s, a) = dπ
∗
(s,a)

dI(s,a)

of the optimal policy from the closed-form solution (15). Among many possibilities to extract the
policy from the state-action distribution correction, we adopt weighted behavior cloning (WBC):

max
π

E(s,a)∼dπ∗ [log π(a|s)] = E(s,a)∼dI [wµ∗,ν∗(s, a) log π(a|s)] (17)

which aims to maximize the predicted probability of actions chosen by optimal policy π∗. This is
done by BC on the offline dataset DI where each sample (s, a) is weighted by wµ∗,ν∗(s, a). For
tabular MDPs, we can formally show that WBC extracts an optimal policy π∗ (Appendix C).

3.5 Practical algorithm with sample-based approximation

In practice, we estimateL(w, w̄, µ, ν) in (11) using samples from distribution dI . Let Êx∈D[f(x)] :=
1

|D|
∑
x∈D f(x) be a Monte-Carlo estimate of Ex∼p[f(x)] where D = {xi}|D|

i=1 ∼ p. We denote
each sample (s, a, s′) in DI as x for brevity.

min
µ,ν

max
w,w̄≥0

L̂(w, w̄, µ, ν) := (1− γ)Ês0∈D0
[ν(s0)] (18)

+ Êx∈DI

[
w̄(s, s′)

(
r(s, s′) + µ(s, s′)− log w̄(s, s′)

)
+ w(s, a)

(
êµ,ν(s, a, s

′)− α logw(s, a)
)]

where êµ,ν(s, a, s′) := −µ(s, s′) + γν(s′) − ν(s) is a single-sample estimate of eµ,ν(s, a). Note
that this sample-based objective function L̂(w, w̄, µ, ν) can be estimated only from samples in the
offline dataset DI and is an unbiased estimator of L(w, w̄, µ, ν) as long as every sample in DI was
collected by interacting with the underlying MDP. To the best of our knowledge, this is the first

5

result to directly solve the state-transition distribution matching problem in a fully offline manner. In
contrast, OPOLO [45] relies on the (potentially loose) upper bound of the objective in (3).

To reduce the minimax optimization to a single minimization, we apply the non-parametric closed-
form solution for each sample x = (s, a, s′) in DI :

ŵµ,ν(x) = exp
(

1
α êµ,ν(s, a, s

′)− 1
)

and ̂̄wµ(x) = exp(r(s, s′) + µ(s, s′)− 1). (19)

which is analogous to (15). Plugging this result into (18) yields a sample-based objective function for
minimization2:

min
µ,ν
L̂(µ, ν) = (1− γ)Ês0∈D0

[ν(s0)] + Êx∈DI

[
exp

(
r(s, s′) + µ(s, s′)− 1

)
(20)

+ α exp
(
1
α êµ,ν(s, a, s

′)− 1
)]
.

Still, the variable µ ∈ RS×S is much higher dimensional than ν ∈ RS . So, it works as the main
bottleneck for the overall optimization. Fortunately, we can further simplify (20) by eliminating its
dependence on µ via exploiting an additional closed-form solution.

Proposition 3.3. For any ν, the closed-form solution to the minimization (20) with respect to µ, i.e.
µν = argminµ L̂(µ, ν), is

µν(s, s
′) = 1

1+α

(
− αr(s, s′) + γν(s′)− ν(s)

)
. (21)

Using the above result in (20), we obtain the following minimization problem:

min
ν̂
L̂(ν̂) = (1− γ)Ês0∈D0

[ν̂(s0)] + (1 + α)Êx∈DI

[
exp

(
1

1+α Âν̂(s, a, s
′)− 1

)]
, (22)

where Âν(s, a, s′) := r(s, s′) + γν(s′) − ν(s). The remaining issue is that optimizing (22) is not
practical because exp(·) often causes numerical instability and gradient explosion. To address this,
we use a numerically-stable alternative of (22):

Proposition 3.4. Let L̃(ν̃) be the function:

L̃(ν̃) = (1− γ)Ês0∈D0 [ν̃(s0)] + (1 + α) log Êx∈DI

[
exp

(
1

1+α Âν̃(s, a, s
′)
)]
. (23)

Then, minν̂ L̂(ν̂) = minν̃ L̃(ν̃) holds. Also, L̃(ν̃) is convex with respect to ν̃.

In order see why minimizing L̃(ν̃) no longer suffers from numerical instability, note that the gradient
∇x logEx∼p[exp(h(x))] = Ex∼p[exp(h(x))

Ex̄∼p[exp(h(x̄))]
∇xh(x)] normalizes exp(·) by softmax and thus

tames large numerical values. Finally, we can show the following connection between ν̂∗ and ν̃∗:

Proposition 3.5. Let V̂ and Ṽ be the sets argminν̂ L̂(ν̂) and argminν̃ L̃(ν̃), respectively. Then,
Ṽ = {ν̂∗ + C | ν̂∗ ∈ V̂ , C ∈ R} holds.

Proposition 3.5 implies that an unnormalized stationary distribution corrections of an optimal policy
would be obtained from ν̃∗ ∈ Ṽ .

ŵµν̂∗ ,ν̂∗(x) = exp
(

1
α

(
− µν̂∗(s, s′) + γν̂∗(s′)− ν̂∗(s)

)
− 1

)
= exp

(
1

1+α Âν̂∗(s, a, s′)− 1
)

(by (21))

∝ exp
(

1
1+α Âν̃∗(s, a, s′)

)
=: w̃ν̃∗(x) (by Proposition 3.5)

2In contrast to the results in the previous sections where (16) and (11) are identical, L̂(µ, ν) in (20) is
an upper bound of maxw,w̄ L̂(w, w̄, µ, ν) in (18), due to applying per-sample closed-form solutions. While
unbiasedness has been sacrificed at the cost of eliminating the nested optimization, it enables much stable
optimization in practice. The upper bound gap vanishes when the transition dynamics are deterministic.

6

Policy extraction We must take caution when using w̃ν̃∗(x) since it is an unnormalized density
ratio, i.e. Ex∼dI [w̃ν̃∗(x)] ̸= 1. Therefore, to extract a policy, we perform weighted BC using
self-normalized importance sampling [31]:

max
π

∑
x∈DI w̃ν̃∗ (x) log π(a|s)∑

x∈DI w̃ν̃∗ (x) , (24)

which completes the derivation of the practical version of LobsDICE. To sum up, LobsDICE solves
ν̃∗ = argminν̃ L̃(ν̃) of (23) via gradient descent, and extracts a policy via self-normalized weighted
BC of (24). Pseudocode for LobsDICE can be found in Appendix G.2.

4 Related Work

Learning from observation (LfO) Recent approaches for LfO are mostly on-policy [25, 26, 35,
39, 40] algorithms and are not directly applicable to the offline LfO setting considered in this work.
MobILE [14] is a model-based LfO algorithm, but it encourages uncertainty for online exploration,
which is not suitable for the offline setting. BCO [38] uses an inverse dynamics model (IDM) to infer
the missing expert actions and performs BC on the generated expert’s state-action dataset. In addition
to common issues by vanilla BC, BCO is not guaranteed to recover the expert’s behavior in general.
OPOLO [45] is a principled off-policy LfO algorithm, but it solves a nested optimization and requires
evaluation on OOD action values during training, which suffers from numerical instability in the
offline setting. IQ-Learn [8] solves online and offline IL problems while avoiding adversarial training
by learning a single Q-function. However, it also suffers from numerical instability in the offline
setting by overestimating Q due to using OOD action values. RCE [5] aims to solve example-based
control tasks in which a collection of example success states is assumed to be provided instead of
entire expert trajectories. While RCE can be applied to LfO in principle, it tends to stay in a few
expert states that are easy to reach in the offline setting, as discussed in Section C.2 of [5].

Stationary DIstribution Correction Estimation (DICE) DICE-family algorithms perform station-
ary distribution estimation, and many of them have been proposed for off-policy evaluation [4, 29, 42–
44]. Other lines of works consider reinforcement learning [22, 23, 30], offline policy selection [41].
ValueDICE [17] and OPOLO [45] derive off-policy IL and LfO objectives using DICE. However, they
suffer from numerical instability in the offline setting due to the nested min-max optimization and
OOD action evaluation. DemoDICE [15] is an offline IL algorithm that directly optimizes stationary
distribution as ours and reduces to solving a convex minimization. Yet, it requires expert action
labels and is not directly applicable to LfO. Concurrent to our work, SMODICE [28] is an offline
LfO method, aiming to match stationary state distributions by minimizing an objective similar to
OPOLO [45] in (3). Thus it also relies on potentially loose upper bound of the divergence. In addition,
matching the state distributions may not be sufficient to recover the expert’s behavior, on which we
provide detailed discussion in Appendix A and Remark B.1.

5 Experiments

In this section, we evaluate LobsDICE on both tabular and continuous MDPs. We use four baseline
methods in tabular MDPs: BC on imperfect demonstrations, BCO [38], and OPOLO [45]. Addi-
tionally, we designed a strong baseline DemoDICEfO, which extends the state-of-the-art offline
IL algorithm, DemoDICE [15]. DemoDICEfO trains an inverse dynamics model, uses it to fill the
missing actions in the expert demonstrations, and then runs DemoDICE using the approximate expert
demonstrations and the imperfect demonstrations. For continuous control tasks, we use two additional
baselines: IQ-Learn [8] and RCE [5].

5.1 Random MDPs

We first evaluate LobsDICE and baseline algorithms on randomly generated finite MDPs using a
varying number of expert/imperfect trajectories and different degrees of stochasticity in the environ-
ment . We follow the experimental protocol in previous offline RL works [20–22] but with additional
control on the stochasticity of transition probabilities. We conduct repeated experiments for 1K runs.
For each run, (1) a random MDP is generated, (2) expert trajectories and imperfect trajectories are
collected, and (3) each offline LfO algorithm is tested on the collected offline dataset. We evaluate

7

10
0

10
1

10
2

10
3

10
410

-3
10

-2
10

-1
10

0

T
V

(d̄
π
‖d̄

π
E
)

NE = 10, β= 0.01

10
0

10
1

10
2

10
3

10
410

-3
10

-2
10

-1
10

0
NE = 100, β= 0.01

10
0

10
1

10
2

10
3

10
410

-3
10

-2
10

-1
10

0
NE = 1000, β= 0.01

10
0

10
1

10
2

10
3

10
410

-3
10

-2
10

-1
10

0
NE = 10000, β= 0.01

10
0

10
1

10
2

10
3

10
410

-3
10

-2
10

-1
10

0

T
V

(d̄
π
‖d̄

π
E
)

NE = 10, β= 0.1

10
0

10
1

10
2

10
3

10
410

-3
10

-2
10

-1
10

0
NE = 100, β= 0.1

10
0

10
1

10
2

10
3

10
410

-3
10

-2
10

-1
10

0
NE = 1000, β= 0.1

10
0

10
1

10
2

10
3

10
410

-3
10

-2
10

-1
10

0
NE = 10000, β= 0.1

10
0

10
1

10
2

10
3

10
4

of imperfect demonstrations

10
-3

10
-2

10
-1

10
0

T
V

(d̄
π
‖d̄

π
E
)

NE = 10, β= 1

10
0

10
1

10
2

10
3

10
4

of imperfect demonstrations

10
-3

10
-2

10
-1

10
0

NE = 100, β= 1

10
0

10
1

10
2

10
3

10
4

of imperfect demonstrations

10
-3

10
-2

10
-1

10
0

NE = 1000, β= 1

10
0

10
1

10
2

10
3

10
4

of imperfect demonstrations

10
-3

10
-2

10
-1

10
0

NE = 10000, β= 1

BC BCO DemoDICEfO OPOLO LobsDICE (ours)

Figure 1: Performance of tabular LobsDICE and baselines in randomly generated MDPs. The first
row indicates near-deterministic dynamics and the last row indicates highly stochastic dynamics.
As the level of stochasticity increases, baselines fall into suboptimal, even the number of state-only
expert demonstrations and imperfect demonstrations increases, while LobsDICE goes to optimal. For
each algorithm, we measure the performance using total variation between state-transition stationary
distributions of expert and learned policy. We plot the mean and standard error of total variations
TV(d̄π(s, s′), d̄πE (s, s′)) over 1000 random seeds.

the performance of each algorithm by measuring the total variation distance between state-transition
stationary distributions by the expert policy and the learned policy, i.e. DTV(d̄

π(s, s′)∥d̄πE (s, s′)).
For the tabular MDP experiments, we adopt tabular methods but not function approximation. Our
tabular LobsDICE optimizes (16) on the empirical MDP model constructed from the action-labeled
dataset DI while extracting the policy through (17). The pseudocode for tabular LobsDICE can be
found in Appendix G.1. The detailed experimental setup such as random MDP generation and offline
dataset generation can be found in Appendix I.1.

Results Figure 1 presents the results in random MDP experiments, where β is the hyperparameter
that controls the stochasticity of the underlying MDP. The first row corresponds to the case when
β = 0.01 (nearly deterministic MDP). In this situation, the inverse dynamics disagreement will be
close to zero, i.e. DKL(d

π1(a|s, s′)||dπ2(a|s, s′)) ≈ 0 for any two policies π1 and π2. Thus, the
algorithms whose performance directly relies on the IDM’s accuracy (i.e. BCO and DemoDICEfO)
even perform very well since it is very easy to learn a perfect inverse dynamics model in this
scenario. OPOLO’s upper bound gap (4) will also be close to zero, thus OPOLO directly minimizes
the divergence of state-transition distributions. As a result, there is no performance gap among
different algorithms, except for BC whose performance is determined by the quality of imperfect
demonstrations. Also, the performance of all algorithms (except for BC) improves as more data is
given, which is natural.

The second row and the third row in Figure 1 presents the result when β = 0.1 (weakly stochastic
MDP) and β = 1.0 (highly stochastic MDP) respectively. In the stochastic MDPs, the IDM trained
by the imperfect demonstrations faces a challenge in predicting the expert’s actions accurately (more
challenging as β gets larger). As a consequence, BCO gets suboptimal and its suboptimality cannot
be improved even if more data is given. DemoDICEfO performs better than BCO since it additionally
considers the distributional shift by considering state distribution matching. However, it is still
suboptimal due to its nature that directly depends on the quality of inferred action by the learned
IDM. OPOLO does not rely on the learned IDM and outperforms both BCO and DemoDICEfO.
Still, OPOLO can be inherently suboptimal due to its nature of optimizing the upper bound unless
the underlying transition dynamics are deterministic and injective. This upper bound gap (4) is not
controllable by the algorithm and implies that OPOLO can be suboptimal even given an infinite

8

0.0M 0.2M 0.4M 0.6M 0.8M 1M

0
20
40
60
80

100
120

No
rm

al
ize

d
Re

tu
rn

s

Hopper (100,100,100)

0.0M 0.2M 0.4M 0.6M 0.8M 1M

0
20
40
60
80

100
120 Walker2d (100,100,100)

0.0M 0.2M 0.4M 0.6M 0.8M 1M

0
20
40
60
80

100
120 Ant (100,100,100)

0.0M 0.2M 0.4M 0.6M 0.8M 1M

0
20
40
60
80

100
120 HalfCheetah (400,100,100)

0.0M 0.2M 0.4M 0.6M 0.8M 1M

0
20
40
60
80

100
120

No
rm

al
ize

d
Re

tu
rn

s

Hopper (100,500,500)

0.0M 0.2M 0.4M 0.6M 0.8M 1M

0
20
40
60
80

100
120 Walker2d (100,500,500)

0.0M 0.2M 0.4M 0.6M 0.8M 1M

0
20
40
60
80

100
120 Ant (100,500,500)

0.0M 0.2M 0.4M 0.6M 0.8M 1M

0
20
40
60
80

100
120 HalfCheetah (400,500,500)

0.0M 0.2M 0.4M 0.6M 0.8M 1M
Training Iterations

0
20
40
60
80

100
120

No
rm

al
ize

d
Re

tu
rn

s

Hopper (100,1000,1000)

0.0M 0.2M 0.4M 0.6M 0.8M 1M
Training Iterations

0
20
40
60
80

100
120 Walker2d (100,1000,1000)

0.0M 0.2M 0.4M 0.6M 0.8M 1M
Training Iterations

0
20
40
60
80

100
120 Ant (100,1000,1000)

0.0M 0.2M 0.4M 0.6M 0.8M 1M
Training Iterations

0
20
40
60
80

100
120 HalfCheetah (400,1000,1000)

Expert BC BCO RCE IQ-Learn DemoDICEfO OPOLO LobsDICE (ours)

Figure 2: Performance of LobsDICE and baseline algorithms on various MuJoCo control tasks.
We build state-only expert demonstrations using 5 trajectories from expert-v2. For each task
(X,Y, Z) we construct imperfect demonstrations using X , Y , and Z trajectories from expert-v2,
medium-v2, and random-v2, respectively. We plot the mean and the standard errors (shaded area)
of the normalized scores over five random seeds.

amount of data with sufficient dataset coverage, which can be seen in the rightmost figures. Finally,
our tabular LobsDICE using (16) essentially solves the exact state-transition distribution matching
problem (as α→ 0). LobsDICE is the only offline LfO algorithm that can asymptotically recovers
the expert’s state demonstrations even though the underlying MDP is stochastic.

5.2 Continuous control tasks (Gym-MuJoCo)

We present the empirical performance of LobsDICE and baselines on MuJoCo [37] continuous
control tasks using the OpenAI Gym [3] framework. We utilize the D4RL dataset [6] for offline
LfO tasks in four MuJoCo environments: Hopper, Walker2d, HalfCheetah, and Ant. Implementation
details for LobsDICE and baseline algorithms such as hyperparameters and evaluation metric are
provided in Appendix I.2.

Task setup For each MuJoCo environments, we employ expert-v2, medium-v2, and random-v2
from D4RL datasets [6]. Across all environments, we consider three tasks, each of which uses different
imperfect demonstrations while sharing the same expert observations. First, we construct the state-
only expert demonstration DE = {(s, s′)i}NE

i=1 using the first 5 trajectories in expert-v2. Then, we
use trajectories in expert-v2, medium-v2, and random-v2 to construct imperfect demonstrations
with different ratios. We denote the composition of imperfect demonstrations as (X,Y, Z) in the title
of each subplot in Figure 2, which means that the imperfect dataset consists of X trajectories from
expert-v2, Y trajectories from medium-v2, and Z trajectories from random-v2.

Results Figure 2 summarizes that the empirical results of LobsDICE and baselines on continuous
control tasks. We first remark that LobsDICE (blue) significantly outperforms OPOLO (green) in all
tasks across all domains, although both LobsDICE and OPOLO are DICE-based algorithms. The
failure of OPOLO comes from its numerical instability due to its dependence on nested optimization
and using OOD action values during training. In contrast, LobsDICE solves a single minimization (23)
while it does not involve any evaluation on OOD actions, thus it is optimized stably. IQ-Learn (purple)
also suffers from numerical instability due to the usage of OOD action values during training, showing
poor performance similar to OPOLO. RCE (brown) tends to stay in a few states that are easy to reach

9

in the offline setting, rather than following the entire expert trajectories. Naive BC on imperfect
demonstrations (black) is inherently suboptimal since it does not consider distribution-matching
with the expert’s observation at all. While BCO (orange) exploits the expert’s demonstrations with
the inferred actions by the IDM, its policy learning is done only on the very scarce expert dataset
(i.e. 5 trajectories), which makes the algorithm perform not well. DemoDICEfO (red) exploits both
expert demonstrations (where the missing actions are filled with the IDM) and the abundant imperfect
demonstrations, but its performance is affected by the quality of the learned IDM. We empirically
observe that the IDM error (on the true expert data) increases as the proportion of the non-expert
data (i.e. medium-v2 and random-v2) increases, resulting in performance degradation of both
BCO and DemoDICEfO. Finally, LobsDICE is the only algorithm that was able to fully recover the
expert’s performance regardless of the increase of non-expert data in the imperfect demonstrations,
significantly outperforming baseline algorithms. This result highlights the effectiveness of our
method that solves a state-transition stationary matching problem in a principled manner. We provide
additional experiments in Appendix H.

6 Conclusion

We presented LobsDICE, an algorithm for offline learning from observations (LfO), which success-
fully achieves state-of-the-art performance on various tabular and continuous tasks. We formulated
the offline LfO as a state-transition stationary distribution matching problem, where the stationary
distribution is optimized via convex minimization. Experimental results demonstrated that LobsDICE
achieves promising performance in both tabular and continuous offline LfO tasks.

Acknowledgments and Disclosure of Funding

This work was supported by National Research Foundation (NRF) of Korea (NRF-
2019R1A2C1087634), Field-oriented Technology Development Project for Customs Administration
through National Research Foundation (NRF) of Korea funded by the Ministry of Science & ICT
and Korea Customs Service (NRF-2021M3I1A1097938), Institute of Information & communica-
tions Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT)
(No.2020-0-00940, Foundations of Safe Reinforcement Learning and Its Applications to Natural
Language Processing; No.2022-0-00311, Development of Goal-Oriented Reinforcement Learning
Techniques for Contact-Rich Robotic Manipulation of Everyday Objects; No.2019-0-00075, Artificial
Intelligence Graduate School Program (KAIST); No.2021-0-02068, Artificial Intelligence Innova-
tion Hub), and Electronics and Telecommunications Research Institute (ETRI) grant funded by the
Korean government (22ZS1100, Core Technology Research for Self-Improving Integrated Artificial
Intelligence System). Hongseok Yang was supported by the Engineering Research Center Program
through the National Research Foundation of Korea (NRF) funded by the Korean Government MSIT
(NRF-2018R1A5A1059921) and also by the Institute for Basic Science (IBS-R029-C1). Kee-Eung
Kim was supported by KAIST-NAVER Hypercreative AI Center.

References
[1] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from

demonstration. Robotics and Autonomous Systems, 57(5):469–483, 2009.

[2] D. C. Bentivegna, C. G. Atkeson, and G. Cheng. Learning tasks from observation and practice.
Robotics and Autonomous Systems, 47(2):163–169, 2004. Robot Learning from Demonstration.

[3] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[4] B. Dai, O. Nachum, Y. Chow, L. Li, C. Szepesvari, and D. Schuurmans. CoinDICE: Off-
policy confidence interval estimation. In Advances in Neural Information Processing Systems
(NeurIPS), volume 33, pages 9398–9411, 2020.

[5] B. Eysenbach, S. Levine, and R. R. Salakhutdinov. Replacing rewards with examples: Example-
based policy search via recursive classification. Advances in Neural Information Processing
Systems (NeurIPS), 34, 2021.

10

[6] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4RL: Datasets for deep data-driven
reinforcement learning, 2020.

[7] S. Fujimoto, D. Meger, and D. Precup. Off-policy deep reinforcement learning without explo-
ration. In International Conference on Machine Learning (ICML), pages 2052–2062. PMLR,
2019.

[8] D. Garg, S. Chakraborty, C. Cundy, J. Song, and S. Ermon. Iq-learn: Inverse soft-q learning for
imitation. Advances in Neural Information Processing Systems (NeurIPS), 34, 2021.

[9] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C. Courville,
and Y. Bengio. Generative adversarial nets. In Advances in Neural Information Processing
Systems (NeurIPS), 2014.

[10] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville. Improved training of
Wasserstein GANs. arXiv preprint arXiv:1704.00028, 2017.

[11] J. Ho and S. Ermon. Generative adversarial imitation learning. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2016.

[12] Y. Jin, Z. Yang, and Z. Wang. Is pessimism provably efficient for offline rl? In Proceedings
of the 38th International Conference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 5084–5096, 18–24 Jul 2021.

[13] L. Ke, S. Choudhury, M. Barnes, W. Sun, G. Lee, and S. Srinivasa. Imitation learning as
f-divergence minimization. In International Workshop on the Algorithmic Foundations of
Robotics, pages 313–329. Springer, 2020.

[14] R. Kidambi, J. D. Chang, and W. Sun. MobILE: Model-based imitation learning from observa-
tion alone. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in
Neural Information Processing Systems, 2021. URL https://openreview.net/forum?id=
_Rtm4rYnIIL.

[15] G.-H. Kim, S. Seo, J. Lee, W. Jeon, H. Hwang, H. Yang, and K.-E. Kim. DemoDICE: Offline
imitation learning with supplementary imperfect demonstrations. In International Conference
on Learning Representations (ICLR), 2022.

[16] I. Kostrikov, K. K. Agrawal, D. Dwibedi, S. Levine, and J. Tompson. Discriminator-actor-
critic: Addressing sample inefficiency and reward bias in adversarial imitation learning. In
International Conference on Learning Representations (ICLR), 2019.

[17] I. Kostrikov, O. Nachum, and J. Tompson. Imitation learning via off-policy distribution matching.
In International Conference on Learning Representations (ICLR), 2020.

[18] A. Kumar, J. Fu, M. Soh, G. Tucker, and S. Levine. Stabilizing off-policy Q-learning via
bootstrapping error reduction. In Advances in Neural Information Processing Systems (NeurIPS),
2019.

[19] A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative Q-learning for offline reinforcement
learning. In Advances in Neural Information Processing Systems (NeurIPS), 2020.

[20] R. Laroche, P. Trichelair, and R. T. Des Combes. Safe policy improvement with baseline
bootstrapping. In International Conference on Machine Learning (ICML), pages 3652–3661.
PMLR, 2019.

[21] B. Lee, J. Lee, P. Vrancx, D. Kim, and K.-E. Kim. Batch reinforcement learning with hyperpa-
rameter gradients. In International Conference on Machine Learning (ICML), pages 5725–5735.
PMLR, 2020.

[22] J. Lee, W. Jeon, B.-J. Lee, J. Pineau, and K.-E. Kim. OptiDICE: Offline policy optimization via
stationary distribution correction estimation. In International Conference on Machine Learning
(ICML), 2021.

11

https://openreview.net/forum?id=_Rtm4rYnIIL
https://openreview.net/forum?id=_Rtm4rYnIIL

[23] J. Lee, C. Paduraru, D. J. Mankowitz, N. Heess, D. Precup, K.-E. Kim, and A. Guez. COptiDICE:
Offline constrained reinforcement learning via stationary distribution correction estimation. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=FLA55mBee6Q.

[24] Z. Li, T. Xu, Y. Yu, and Z.-Q. Luo. Rethinking valuedice: Does it really improve performance?
arXiv preprint arXiv:2202.02468, 2022.

[25] F. Liu, Z. Ling, T. Mu, and H. Su. State alignment-based imitation learning. In International
Conference on Learning Representations (ICLR), 2019.

[26] Y. Liu, A. Gupta, P. Abbeel, and S. Levine. Imitation from observation: Learning to imitate
behaviors from raw video via context translation. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 1118–1125. IEEE, 2018.

[27] Y. Ma, D. Jayaraman, and O. Bastani. Conservative offline distributional reinforcement learning.
Advances in Neural Information Processing Systems, 34, 2021.

[28] Y. J. Ma, A. Shen, D. Jayaraman, and O. Bastani. Smodice: Versatile offline imitation learning
via state occupancy matching. arXiv preprint arXiv:2202.02433, 2022.

[29] O. Nachum, Y. Chow, B. Dai, and L. Li. DualDICE: Behavior-agnostic estimation of discounted
stationary distribution corrections. In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

[30] O. Nachum, B. Dai, I. Kostrikov, Y. Chow, L. Li, and D. Schuurmans. AlgaeDICE: Policy
gradient from arbitrary experience. arXiv preprint arXiv:1912.02074, 2019.

[31] A. B. Owen. Monte Carlo theory, methods and examples. 2013.

[32] M. L. Puterman. Markov decision processes: Discrete stochastic dynamic programming, 1994.

[33] S. Ross, G. Gordon, and J. A. Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the International Conference on
Artificial Intelligence and Statistics (AISTATS), pages 627–635, 2011.

[34] S. Schaal et al. Learning from demonstration. Advances in neural information processing
systems (NeurIPS), pages 1040–1046, 1997.

[35] W. Sun, A. Vemula, B. Boots, and D. Bagnell. Provably efficient imitation learning from
observation alone. In International conference on machine learning, pages 6036–6045. PMLR,
2019.

[36] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT Press, 1998.

[37] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033. IEEE,
2012.

[38] F. Torabi, G. Warnell, and P. Stone. Behavioral cloning from observation. In International Joint
Conference on Artificial Intelligence (IJCAI), 2018.

[39] F. Torabi, G. Warnell, and P. Stone. Generative adversarial imitation from observation. ICML
Workshop on Imitation, Intent, and Interaction (I3), 2019.

[40] C. Yang, X. Ma, W. Huang, F. Sun, H. Liu, J. Huang, and C. Gan. Imitation learning from
observations by minimizing inverse dynamics disagreement. In Advances in Neural Information
Processing Systems (NeurIPS), 2019.

[41] M. Yang, B. Dai, O. Nachum, G. Tucker, and D. Schuurmans. Offline policy selection under
uncertainty, 2020.

[42] M. Yang, O. Nachum, B. Dai, L. Li, and D. Schuurmans. Off-policy evaluation via the
regularized lagrangian. In Advances in Neural Information Processing Systems (NeurIPS),
2020.

12

https://openreview.net/forum?id=FLA55mBee6Q
https://openreview.net/forum?id=FLA55mBee6Q

[43] R. Zhang, B. Dai, L. Li, and D. Schuurmans. GenDICE: Generalized offline estimation of sta-
tionary values. In Proceedings of the 8th International Conference on Learning Representations
(ICLR), 2020.

[44] S. Zhang, B. Liu, and S. Whiteson. GradientDICE: Rethinking generalized offline estimation of
stationary values. In Proceedings of the 35th International Conference on Machine Learning
(ICML), 2020.

[45] Z. Zhu, K. Lin, B. Dai, and J. Zhou. Off-policy imitation learning from observations. In
Advances in Neural Information Processing Systems (NeurIPS), 2020.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] See abstract and introduction (Section 1)

(b) Did you describe the limitations of your work? [Yes] Due to space limit, we discuss it
in the supplementary material (Section L)

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Due to
space limit, we discuss it in the supplementary material (Section N).

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] In appropriate

places.
(b) Did you include complete proofs of all theoretical results? [Yes] Due to space limit,

we provide proofs in the supplementary material. See Section F
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] We submit the
code as supplementary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We specify them in the supplementary material. See Section I

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We report them in each figure. See Figure 1 and 2.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] We specify them in the
supplementary material. See Section K

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cite Random

MDP protocols and D4RL dataset. See Section 5.
(b) Did you mention the license of the assets? [Yes] D4RL dataset is licensed under the

Apache 2.0. See Section M.
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] All the datasets we used are public.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] None of datasets contain identifiable contents.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] Not applicable.
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A] Not applicable.
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A] Not applicable.

13

A Why State-transition Occupancy Matching Instead of State Occupancy
Matching?

πE

π1

π2

Figure 3: An example MDP with |S| = 12, |A| = 2 and p0(s) = Unif(s). In this example MDP,
{π1, π2} ⊆ argminπDKL(d

π(s)||dπE (s)), while {π2} = argminπDKL(d
π(s, s′)||dπE (s, s′)).

For learning from observation, we adopt the objective function for d(s, s′)-matching (i.e.,
minπDKL(d

π(s, s′)||dE(s, s′))) instead of d(s)-matching (i.e. minπDKL(d
π(s)||dE(s))) since

d(s)-matching may ignore the directionality of the expert trajectories. To see this, consider an
MDP with |S| states and 2 actions, where states are denoted as circles in Figure 3. Each action
moves the agent from the current state to the neighboring state deterministically either clockwise
or counterclockwise. Initial state distribution p0 is defined as uniform distribution over the entire
states. Finally, let an expert πE be a policy that moves in a counterclockwise direction, and we want
to mimic this expert’s behavior. In this example, the desired imitation policy should be π2 in Figure 3.
However, if we perform d(s)-matching, even π1 can be obtained as a resulting policy, which is the
complete opposite of what we wanted to obtain. This is due to the fact that π1 and π2 share the
same state stationary distribution of a uniform distribution: dπ(s) = 1

|S| ∀s. Thus, both π1 and π2
must be an optimal solution of minπDKL(d

π(s)||dE(s)). In contrast, the d(s, s′)-matching has a
unique solution of π2, exploiting the directionality information (i.e. moving counterclockwise) of the
expert’s trajectories.

B LobsDICE for State Occupancy Matching

While we have provided a counter-example where d(s)-matching can fail to recover the expert’s
behavior in Appendix A, we still can derive an offline LfO algorithm for d(s)-matching. For the
given policy π, its state stationary distribution is defined as:

d̄π(s) := (1− γ)
∞∑
t=0

γt Pr(st = s).

Then, similar to the state-transition occupancy matching objective (5), we formulate a state occupancy
matching problem as follows:

min
π
DKL(d̄

π(s)∥dE(s)) + αDKL(d
π(s, a)∥dI(s, a)). (25)

where the hyperparameter α > 0 balances between encouraging state matching and preventing
distribution shift from the distribution of imperfect demonstrations. This objective can be reformulated
in terms of optimizing stationary distribution:

max
d,d̄≥0

−DKL(d̄(s)∥dE(s))− αDKL(d(s, a)∥dI(s, a)) (26)

s.t.
∑
a′
d(s′, a′) = (1− γ)p0(s′) + γ

∑
s,a
d(s, a)T (s′|s, a) ∀s′, (27)∑

a
d(s, a) = d̄(s) ∀s, (28)

14

Then, we consider the Lagrangian for the constrained optimization (26-28):

min
µ,ν

max
d,d̄≥0

−Ed̄
[
log d̄(s)

dE(s)

]
− Ed

[
log d(s,a)

dI(s,a)

]
+
∑
s
µ(s)

(
d̄(s)−

∑
a
d(s, a)

)
(29)

+
∑
s′
ν(s′)

(
(1− γ)p0(s′) + γ

∑
s,a
d(s, a)T (s′|s, a)−

∑
a′ d(s

′, a′)
)

where ν(s′) ∈ R are the Lagrange multipliers for the Bellman flow constraints (27), and µ(s) ∈ R are
the Lagrange multipliers for the marginalization constraints (28). To make the optimization tractable
in the offline setting, we rearrange the terms in (29), introducing new optimization variables w and w̄
that denote stationary distribution correction ratios for (s, a) and s respectively.

(29) =min
µ,ν

max
d,d̄≥0

(1− γ)Es0∼p0 [ν(s0)] + Es∼d̄
[
µ(s)− log d̄(s)

dI(s)︸︷︷︸
=:w̄(s)

+ log dE(s)
dI(s)︸ ︷︷ ︸

=:r(s)

]

+ E(s,a)∼d

[
−µ(s) + Es′ [γν(s′)]− ν(s)︸ ︷︷ ︸

=:eµ,ν(s,a)

−α log d(s,a)
dI(s,a)︸ ︷︷ ︸
=:w(s,a)

]
=min

µ,ν
max
w,w̄≥0

(1− γ)Es0∼p0 [ν(s0)] + Es∼dI
[
w̄(s)

(
r(s) + µ(s)− log w̄(s)

)]
+ E(s,a)∼dI

[
w(s, a)

(
eµ,ν(s, a)− α logw(s, a)

)]
=: L(w, w̄, µ, ν). (30)

We introduce the log ratio r(s) = log dE(s)
dI(s)

to make expectation for dI instead of dE . The log ratio
r(s) can be estimated by using a pretrained discriminator c : S → [0, 1], where c is trained by:

c∗ = argmax
c:S→[0,1]

Es∼dE [log c(s)] + Es∼dI [log c(s)].

Then, it is proven that the optimal discriminator c∗ satisfies c∗(s) = dE(s)
dE(s)+dI(s)

. Therefore, r(s) can
be estimated by:

r(s) = − log

(
1

c∗(s)
− 1

)
.

Similar to Proposition 3.1, we can easily derive the closed-form solution to the inner maximization in
(30):

wµ,ν(s, a) = exp
(

1
αeµ,ν(s, a)− 1

)
,

w̄µ(s) = exp(r(s) + µ(s)− 1).

Finally, by plugging these closed-form solutions into (30), the nested min-max optimization of (30)
is reduced to a single minimization:

min
µ,ν
L(wµ,ν , w̄µ, µ, ν) = (1− γ)Es0∼p0 [ν(s0)] + Es∼dI

[
exp

(
r(s) + µ(s)− 1

)]
(31)

+ αE(s,a)∼dI
[
exp

(
1
αeµ,ν(s, a)− 1

)]
,

which is a convex function of µ and ν. Finally, once we obtain the optimal solution (µ∗, ν∗) of (31),

we have wµ∗,ν∗(s, a) = dπ
∗
(s,a)

dI(s,a)
. Then, we can extract an optimal policy via weighted BC:

max
π

E(s,a)∼dπ∗ [log π(a|s)] = E(s,a)∼dI [wµ∗,ν∗(s, a) log π(a|s)] (32)

Remark B.1. To the best of our knowledge, (31) is the first result to directly solve the state distribution
matching problem in an offline setting. Although SMODICE [28], a concurrent work with ours, also
aims to solve offline LfO in terms of optimizing stationary distribution, it essentially minimizes the
(potentially loose) upper bound, i.e.,

min
π

Es∼dπ
[
log

dI(s)

dE(s)

]
+DKL(d

π(s, a)||dI(s, a)) (33)

≥Es∼dπ
[
log

dI(s)

dE(s)

]
+DKL(d

π(s)||dI(s)) (34)

=DKL(d
π(s)||dE(s)) (35)

15

The upper bound gap (33) − (35) is given by DKL(π(a|s)||πI(a|s)). Unlike OPOLO of (4), this
upper bound gap does not vanish even when the transition is deterministic. Consequently, SMODICE
may not be able to precisely recover the expert’s state visitations even given an infinite amount of
data due to the upper bound gap unless dI is collected purely by expert. In contrast, we are directly
minimizing the divergence: solving (31) is exactly equivalent to solving (25). As can be seen in
Figure 4, SMODICE optimizing (33) fails to recover the expert’s behavior due to the upper bound
gap that is irreducible even for deterministic MDPs.

100 101 102 103 10410-3
10-2
10-1

100

T
V

(d̄
π
‖d̄

π
E
)

NE = 10, β= 0.01

100 101 102 103 10410-3
10-2
10-1

100
NE = 100, β= 0.01

100 101 102 103 10410-3
10-2
10-1

100
NE = 1000, β= 0.01

100 101 102 103 10410-3
10-2
10-1

100
NE = 10000, β= 0.01

100 101 102 103 10410-3
10-2
10-1

100

T
V

(d̄
π
‖d̄

π
E
)

NE = 10, β= 0.1

100 101 102 103 10410-3
10-2
10-1

100
NE = 100, β= 0.1

100 101 102 103 10410-3
10-2
10-1

100
NE = 1000, β= 0.1

100 101 102 103 10410-3
10-2
10-1

100
NE = 10000, β= 0.1

100 101 102 103 104

of imperfect demonstrations
10-3
10-2
10-1

100

T
V

(d̄
π
‖d̄

π
E
)

NE = 10, β= 1

100 101 102 103 104

of imperfect demonstrations
10-3
10-2
10-1

100
NE = 100, β= 1

100 101 102 103 104

of imperfect demonstrations
10-3
10-2
10-1

100
NE = 1000, β= 1

100 101 102 103 104

of imperfect demonstrations
10-3
10-2
10-1

100
NE = 10000, β= 1

BC BCO DemoDICEfO OPOLO SMODICE LobsDICE (ours)

Figure 4: Performance of tabular LobsDICE and baselines in randomly generated MDPs. The first
row indicates near-deterministic dynamics and the last row indicates highly stochastic dynamics.
As the level of stochasticity increases, baselines fall into suboptimal, even the number of state-only
expert demonstrations and imperfect demonstrations increases, while LobsDICE goes to optimal. For
each algorithm, we measure the performance using total variation between state-transition stationary
distributions of expert and learned policy. We plot the mean and standard error of total variations
TV(d̄π(s, s′), d̄πE (s, s′)) over 1000 random seeds.

C Validity of Weighted Behavior Cloning for Policy Extraction

For tabular MDPs, we can show that the weighted behavior cloning of (17)

max
π

E(s,a)∼dI [wµ∗,ν∗(s, a) log π(a|s)] (17)

exactly yields an optimal policy π∗ of the original optimization problem (5). First, the optimization
problem (5) and the constrained optimization problem (6-8) are equivalent with the following
relationship between π∗ and d∗:

π∗(a|s) = d∗(s, a)∑
a′ d

∗(s, a′)
(36)

where d∗ is the optimal solution of both (6-8) and (10). Then, wµ∗,ν∗(s, a) is computed by (15) with
(µ∗, ν∗), the optimal solution of both (16) and (11). Consequently, wµ∗,ν∗(s, a) = d∗(s,a)

dI(s,a)
holds, and

thus the weighted behavior cloning of (17) essentially performs the following:

max
x

∑
s,a
d∗(s, a) log x(a|s) (37)

s.t.
∑
a
x(a|s) = 1 ∀s (38)

Now, consider the Lagrangian for the constrained optimization (37-38):

L :=
∑
s,a
d∗(s, a) log x(a|s)−

∑
s
λ(s)

(∑
a
x(a|s)− 1

)
(39)

16

where λ(s) is the Lagrange multiplier for the constraint (38). Then,

∂L

∂x(a|s)
=
d∗(s, a)

x(a|s)
− λ(s) = 0 ⇒ x∗(a|s) = d∗(s, a)

λ(s)
∀s, a (40)

Finally, considering the constraint
∑
a x

∗(a|s) = 1 ∀s, we obtain:

x∗(a|s) = d∗(s, a)∑
a′ d

∗(s, a′)
(41)

which is identical to (36). In summary, the weighted behavior cloning performs the process of
extracting the optimal policy π∗ from wµ∗,ν∗ .

D Challenges of Extending DemoDICE to Offline Learning from Observation

DemoDICE [15] is an algorithm that optimizes the state-action stationary distribution d(s, a), where
its naive application to (s, s′)-distribution matching problem yields:

min
d≥0

=DKL(d̄(s,s
′)||d̄E(s,s′))︷ ︸︸ ︷

E (s,a)∼d
s′∼T (s,a)

[
log

∑
a d(s,a)T (s′|s,a)
dE(s,s′)

]
+α

=DKL(d(s,a)||dI(s,a))︷ ︸︸ ︷
E(s,a)∼d

[
log d(s,a)

dI(s,a)

]
(42)

s.t.
∑
a′
d(s′, a′) = (1− γ)p0(s′) + γ

∑
s,a
d(s, a)T (s′|s, a) ∀s′, (43)

However, estimating E (s,a)∼d
s′∼T (s,a)

[
log

∑
a d(s,a)T (s′|s,a)
dE(s,s′)

]
is intractable in the offline setting due to its

inclusion of marginalization over a inside the log(·). This challenge can be addressed by using the
upper bound proposed by OPOLO [45]:

DKL(d̄
π(s, s′)||dE(s, s′) ≤ E(s,s′)∼d̄π(s,s′)

[
log d̄I(s,s′)

d̄E(s,s′)

]
+DKL(d

π(s, a)∥dI(s, a)), (3)

Replacing DKL(d̄
π(s, s′)||dE(s, s′)) with the (potentially loose) upper bound in the objective func-

tion yields the following tractable (but biased) optimization problem:

min
d≥0

E (s,a)∼d
s′∼T (s,a)

[
log d̄I(s,s′)

d̄E(s,s′)

]
+ (1 + α)E(s,a)∼d

[
log d(s,a)

dI(s,a)

]
(44)

s.t.
∑
a′
d(s′, a′) = (1− γ)p0(s′) + γ

∑
s,a
d(s, a)T (s′|s, a) ∀s′, (45)

In contrast, we address the intractability challenge by introducing an additional optimization variable
d̄(s, s′) along with the marginalization constraint (8). This allows for tractable offline optimization
by (11,16) without introducing bias, which is our novel contribution.

E More Discussions on LobsDICE with Finite Samples

In this section, we provide additional discussions on LobsDICE with finite samples.

E.1 LobsDICE with sample-based approximation: distribution matching on the MLE MDP

We first show that LobsDICE that optimizes (18) is equivalent to performing optimization of (6-8)
on the MLE MDP constructed by DI . Let M̂ \R = ⟨S,A, T̂ , p̂0, γ⟩ be the MLE MDP constructed
using DI . Then, constrained optimization (6-8) for the MLE MDP M̂ \R can be formulated as:

max
d,d̄≥0

−DKL(d̄(s, s
′)∥d̂E(s, s′))− αDKL(d(s, a)∥d̂I(s, a)) (46)

s.t.
∑
a′
d(s′, a′) = (1− γ)p̂0(s′) + γ

∑
s,a
d(s, a)T̂ (s′|s, a) ∀s′, (47)∑

a
d(s, a)T̂ (s′|s, a) = d̄(s, s′) ∀s, s′, (48)

17

where p̂0, d̂E , and d̂I are empirical distributions of D0, DE , and DI , respectively. We consider
Lagrangian for the above constrained optimization:

min
µ,ν

max
d,d̄≥0

−Ed̄
[
log d̄(s,s′)

d̂E(s,s′)

]
− αEd

[
log d(s,a)

d̂I(s,a)

]
+

∑
s,s′

µ(s, s′)
(
d̄(s, s′)−

∑
a
d(s, a)T̂ (s′|s, a)

)
+
∑
s′
ν(s′)

(
(1− γ)p̂0(s′) + γ

∑
s,a
d(s, a)T̂ (s′|s, a)−

∑
a′
d(s′, a′)

)
=min

µ,ν
max
d,d̄≥0

(1− γ)Es0∼p̂0 [ν(s0)] + E(s,s′)∼d̄

[
µ(s, s′)− log d̄(s,s′)

d̂I(s,s′)︸ ︷︷ ︸
=:w̄(s,s′)

+ log d̂E(s,s′)

d̂I(s,s′)︸ ︷︷ ︸
=:r̂(s,s′)

]

+ E(s,a)∼d

[
Es′∼T̂ (·|s,a)[−µ(s, s

′) + γν(s′)]− ν(s)︸ ︷︷ ︸
=:êIµ,ν(s,a)

−α log d(s,a)

d̂I(s,a)︸ ︷︷ ︸
=:w(s,a)

]
=min

µ,ν
max
w,w̄≥0

(1− γ)Es0∼p̂0 [ν(s0)] + E(s,s′)∼d̂I
[
w̄(s, s′)

(
r̂(s, s′) + µ(s, s′)− log w̄(s, s′)

)]
+ E(s,a)∼d̂I

[
w(s, a)

(
êIµ,ν(s, a)− α logw(s, a)

)]
=: LI(w, w̄, µ, ν),

Note that this is identical to (18). We can also derive the closed-form solution (wIµ,ν , w̄
I
µ) to the

maxw,w̄≥0 LI(w, w̄, µ, ν):

wIµ,ν(s, a) = exp
(

1
α ê

I
µ,ν(s, a)− 1

)
and w̄Iµ(s, s

′) = exp(r̂(s, s′) + µ(s, s′)− 1). (49)

Note that this is different from (19) in that (49) is the closed-form solution for each (s, a) and (s, s′),
while (19) is the non-parametric closed-form solution for each sample x ∈ DI . Exploiting (49) does
not introduce an additional bias, but requires evaluation of the expectation within the exp(·), i.e.
transition model is needed.

The last step is to plug the solution (wIµ,ν , w̄
I
µ) in (49) into LI(w, w̄, µ, ν):

min
µ,ν
LI(wIµ,ν , w̄Iµ, µ, ν) = (1− γ)Es∼p̂0 [ν(s)] + E(s,s′)∼d̂I

[
exp

(
r̂(s, s′) + µ(s, s′)− 1

)]
+ αE(s,a)∼d̂I

[
exp

(
1
α ê

I
µ,ν(s, a)− 1

)]
.

Finally, this can be rewritten as:

min
µ,ν

J(µ, ν) = (1− γ)
∑
s
p̂0(s)ν(s) +

∑
s,s′

d̂I(s, s′)
[
exp

(
r̂(s, s′) + µ(s, s′)− 1

)]
+ α

∑
s,a
d̂I(s, a)

[
exp

(
1
α

∑
s′
T̂ I(s′|s, a)

(
− µ(s, s′) + γν(s′)− ν(s)

)
− 1

)]
,

which is the objective function for our tabular LobsDICE (52).

E.2 When will LobsDICE reduce to BCO?

LobsDICE reduces to BCO when DI is collected by an expert policy and DE is a dataset identical to
DI except that action is missing, i.e., DE = {(s, s′)|(s, a, s′) ∈ DI}.

In this situation, note that d̂I(s, s′) and d̂I(s, a) are valid stationary distributions on the MLE MDP
constructed by DI , since they satisfy both the Bellman flow constraint (47) and the marginalization
constraint (48) on the MLE MDP. The d̂I(s, s′) and d̂I(s, a) are also the optimal solution of (46-48),
making the KL divergences to 0:

DKL(d̂
I(s, s′)∥d̂E(s, s′)) = 0 and DKL(d̂

I(s, a)∥d̂I(s, a)) = 0.

Finally, the policy obtained by LobsDICE will simply reduce to BC on DI by noting that:

π∗(a|s) = d̂I(s, a)∑
a′ d̂

I(s, a′)

18

Furthermore, one can easily show that BC on DI is identical to BCO (i.e. BC on DE where the
missing actions are inferred by the IDM trained byDI), which concludes that LobsDICE is equivalent
to BCO in this special case.

However, DI will include demonstrations collected by non-expert policies in general, which makes
the LobsDICE’s solution different from (and usually better than) the BCO’s solution in general cases.

F Theoretical Analysis

F.1 Closed-form solutions

Proposition 3.1. For any (µ, ν), the closed-form solution to the inner maximization of (11), i.e.
(wµ,ν , w̄µ) = argmaxw,w̄≥0 L(w, w̄, µ, ν), is given by:

wµ,ν(s, a) = exp
(
1
αeµ,ν(s, a)− 1

)
and w̄µ(s, s

′) = exp(r(s, s′) + µ(s, s′)− 1). (15)

Proof. Let eµ,ν(s, a, s′) = −µ(s, s′)+γν(s′)−ν(s). Then, eµ,ν(s, a) = Es′∼T (·|s,a)[eµ,ν(s, a, s
′)].

For (s, a) with dI(s, a) > 0, we can compute the derivative ∂L
∂w(s,a) of L w.r.t. w(s, a) as follows:

∂L
∂w(s, a)

=
∑
s′

dI(s, a, s′)(eµ,ν(s, a, s
′)− α logw(s, a)− α) = 0

⇔
∑
s′

T (s′|s, a)(eµ,ν(s, a, s′)− α logw(s, a)− α) = 0

⇔
∑
s′

T (s′|s, a)(eµ,ν(s, a, s′)− α) = α logw(s, a)

⇔ w(s, a) = exp
(

1
αEs′∼T (·|s,a)[eµ,ν(s, a, s

′)]− 1
)
= exp

(
1
αeµ,ν(s, a)− 1

)
.

Similar to the aforementioned derivation, when d̄I(s, s′) > 0, we can derive the derivative of L w.r.t.
w̄(s, s′):

∂L
∂w̄(s, s′)

= d̄I(s, s′)
(
µ(s, s′)− log w̄(s, s′) + r(s, s′)− 1

)
= 0

⇔
(
µ(s, s′)− log w̄(s, s′) + r(s, s′)− 1

)
= 0

⇔ log w̄(s, s′) = µ(s, s′) + r(s, s′)− 1

⇔ w̄(s, s′) = exp
(
µ(s, s′) + r(s, s′)− 1

)
.

Proposition 3.2. L(wµ,ν , w̄µ, µ, ν) is convex with respect to µ and ν.

Proof. Using the fact that exp(·) is a convex function, we can easily prove the convexity of
L(wµ,ν , w̄µ,ν , µ, ν). For brevity, let L(µ, ν) := L(wµ,ν , w̄µ,ν , µ, ν). Then, for given (µ1, ν1),
(µ2, ν2) and t ∈ [0, 1],

L (tµ1 + (1− t)µ2, tν1 + (1− t)ν2)
= (1− γ)Ep0 [tν1(s) + (1− t)ν2(s)] + EdI [exp(r(s, s′) + tµ1(s, s

′) + (1− t)µ2(s, s
′)− 1)]

+ αEdI
[
exp

(
1
αEs′

[
− tµ1(s, s

′)− (1− t)µ2(s, s
′) + γtν1(s

′) + γ(1− t)ν2(s′)

− tν1(s)− (1− t)ν2(s)
]
− 1

)]
= t(1− γ)Ep0 [ν1(s)] + (1− t)(1− γ)Ep0 [ν2(s)] + EdI [exp(r(s, s′) + tµ1 + (1− t)µ2 − 1)]

+ αEdI
[
exp

(
1
αEs′

[
− tµ1(s, s

′)− (1− t)µ2(s, s
′) + γtν1(s

′) + γ(1− t)ν2(s′)

− tν1(s)− (1− t)ν2(s)
]
− 1

)]

19

(Cont.) ≤ t(1− γ)Ep0 [ν1(s)] + (1− t)(1− γ)Ep0 [ν2(s)]
+ tEdI [exp(r(s, s′) + µ1(s, s

′)− 1)] + (1− t)EdI [exp(r(s, s′) + µ2(s, s
′)− 1)]

+ αEdI
[
exp

(
1
αEs′

[
− tµ1(s, s

′)− (1− t)µ2(s, s
′) + γtν1(s

′) + γ(1− t)ν2(s′)

− tν1(s)− (1− t)ν2(s)
]
− 1

)]
≤ t(1− γ)Ep0 [ν1(s)] + (1− t)(1− γ)Ep0 [ν2(s)]

+ tEdI [exp(r(s, s′) + µ1(s, s
′)− 1)] + (1− t)EdI [exp(r(s, s′) + µ2(s, s

′)− 1)]

+ tαEdI
[
exp

(
1
αEs′

[
µ1(s, s

′) + γν1(s
′)− ν1(s)

]
− 1

)]
+ (1− t)αEdI

[
exp

(
1
αEs′

[
− µ2(s, s

′) + γν2(s
′)− ν2(s)

]
− 1

)]
= tL(µ1, ν1) + (1− t)L(µ2, ν2).

For the inequalities in the above formulation, we use the fact that EdI [exp(·)] is a instance of convex
functions.

Proposition 3.3. For any ν, the closed-form solution to the minimization (20) with respect to µ, i.e.
µν = argminµ L̂(µ, ν), is

µν(s, s
′) = 1

1+α

(
− αr(s, s′) + γν(s′)− ν(s)

)
. (21)

Proof. For simplicity, let L̂(µ, ν) := L̂(wµ,ν , w̄µ,ν , µ, ν) and x := (s, a, s′). Then,

∂L̂
∂µ(x) = dI(x)

[
exp(r(x) + µ(x)− 1)− exp

(
1
α (−µ(x) + γν(s′)− ν(s))− 1

)]
= 0

⇔ exp(r(x) + µ(x)− 1) = exp
(

1
α (−µ(x) + γν(s′)− ν(s))− 1

)
⇔ α(r(x) + µ(x)) = −µ(x) + γν(s′)− ν(s)
⇔ (1 + α)µ(x) = −αr(x) + γν(s′)− ν(s)
⇔ µ(x) = 1

1+α

(
− αr(x) + γν(s′)− ν(s)

)

F.2 Surrogate Objective

We first show a property of L̃ that will be used to prove propositions:
Lemma F.1. For given function ν : S → R,

L̃(ν) = L̃(ν + C) ∀C ∈ R.

Proof. For any C ∈ R,

L̃(ν + C)

= (1− γ)Es∼p0 [ν(s) + C] + (1 + α) logE(s,a,s′)∼dI
[
exp

(
1

1+α Âν+C(s, a, s
′)
)]

= (1− γ)Es∼p0 [ν(s) + C] + (1 + α) logE(s,a,s′)∼dI
[
exp

(
1

1+α

(
r(s, s′) + γ(ν(s′) + C)− (ν(s) + C)

))]
= (1− γ)Es∼p0 [ν(s) + C] + (1 + α) logE(s,a,s′)∼dI

[
exp

(
1

1+α

(
r(s, s′) + γν(s′)− ν(s)

))
exp

(
(γ−1)C
1+α

)]
= (1− γ)Es∼p0 [ν(s) + C] + (1 + α) logE(s,a,s′)∼dI

[
exp

(
1

1+α (r(s, s
′) + γν(s′)− ν(s))

)]
+ (γ − 1)C

= (1− γ)Es∼p0 [ν(s)] + (1 + α) logE(s,a,s′)∼dI
[
exp

(
1

1+α (r(s, s
′) + γν(s′)− ν(s))

)]
= L̃(ν).

20

Now, we prove Proposition 3.4 and Proposition 3.5:

Proposition 3.4. Let L̃(ν̃) be the function:

L̃(ν̃) = (1− γ)Ês0∈D0 [ν̃(s0)] + (1 + α) log Êx∈DI

[
exp

(
1

1+α Âν̃(s, a, s
′)
)]
. (23)

Then, minν̂ L̂(ν̂) = minν̃ L̃(ν̃) holds. Also, L̃(ν̃) is convex with respect to ν̃.

Proof. First of all, from the fact that log(x + 1) ≤ x for all x > −1, we can easily conclude
that minν L̃(ν) ≤ minν L̂(ν). Now, we will show that minν L̂(ν) ≤ minν L̃(ν). For given
ν∗ ∈ argminν L̃(ν), we define a constant C as follows:

C = 1+α
1−γ logE(s,a,s′)∼dI

[
exp

(
1

1+α Âν∗(s, a, s′)− 1
)]
,

which implies

exp
(

(1−γ)C
1+α

)
= E(s,a,s′)∼dI

[
exp

(
1

1+α Âν∗(s, a, s′)− 1
)]
.

Then, from the following two equations:

L̂(ν∗ + C)

= (1− γ)Es∼p0 [ν∗(s) + C] + (1 + α)E(s,a,s′)∼dI
[
exp

(
1

1+α Âν∗+C(s, a, s
′)− 1

)]
= (1− γ)Es∼p0 [ν∗(s) + C] + (1 + α)E(s,a,s′)∼dI

[
exp

(
1

1+α Âν∗(s, a, s′)− 1
)
exp

(
(γ−1)C
1+α

)]
= (1− γ)Es∼p0 [ν∗(s) + C] + (1 + α)E(s,a,s′)∼dI

[
exp

(
1

1+α Âν∗(s, a, s′)− 1
)]

exp
(
− (1−γ)C

1+α

)
= (1− γ)Es∼p0 [ν∗(s) + C] + (1 + α)

and

L̃(ν∗ + C)

= (1− γ)Es∼p0 [ν∗(s) + C] + (1 + α) logE(s,a,s′)∼dI
[
exp

(
1

1+α Âν∗+C(s, a, s
′)
)]

= (1− γ)Es∼p0 [ν∗(s) + C] + (1 + α) logE(s,a,s′)∼dI
[
exp

(
1

1+α Âν∗(s, a, s′)
)]

+ (γ − 1)C

= (1− γ)Es∼p0 [ν∗(s) + C] + (1 + α) logE(s,a,s′)∼dI
[
exp

(
1

1+α Âν∗(s, a, s′)
)]

− (1 + α) logE(s,a,s′)∼dI
[
exp

(
1

1+α Âν∗(s, a, s′)− 1
)]

= (1− γ)Es∼p0 [ν∗(s) + C] + (1 + α) logE(s,a,s′)∼dI
[
exp

(
1

1+α Âν∗(s, a, s′)
)]

− (1 + α)
(
logE(s,a,s′)∼dI

[
exp

(
1

1+α Âν∗(s, a, s′)
)]
− 1

)
= (1− γ)Es∼p0 [ν∗(s) + C] + 1 + α,

we can conclude that
L̂(ν∗ + C) = L̃(ν∗ + C).

From the Lemma F.1, we obtain

min
ν
L̂(ν) ≤ L̂(ν∗ + C) = L̃(ν∗ + C) = min

ν
L̃(ν).

We show that minν L̃(ν) ≤ minν L̂(ν) and minν L̂(ν) ≤ minν L̃(ν), so minν L̂(ν) = minν L̃(ν).

Finally, similar to the proof steps for Proposition 3.2, we can easily show that L̂FD(ν) is convex w.r.t.
ν (Remark that log-sum-exp is a convex function).

Proposition 3.5. Let V̂ and Ṽ be the sets argminν̂ L̂(ν̂) and argminν̃ L̃(ν̃), respectively. Then,
Ṽ = {ν̂∗ + C | ν̂∗ ∈ V̂ , C ∈ R} holds.

21

Proof. We will prove this proposition by showing Ṽ ⊆ {ν∗ + C ′|ν∗ ∈ V̂ , C ∈ R} and Ṽ ⊇
{ν∗ + C ′|ν∗ ∈ V̂ , C ∈ R}.
(⊆) For given ν∗ ∈ argminν L̃(ν), we define a constant C as follows:

C = 1+α
1−γ logE(s,a,s′)∼dI

[
exp

(
1

1+α Âν∗(s, a, s′)− 1
)]
,

which implies

exp
(

(1−γ)C
1+α

)
= E(s,a,s′)∼dI

[
exp

(
1

1+α Âν∗(s, a, s′)− 1
)]
.

Then, by the proof steps of Proposition 3.4, we obtain

L̂(ν∗ + C) = L̃(ν∗ + C) = min
ν
L̃(ν) = min

ν
L̂(ν).

It means (ν∗ + C) ∈ argminν L̂(ν) and thus,

ν∗ ∈ {ν̂∗ + C|ν̂∗ ∈ argmin
ν

L̂(ν), C ∈ R},

i.e.,
argmin

ν
L̃(ν) ⊆ {ν̂∗ + C|ν̂∗ ∈ argmin

ν
L̂(ν), C ∈ R}

(⊇) Let ν̂∗ ∈ argminν L̂(ν). Then,

d∗(s, a)

dI(s, a)
= w∗

µ∗,ν∗(s, a) = exp
(

1
α

(
Es′∼T (·|s,a)[γν(s

′)− µ(s, s′)]− ν(s)
)
− 1

)
,

d∗(s, s′)

dI(s, s′)
= w̄∗

µ∗,ν∗(s, s′) = exp(r(s, s′) + µ∗(s, s′)− 1).

Let C ∈ R. Then, we derive the following equation:

L̃(ν̂∗ + C) = L̃(ν̂∗)

= (1− γ)Es∼p0 [ν̂∗(s)] + (1 + α) logE(s,a,s′)∼dI
[
exp

(
1

1+α Âν̂∗(s, a, s′)
)]

= (1− γ)Es∼p0 [ν̂∗(s)] + (1 + α) logE(s,a,s′)∼dI
[
exp

(
1

1+α Âν̂∗(s, a, s′)− 1 + 1
)]

= (1− γ)Es∼p0 [ν∗(s)] + 1 + α.

Here, we apply Lemma F.1 to derive the first equality. Because

min
ν
L̃(ν) = min

ν
L̂(ν)

= L̂(ν̂∗)

= (1− γ)Es∼p0 [ν̂∗(s)] + (1 + α)E(s,a,s′)∼dI
[
exp

(
1

1+α Âν̂∗(s, a, s′)− 1
)]

= (1− γ)Es∼p0 [ν∗(s)] + 1 + α,

we can conclude that LFD(ν̂
∗ + C) = minν LFD(ν), i.e., (ν̂∗ + C) ∈ argminν L̃(ν). Consequently,

argmin
ν

L̃(ν) ⊇ {ν̂∗ + C|ν̂∗ ∈ argmin
ν

L̂(ν), C ∈ R}.

F.3 Fenchel dual formulation

Let

δC(x) :=

{
0 x ∈ C
∞ otherwise

.

Then we can provide following proposition:

22

Proposition F.2. We can rewrite the optimization problem (6-8) as

max
d≥0
− δ(1−γ)p0(−(γT − B)∗d)−DKL

(
(T̄∗d)∥d̄E

)
− αDKL(d∥dI). (50)

Then, the dual problem of (50) is given by

min
µ,ν
LFD(µ, ν) (51)

:= (1− γ)Es∼p0 [ν(s)] + logEd̄I
[
exp

(
r(s, s′) + µ(s, s′)

)]
+ α logEdI

[
exp

(
1
αeµ,ν(s, a)

)]
.

Proof. We first define following three functions

f(·) := δ{(1−γ)p0}(·),
g(·; r) := ⟨·,−r⟩+DKL(·∥T̄∗dI),
h(·;µ) := ⟨·, T̄ µ⟩+ αDKL(·∥dI),

and conjugate functions,

f∗(·) := (1− γ)Es∼p0 [·],
g∗(·; r) := logE(s,s′)∼T̄∗dI [exp(·+ r(s, s′))],

h∗(·;µ) := α logE(s,a)∼dI

[
exp

(
· − (T̄ µ)(s, a)

α

)]
.

Then, the dual formulation of the primal (50) can be derived as follows:

max
d≥0
− δ(1−γ)p0

(
− (γT − B)∗d

)
− E (s,a)∼d,

s′∼T (·|s,a)

[
log

(T̄∗d)(s, s′)
dE(s, s′)

]
− αDKL(d∥dI)

= max
d≥0
− f

(
− (γT − B)∗d

)
+ E (s,a)∼d,

s′∼T (·|s,a)

[
− log

(T̄∗d)(s, s′)
(T̄∗dI)(s, s′)

+ log
dE(s, s′)

(T̄∗dI)(s, s′)︸ ︷︷ ︸
:=r(s,s′)

]
− αDKL(d∥dI)

= max
d≥0
− f

(
− (γT − B)∗d

)
− g(T̄∗d; r)− αDKL(d∥dI)

= max
d≥0
− f

(
− (γT − B)∗d

)
−
{
max
µ
−g∗(µ; r) + ⟨T̄∗d, µ⟩

}
− αDKL(d∥dI)

= max
d≥0

min
µ
− f

(
− (γT − B)∗d

)
+ g∗(µ; r)− ⟨T̄∗d, µ⟩ − αDKL(d∥dI)

= max
d≥0

min
µ
− f

(
− (γT − B)∗d

)
+ g∗(µ; r)− ⟨d, T̄ µ⟩ − αDKL(d∥dI)

= max
d≥0

min
µ
− f

(
− (γT − B)∗d

)
+ g∗(µ; r)− h(d;µ)

= max
d≥0

min
µ
−
{
max
ν
⟨−(γT − B)∗d, ν⟩ − f∗(ν)

}
+ g∗(µ; r)− h(d;µ)

= max
d≥0

min
ν,µ
⟨(γT − B)∗d, ν⟩+ f∗(ν) + g∗(µ; r)− h(d;µ)

= max
d≥0

min
ν,µ
⟨d, (γT − B)ν⟩+ f∗(ν) + g∗(µ; r)− h(d;µ) := LFD(d;µ, ν)

Here, we can reorder the maximin to minimax and therefore, we can derive the

min
ν,µ

max
d≥0
LFD(d;µ, ν)

= min
ν,µ

max
d≥0
⟨d, (γT − B)ν⟩+ f∗(ν) + g∗(µ; r)− h(d;µ)

= min
ν,µ

{
max
d≥0
⟨d, (γT − B)ν⟩ − h(d;µ)

}
+ f∗(ν) + g∗(µ; r)

= min
ν,µ

h∗((γT − B)ν) + f∗(ν) + g∗(µ; r).

23

We can rewrite the last term as
min
ν,µ

(1− γ)Es∼p0 [ν(s)] + logE (s,a)∼dI ,
s′∼T (·|s,a)

[exp(µ(s, s′) + r(s, s′))] + α logE(s,a)∼dI
[
exp

(
1
αeµ,ν(s, a)

)]
.

Lemma F.3. For given function µ : S × S → R and ν : S → R,
LFD(µ, ν) = LFD(µ+ C, ν + C ′) ∀C,C ′ ∈ R.

Proof.
LFD(µ+ C, ν + C ′)

= (1− γ)Es∼p0 [ν(s) + C ′] + logE(s,a,s′)∼dI [exp(µ(s, s
′) + C + r(s, s′))]

+ α logE(s,a)∼dI
[
exp

(
1
α

(
Es′∼T (·|s,a)[γν(s

′) + γC ′ − µ(s, s′)− C]− ν(s)− C ′))]
= (1− γ)Es∼p0 [ν(s)] + (1− γ)C ′ + logE(s,a,s′)∼dI [exp(µ(s, s

′) + r(s, s′))] + C

+ α logE(s,a)∼dI
[
exp

(
1
α

(
Es′∼T (·|s,a)[γν(s

′)− µ(s, s′)]− ν(s)
))]

+ (γC ′ − C − C ′)

= (1− γ)Es∼p0 [ν(s)] + logE(s,a,s′)∼dI [exp(µ(s, s
′) + r(s, s′))]

+ α logE(s,a)∼dI
[
exp

(
1
α

(
Es′∼T (·|s,a)[γν(s

′)− µ(s, s′)]− ν(s)
))]

= LFD(µ, ν).

Finally, we can show that the relation between argminµ,ν L and argminµ,ν LFD:
Proposition F.4. Let V and VFD be the set of optimal solutions (µ∗, ν∗) of
argminµ,ν L(wν,µ, w̄ν,µ, µ, ν) and argminµ,ν LFD(µ, ν), respectively. Then,

VFD = {(µ∗ + C, ν∗ + C ′)|(µ∗, ν∗) ∈ V,C ∈ R, C ′ ∈ R}
holds.

Proof. For brevity, we will denote L(wν,µ, w̄ν,µ, µ, ν) as L(µ, ν).
(⊆) For given (µ̂∗, ν̂∗) ∈ argminµ,ν LFD(µ, ν), we define two constants as follows:

C = − logE(s,a,s′)∼dI [exp(µ̂
∗(s, s′) + r(s, s′)− 1)],

C ′ =
α

1− γ
logE(s,a)∼dI

[
exp

(Es′ [γν̂∗(s′)− µ̂∗(s, s′)]− ν̂∗(s′)
α

− 1
)]
− C

1− γ
.

Then, from the following two equations:
L(µ̂∗ + C, ν̂∗ + C ′)

= (1− γ)Es∼p0 [ν̂∗(s) + C ′] + E(s,a,s′)∼dI [exp(µ̂
∗(s, s′) + C + r(s, s′)− 1)]

+ αE(s,a)∼dI
[
exp

(
1
α

(
Es′ [γν̂∗(s′) + γC ′ − µ̂∗(s, s′)− C]− ν̂∗(s′)− C ′)− 1

)]
= (1− γ)Es∼p0 [ν̂∗(s)] + (1− γ)C ′ + E(s,a,s′)∼dI [exp(µ̂

∗(s, s′) + r(s, s′)− 1)] exp(C)

+ αE(s,a)∼dI
[
exp

(
1
α

(
Es′ [γν̂∗(s′)− µ̂∗(s, s′)]− ν̂∗(s′)

)
− 1

)]
exp

(
1
α

(
− (1− γ)C ′ − C

))
= (1− γ)Es∼p0 [ν̂∗(s)] + (1− γ)C ′ + 1 + α,

and
LFD(µ̂

∗ + C, ν̂∗ + C ′)

= (1− γ)Es∼p0 [ν̂∗(s) + C ′] + logE(s,a,s′)∼dI [exp(µ̂
∗(s, s′) + C + r(s, s′))]

+ α logE(s,a)∼dI
[
exp

(
1
α

(
Es′ [γν̂∗(s′) + γC ′ − µ̂∗(s, s′)− C]− ν̂∗(s′)− C ′))]

= (1− γ)Es∼p0 [ν̂∗(s)] + (1− γ)C ′ + logE(s,a,s′)∼dI [exp(µ̂
∗(s, s′) + r(s, s′))] + C

+ α logE(s,a)∼dI
[
exp

(
1
α

(
Es′ [γν̂∗(s′)− µ̂∗(s, s′)]− ν̂∗(s′)

))]
+ (γC ′ − C − C ′)

= (1− γ)Es∼p0 [ν̂∗(s) + C ′] + 1 + α,

24

we can conclude that

L(µ̂∗ + C, ν̂∗ + C ′) = LFD(µ̂
∗ + C, ν̂∗ + C ′) = LFD(µ̂

∗, ν̂∗) = min
µ,ν
LFD(µ, ν) = min

µ,ν
L(µ, ν).

It means (µ̂∗ + C, ν̂∗ + C ′) ∈ argminµ,ν L(µ, ν) and thus,

(µ̂∗, ν̂∗) ∈ {µ+ C, ν + C ′|(µ, ν) ∈ argmin
µ,ν

L(µ, ν), C ∈ R, C ′ ∈ R},

i.e.,
argmin
µ,ν

LFD(µ, ν) ⊆ {µ+ C, ν + C ′|(µ, ν) ∈ argmin
µ,ν

L(µ, ν), C ∈ R, C ′ ∈ R}

(⊇) Let (µ∗, ν∗) ∈ argminµ,ν L(µ, ν). Then,

d∗(s, a)

dI(s, a)
= w∗

µ∗,ν∗(s, a) = exp
(

1
α

(
Es′∼T (·|s,a)[γν(s

′)− µ(s, s′)]− ν(s)
)
− 1

)
,

d∗(s, s′)

dI(s, s′)
= w̄∗

µ∗,ν∗(s, s′) = exp(r(s, s′) + µ∗(s, s′)− 1).

Let C ∈ R and C ′ ∈ R. Then, we derive the following equation:

LFD(µ
∗ + C, ν∗ + C ′)

= LFD(µ
∗, ν∗)

= (1− γ)Es∼p0 [ν∗(s)] + logE(s,a,s′)∼dI [exp(µ
∗(s, s′) + r(s, s′))]

+ α logE(s,a)∼dI
[
exp

(
1
α

(
Es′∼T (·|s,a)[γν

∗(s′)− µ∗(s, s′)]− ν∗(s)
))]

= (1− γ)Es∼p0 [ν∗(s)] + logE(s,a,s′)∼dI [w̄
∗
µ∗,ν∗(s, s′) exp(1)]

+ α logE(s,a)∼dI [w(s, a) exp(1)]

= (1− γ)Es∼p0 [ν∗(s)] + logE(s,a,s′)∼d∗ [exp(1)] + α logE(s,a)∼d∗ [exp(1)]

= (1− γ)Es∼p0 [ν∗(s)] + 1 + α

= (1− γ)Es∼p0 [ν∗(s)] + 1 + α.

Here, we apply Lemma F.1 to derive the first equality. Because

min
µ,ν
LFD(µ, ν)

= min
µ,ν
L(µ, ν)

= L(µ∗, ν∗)

= (1− γ)Es∼p0 [ν∗(s)] + E(s,a,s′)∼dI [exp(µ
∗(s, s′) + r(s, s′)− 1)]

+ αE(s,a)∼dI
[
exp

(
1
α

(
Es′∼T (·|s,a)[γν

∗(s′)− µ∗(s, s′)]− ν∗(s)
)
− 1

)]
= (1− γ)Es∼p0 [ν∗(s)] + E(s,a,s′)∼dI [w̄

∗
µ∗,ν∗(s, s′)] + αE(s,a)∼dI [w

∗
µ∗,ν∗(s, a)]

= (1− γ)Es∼p0 [ν∗(s)] + E(s,a,s′)∼d∗ [1] + αE(s,a)∼d∗ [1]

= (1− γ)Es∼p0 [ν∗(s)] + 1 + α,

we can conclude that LFD(µ
∗ + C, ν∗ + C ′) = minµ,ν LFD(µ, ν), i.e., (µ∗ + C, ν∗ + C ′) ∈

argminµ,ν LFD(µ, ν). It means,

argmin
µ,ν

LFD(µ, ν) ⊇ {µ+ C, ν + C ′|(µ, ν) ∈ argmin
µ,ν

L(µ, ν), C ∈ R, C ′ ∈ R}

Remark that the proposed objective (51) is stable and the aforementioned proposition allows us to
use self-normalized weighted importance sampling to extract policy. However, as we discussed in
Section 3.5, using µ is main bottleneck for the overall optimization and optimizing L̃(ν) shows better
performance in practice.

25

G Pseudocode of LobsDICE

G.1 Tabular LobsDICE

For tabular MDPs, we first construct a maximum-likelihood estimation (MLE) MDP M̂ =
⟨S,A, T̂ , p̂0, γ⟩ using an offline dataset DI . Then, tabular LobsDICE solves (16) on the MLE
MDP M̂ . In tabular case, note that d̂I(s, a), d̂I(s, s′), and d̂E(s, s′) are explicitly accessible by

normalized counts of (s, a) and (s, s′) in the datasets. In addition, r̂(s, s′) = d̂E(s,s′)

d̂I(s,s′)
is the log

ratio between two empirical distributions. Also, ν ∈ R|S| is represented as a |S|-dimensional vector,
and µ ∈ R|S|×|S| is represented as a |S|2-dimensional vector, and we solve the following convex
minimization problem for (µ, ν):

min
µ,ν

J(µ, ν) = (1− γ)
∑
s
p̂0(s)ν(s) +

∑
s,s′

d̂I(s, s′)
[
exp

(
r̂(s, s′) + µ(s, s′)− 1

)]
+ α

∑
s,a
d̂I(s, a)

[
exp

(
1
α

∑
s′
T̂ (s′|s, a)

(
− µ(s, s′) + γν(s′)− ν(s)

)
− 1

)]
(52)

This process is summarized in Algorithm 1.

Algorithm 1 Tabular LobsDICE

Input: state-only demonstrations by experts DE = {(s, s′)i}NE
i=1, state-action demonstrations by

some imperfect agents DI = {(s, a, s′)i}NI
i=1, a learning rate η.

1: Construct an MLE MDP M̂ = ⟨S,A, T̂ , p̂0, γ⟩ via normalized visitation counts of DI .
2: Construct d̂I(s, a), d̂I(s, s′), and d̂E(s, s′) via normalized visitation counts of DI and DE .

3: r̂(s, s′)← log d̂E(s,s′)

d̂I(s,s′)
for all s, s′.

4: Randomly initialize ν and µ.
5: while (ν, µ) is not converged do
6: (µ, ν) = (µ, ν)− η∇µ,νJ(µ, ν) (Eq. (52))
7: end while
8: w∗(s, a) = exp

(
1
α

(∑
s′ T̂ (s

′|s, a)(−µ(s, s′) + γν(s′)− ν(s))
)
− 1

)
for all s, a. (Eq. (15))

9: π∗(a|s)← d̂I(s,a)w∗(s,a)∑
a′ d̂I(s,a′)w∗(s,a′)

for all s, a.

Output: The imitation policy π∗.

G.2 Practical LobsDICE (with function approximation)

To deal with continuous or large MDPs, we represent our optimization variable ν and discriminator c
as neural networks, parameterized by θ and ϕ respectively: νθ : S → R is an MLP that takes a state
as an input and outputs a scalar value, and cϕ : S × S → [0, 1] is defined similarly. For the policy
πψ, we use a tanh-squashed Gaussian policy, where the parameters of a Gaussian distribution (i.e.
mean and covariance) are output by the neural network.

The parameters of cϕ are trained by:

max
ϕ

Jc(ϕ) := Ebatch(d̄E)∼d̄E

batch(d̄I)∼d̄I

[
Ê(s,s′)∼batch(d̄E)[log cϕ(s, s

′)] + Ê(s,s′)∼batch(d̄I)[log(1− cϕ(s, s′))]
]
,

(53)

which is analogous to (13). The parameters of νθ are trained by:

min
θ
Jν(θ) := Ebatch(dI)∼dI

batch(p0)∼p̂0

[
(1− γ)Ês∼batch(p0)[νθ(s)] (54)

+ (1 + α) log Ê(s,a,s′)∼batch(dI)[exp(
1

1+α Âθ(s, a, s
′))]

]
,

where Âθ(s, a, s′) = rϕ(s, s
′) + γνθ(s

′) − νθ(s) and rϕ(s, s′) = − log
(

1
cϕ(s,s′)

− 1
)

, and this is
analogous to (23). Due to the logarithm outside the expectation in the second term, the mini-batch

26

approximation would introduce additional bias in gradient estimation, but we found that using the
biased gradient estimate worked well in practice with moderately large batch size (e.g. 256). Finally,
the parameters of πψ are trained by:

max
ψ

Jπ(ψ) := Ebatch(dI)∼dI

 Ê(s,a,s′)∼batch(dI)

[
exp

(
1

1+α Âθ(s, a, s
′)
)
log πψ(a|s)

]
Ê(s,a,s′)∼batch(dI)

[
exp

(
1

1+α Âθ(s, a, s
′)
)]

 , (55)

which is analogous to (24). Here, the self-normalized importance sampling may introduce an addi-
tional bias with mini-batch approximations, but it is well known that the self-normalized importance
sampling provides a consistent estimator [31]. Also, it worked well in practice with moderately large
batch size (e.g. 256) in our experiments. We optimize the parameters (ϕ, θ, ψ) jointly in practice. We
are not using a target network at all. The overall training process is summarized in Algorithm 2.

Algorithm 2 LobsDICE (with function approximation)

Input: state-only demonstrations by experts DE = {(s, s′)i}NE
i=1, state-action demonstrations by

some imperfect agents DI = {(s, a, s′)i}NI
i=1, a learning rate η.

1: Initialize parameter vectors ϕ, θ, ψ.
2: for each gradient step do
3: Sample mini-batches from DE and DI .
4: Compute gradients and perform SGD update:
5: ϕ← ϕ+ η∇ϕJc(ϕ) (Eq. (53))
6: θ ← θ − η∇θJν(θ) (Eq. (54))
7: ψ ← ψ + η∇ψJπ(ψ) (Eq. (55))
8: end for

Output: The imitation policy πψ .

27

H Additional Experiments

H.1 Subsampled expert demonstrations

Existing works on imitation learning [11] conduct experiments where the expert demonstrations are
subsampled. The following figure presents the result when given the subsampled expert demonstra-
tions. LobsDICE still significantly outperforms the baseline algorithms even with the subsampled
expert demonstrations3.

0.0M 0.2M 0.4M 0.6M 0.8M 1M

0
20
40
60
80

100

No
rm

al
ize

d
Re

tu
rn

s

Hopper (100,100,100)

0.0M 0.2M 0.4M 0.6M 0.8M 1M

0
20
40
60
80

100
Walker2d (100,100,100)

0.0M 0.2M 0.4M 0.6M 0.8M 1M

0
20
40
60
80

100
Ant (100,100,100)

0.0M 0.2M 0.4M 0.6M 0.8M 1M

0
20
40
60
80

100
HalfCheetah (400,100,100)

0.0M 0.2M 0.4M 0.6M 0.8M 1M

0
20
40
60
80

100

No
rm

al
ize

d
Re

tu
rn

s

Hopper (100,500,500)

0.0M 0.2M 0.4M 0.6M 0.8M 1M

0
20
40
60
80

100
Walker2d (100,500,500)

0.0M 0.2M 0.4M 0.6M 0.8M 1M

0
20
40
60
80

100
Ant (100,500,500)

0.0M 0.2M 0.4M 0.6M 0.8M 1M

0
20
40
60
80

100
HalfCheetah (400,500,500)

0.0M 0.2M 0.4M 0.6M 0.8M 1M
Training Iterations

0
20
40
60
80

100

No
rm

al
ize

d
Re

tu
rn

s

Hopper (100,1000,1000)

0.0M 0.2M 0.4M 0.6M 0.8M 1M
Training Iterations

0
20
40
60
80

100
Walker2d (100,1000,1000)

0.0M 0.2M 0.4M 0.6M 0.8M 1M
Training Iterations

0
20
40
60
80

100
Ant (100,1000,1000)

0.0M 0.2M 0.4M 0.6M 0.8M 1M
Training Iterations

0
20
40
60
80

100
HalfCheetah (400,1000,1000)

Expert BC BCO DemoDICEfO OPOLO LobsDICE

Figure 5: Performance of LobsDICE and baseline algorithms on various MuJoCo control tasks. We
build state-only expert demonstrations using 50 subsampled trajectories from expert-v2 (subsam-
pling rate is 20).

H.2 Error of inverse dynamics model in MuJoCo domains

In principle, IDM trained with arbitrary demonstrations should be able to predict the expert’s missing
actions accurately in deterministic MDPs. However, in Section 5.2, we observed that the empirical
performance of BCO and DemoDICEfO tends to degrade as the number of imperfect demonstrations
increases (see Figure 2). This is due to the use of function approximation for IDM: given that
the expressive power of a function approximator is limited, the more data unrelated to the expert
demonstrations (i.e. medium-v2 and random-v2) is used for training, the more the prediction
accuracy for the expert data would be adversely affected. Figure 6 shows that the mean squared
error of IDM for expert demonstrations DE increases as the number of non-expert demonstrations
increases.

0.0M 0.2M 0.4M 0.6M 0.8M 1M
Training Iterations

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

M
SE

Hopper (100, Y, Z)

0.0M 0.2M 0.4M 0.6M 0.8M 1M
Training Iterations

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

Walker2d (100, Y, Z)

0.0M 0.2M 0.4M 0.6M 0.8M 1M
Training Iterations

0.000

0.002

0.004

0.006

0.008

0.010
Ant (100, Y, Z)

0.0M 0.2M 0.4M 0.6M 0.8M 1M
Training Iterations

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005
HalfCheetah (400, Y, Z)

(Y, Z) = (100, 100) (Y ,Z) = (500, 500) (Y, Z) = (1000, 1000)

Figure 6: Mean squared error of IDM for expert demonstrations DE . For each task (Y,Z), we
construct imperfect demonstrations using 100 (400 for HalfCheetah), Y , and Z trajectories from
expert-v2, medium-v2, and random-v2, respectively.

3Recently, Li et al. reported that ValueDICE [17] (without target network) significantly underperforms
DAC [16] (with target network) in the subsampled expert trajectories setting due to divergence issue and pointed
to the absence of the target network in ValueDICE as a reason for performance degradation. However, we didn’t
observe any divergence issue due to the absence of the target network, and LobsDICE still performs well even
when the trajectories are subsampled.

28

H.3 Fewer expert demonstrations

In this section, we provide additional experiments with fewer expert demonstrations. Specifically, we
tested LobsDICE when the number of state-only expert demonstrations is 5, 3, and 1, respectively.
The Figure 7 shows that LobsDICE (#exp=3) and LobsDICE (#exp=1) still perform well.

0.0M 0.2M 0.4M 0.6M 0.8M 1M
Training Iterations

0
20
40
60
80

100

No
rm

al
ize

d
Re

tu
rn

s Hopper (100,1000,1000)

0.0M 0.2M 0.4M 0.6M 0.8M 1M
Training Iterations

0
20
40
60
80

100
Walker2d (100,1000,1000)

0.0M 0.2M 0.4M 0.6M 0.8M 1M
Training Iterations

0
20
40
60
80

100
Ant (100,1000,1000)

0.0M 0.2M 0.4M 0.6M 0.8M 1M
Training Iterations

0
20
40
60
80

100
HalfCheetah (400,1000,1000)

Expert LobsDICE (#exp=5) LobsDICE (#exp=3) LobsDICE (#exp=1)

Figure 7: Performance of LobsDICE on various MuJoCo control tasks. We build state-only
expert demonstrations using 1, 3, and 5 trajectories from expert-v2. For each task (X,Y, Z) we
construct imperfect demonstrations using X , Y , and Z trajectories from expert-v2, medium-v2,
and random-v2, respectively. We plot the mean and the standard errors (shaded area) of the
normalized scores over five random seeds.

29

I Experimental Details

I.1 Experimental details for random MDPs

Random MDP generation For MDP M = ⟨S,A, T,R, γ, p0⟩, we first set |S| = 20, |A| = 4, γ =
0.95, p0(s) = 1 for a fixed s = s0. For each (s, a), we samples four different state {s′1, s′2, s′3, s′4}.
Then, we set the transition probability (T (s′1|s, a), T (s′2|s, a), T (s′3|s, a), T (s′4|s, a)) = (1− β)X +
βY , where X ∼ Categorical(0.25, 0.25, 0.25, 0.25) and Y ∼ Dir(1, 1, 1, 1). β ∈ [0, 1] is the
hyperparameter to control transition stochasticity: when β = 0, the transition probability becomes
one-hot vector, i.e., deterministic MDP. In contrast, when β = 1, the transition of MDP becomes
stochastic. Finally, the reward of 1 is only given to a state that minimizes the optimal value at initial
state s0; other states have zero rewards.

Offline dataset generation For each random MDP M , we generate state-only expert
demonstrations by executing a (softmax) expert policy and state-action imperfect demon-
strations by a uniform random policy. We perform experiments for a varying number of
expert demonstrations NE ∈ {10, 100, 1000, 1000} and imperfect demonstrations NI ∈
{1, 3, 10, 30, 100, 300, 1000, 3000, 10000}.

Hyperparameters We compare our tabular LobsDICE with BC, BCO, DemoDICEfO, and OPOLO.
For KL-regularization hyperparameters of DemoDICEfO and LobsDICE, we use α = 0.1.

I.2 Experimental details for MuJoCo control tasks

Hyperparameters BC BCO DemoDICEfO LobsDICE

γ (discount factor) 0.99 0.99 0.99 0.99
α (regularization coefficient) - - 0.1 0.1

learning rate (actor) 3× 10−4 3× 10−4 3× 10−4 3× 10−4

network size (actor) [256, 256] [256, 256] [256, 256] [256, 256]
learning rate (critic) - - 3× 10−4 3× 10−4

network size (critic) - - [256,256] [256, 256]
learning rate (discriminator) - - 3× 10−4 3× 10−4

network size (discriminator) - - [256,256] [256, 256]
learning rate (inverse dynamics) - 3× 10−4 3× 10−4 -
network size (inverse dynamics) - [256,256] [256, 256] -

gradient L2-norm coefficient (critic) - - 1× 10−4 1× 10−4

gradient penalty coefficient (discriminator) - - 0.1 0.1

batch size 512 512 512 512
of expert trajectories 5 5 5 5
of training iterations 1,000,000 1,000,000 1,000,000 1,000,000

Table 1: Configurations of hyperparameters used in our experimental results.

For fair comparison, we use the same learning rate to train actors of BC, BCO, DemoDICEfO, and
LobsDICE. We implement our network architectures for BC, BCO, DemoDICEfO, and LobsDICE
based on the implementation of OptiDICE4. For OPOLO, we use its official implmentation5. We
have tried hyperparameter tuning for OPOLO but never obtained a successful learning curve, show-
ing numerical instability due to using out-of-distribution action values. Vanilla online off-policy
algorithms commonly fail in the offline learning setting. Therefore, we report the results of official
implementation without any modification to network architectures or hyperparameters. For stable
discriminator learning, we use gradient penalty regularization on the r(s, a) and r(s, s′) functions,
which was proposed in [10] to enforce 1-Lipschitz constraint. To stabilize critic training, we add
gradient L2-norm to the critic loss for the regularization. In addition, we use every state s in DI

4https://github.com/secury/optidice
5https://github.com/illidanlab/opolo-code

30

https://github.com/secury/optidice
https://github.com/illidanlab/opolo-code

to define D0, i.e., D0 = {s|(s, a, s′) ∈ DI}, following ValueDICE [17]. Detailed hyperparameter
configurations used for our main experiments are summarized in Table 1.

Evaluation metric For each environment, the normalized score is measured by 100 ×
score−random score

expert score−random score , where the expert score and random score are average returns of tra-
jectories in expert-v2 and random-v2, respectively.

J Generalization to γ = 1

In this section, we generalize LobsDICE for discounted MDPs (γ < 1) to undiscounted MDPs
(γ = 1). Suppose that the stationary distributions d and d̄ satisfy the Bellman flow constraints (7) and
marginalization constraints (8), respectively. When γ = 1, for any constant c ≥ 0, cd and cd̄ also
satisfy the corresponding constraints.
It means that the original constrained optimization problem (6-8) for the stationary distributions d and
d̄ is an ill-posed problem. We tackle this ill-posedness by adding additional normalization constraint∑
s,a d(s, a) = 1 to (6-8):

max
d,d̄≥0

−DKL(d̄(s, s
′)∥d̄E(s, s′))− αDKL(d(s, a)∥dI(s, a))

s.t.
∑
a′
d(s′, a′) = (1− γ)p0(s′) + γ

∑
s,a
d(s, a)T (s′|s, a) ∀s′,∑

a
d(s, a)T (s′|s, a) = d̄(s, s′) ∀s, s′,∑

s,a
d(s, a) = 1.

Using a derivation similar to that from (9) to (11), we obtain the following min-max optimization for
w, w̄, µ, ν, and λ:

min
µ,ν,λ

max
w,w̄≥0

L(w, w̄, µ, ν, λ)

:= L(w, w̄, µ, ν) + λ(1− E(s,a)∼dI [w(s, a)])

= (1− γ)Es0∼p0 [ν(s0)] + E(s,s′)∼d̄I
[
w̄(s, s′)

(
r(s, s′) + µ(s, s′)− log w̄(s, s′)

)]
+ E(s,a)∼dI

[
w(s, a)

(
eµ,ν(s, a)− λ︸ ︷︷ ︸
:=eµ,ν,λ(s,a)

−α logw(s, a)
)]

+ λ, (56)

where λ ∈ R is the Lagrange multiplier for the normalization constraint
∑
s,a d(s, a) = 1. Similar to

Proposition 3.1, we can derive a closed-form solution to the inner maximization of (56):

wµ,ν,λ(s, a) = exp
(
1
αeµ,ν,λ(s, a)− 1

)
and w̄µ(s, s

′) = exp(r(s, s′) + µ(s, s′)− 1).

Then, we can reduce the nested min-max optimization of (56) to a single minimization by plugging
the closed-form solution (wµ,ν,λ, w̄µ) into L(w, w̄, µ, ν, λ):

min
µ,ν,λ

L(wµ,ν,λ, w̄µ, µ, ν, λ) = (1− γ)Es∼p0 [ν(s)]

+ E(s,s′)∼d̄I
[
exp

(
r(s, s′) + µ(s, s′)− 1

)]
+ αE(s,a)∼dI

[
exp

(
1
αeµ,ν,λ(s, a)− 1

)]
+ λ.

In practice, we estimate L(wµ,ν,λ, w̄µ, µ, ν, λ)) using samples from distribution dI . To derive a
sample-based objective, we use analogous derivation in Section 3.5. Sample-based objective can be
represented as

min
µ,ν,λ

L̂(µ, ν, λ) = (1− γ)Ês∈D0
[ν(s)] (57)

+ Êx∈DI

[
exp

(
r(s, s′) + µ(s, s′)− 1

)
+ α exp

(
1
α êµ,ν,λ(s, a, s

′)− 1
)]

+ λ,

where êµ,ν,λ(s, a, s′) = −µ(s, s′) + γν(s′) − ν(s) − λ. Then, the closed-form solution to the
minimization (57) with respect to µ is:

µν,λ(s, s
′) =

1

1 + α

(
− αr(s, s′) + γν(s′)− ν(s)− λ

)
(58)

31

Using the above solution, we obtain the following minimization problem:

min
ν̂,λ̂
L̂(ν̂, λ̂) = (1− γ)Ês∈D0

[ν(s)] + λ̂+ (1 + α)Êx∈DI

[
exp

(
1

1+α Âν̂,λ̂(s, a, s
′)− 1

)]
, (59)

where Âν,λ(s, a, s′) := r(s, s′) + γν(s′) − ν(s) − λ. Finally, similar to Proposition 3.4, we can
obtain the following objective with the same minimum as (59):

min
ν,λ
L̃(ν̃, λ̃) = (1− γ)Ês∈D0

[ν̃(s)] + λ̃+ (1 + α) log Êx∈DI

[
exp

(
1

1+α Âν̃,λ̃(s, a, s
′)
)]

= (1− γ)Ês∈D0
[ν̃(s)] + (1 + α) log Êx∈DI

[
exp

(
1

1+α Âν̃(s, a, s
′)
)]

= min
ν
L̃(ν̃).

Interestingly, the resulting objective is the same as the original objective L̃(ν̃) of (23). Based on this
theoretical result, we compare LobsDICE for γ = 1, denoted by LobsDICE (γ = 1), with LobsDICE
for γ = 0.99, denoted by LobsDICE (γ = 0.99). In Figure 8, LobsDICE (γ = 1) shows good
performance, but LobsDICE (γ = 0.99) is more stable and achieves better performance in practice.

0.0M 0.2M 0.4M 0.6M 0.8M

0
20
40
60
80

100

No
rm

al
ize

d
Re

tu
rn

s

Hopper (100,100,100)

0.0M 0.2M 0.4M 0.6M 0.8M

0
20
40
60
80

100
Walker2d (100,100,100)

0.0M 0.2M 0.4M 0.6M 0.8M

0
20
40
60
80

100
Ant (100,100,100)

0.0M 0.2M 0.4M 0.6M 0.8M

0
20
40
60
80

100
HalfCheetah (400,100,100)

0.0M 0.2M 0.4M 0.6M 0.8M

0
20
40
60
80

100

No
rm

al
ize

d
Re

tu
rn

s

Hopper (100,500,500)

0.0M 0.2M 0.4M 0.6M 0.8M

0
20
40
60
80

100
Walker2d (100,500,500)

0.0M 0.2M 0.4M 0.6M 0.8M

0
20
40
60
80

100
Ant (100,500,500)

0.0M 0.2M 0.4M 0.6M 0.8M

0
20
40
60
80

100
HalfCheetah (400,500,500)

0.0M 0.2M 0.4M 0.6M 0.8M
Training Iterations

0
20
40
60
80

100

No
rm

al
ize

d
Re

tu
rn

s

Hopper (100,1000,1000)

0.0M 0.2M 0.4M 0.6M 0.8M
Training Iterations

0
20
40
60
80

100
Walker2d (100,1000,1000)

0.0M 0.2M 0.4M 0.6M 0.8M
Training Iterations

0
20
40
60
80

100
Ant (100,1000,1000)

0.0M 0.2M 0.4M 0.6M 0.8M
Training Iterations

0
20
40
60
80

100
HalfCheetah (400,1000,1000)

Expert LobsDICE (= 1) LobsDICE (= 0.99)

Figure 8: Performance of LobsDICE (γ = 0.99) and LobsDICE (γ = 1) on various MuJoCo control
tasks. We build state-only expert demonstrations using 5 trajectories from expert-v2. For each task
(X,Y, Z) we construct imperfect demonstrations using X , Y , and Z trajectories from expert-v2,
medium-v2, and random-v2, respectively. We plot the mean and the standard errors (shaded area)
of the normalized scores over five random seeds.

K Computation Resources

We used 10 servers equipped with the following specification:

• CPU: Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz.
• Memory: 32 GB.
• GPU: TITAN V.

L Limitation

Although we demonstrated that LobsDICE successfully recovered the expert’s behavior in the
experiments, it requires the assumption that support of DI covers DE . Relaxing this assumption
remains as a future work.

32

M License

D4RL [6] is licensed under the Apache 2.0

N Social Impact

This work contributes to an algorithmic foundation for imitation learning from observation in an
offline setting. Given that state-only expert demonstrations are much easier to be collected than the
action-labeled expert demonstrations and that the imperfect demonstrations of arbitrary optimality
is also easy to be collected, our method has a potential to be widely adopted in many real-world
applications. On the other hand, this work could adversely affect employment by contributing to the
automation of tasks having done by human experts (e.g. factory automation, autonomous driving).

33

	Introduction
	Preliminaries
	Markov decision process
	Imitation learning and learning from observation

	LobsDICE
	Lagrange dual formulation
	Log ratio estimation via a pretrained discriminator
	Minimax to min: a closed-form solution
	Policy extraction
	Practical algorithm with sample-based approximation

	Related Work
	Experiments
	Random MDPs
	Continuous control tasks (Gym-MuJoCo)

	Conclusion
	Why State-transition Occupancy Matching Instead of State Occupancy Matching?
	LobsDICE for State Occupancy Matching
	Validity of Weighted Behavior Cloning for Policy Extraction
	Challenges of Extending DemoDICE to Offline Learning from Observation
	More Discussions on LobsDICE with Finite Samples
	LobsDICE with sample-based approximation: distribution matching on the MLE MDP
	When will LobsDICE reduce to BCO?

	Theoretical Analysis
	Closed-form solutions
	Surrogate Objective
	Fenchel dual formulation

	Pseudocode of LobsDICE
	Tabular LobsDICE
	Practical LobsDICE (with function approximation)

	Additional Experiments
	Subsampled expert demonstrations
	Error of inverse dynamics model in MuJoCo domains
	Fewer expert demonstrations

	Experimental Details
	Experimental details for random MDPs
	Experimental details for MuJoCo control tasks

	Generalization to =1
	Computation Resources
	Limitation
	License
	Social Impact

