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Abstract
Researchers have applied 3D Lookup Tables (LUTs) in cameras, of-
fering new possibilities for enhancing image quality and achieving
various tonal effects. However, these approaches often overlook the
non-uniformity of color distribution in the original images, which
limits the performance of learnable LUTs. To address this issue, we
introduce a lightweight end-to-end image enhancement method
called Simulated Infrared Fusion Guided Image-adaptive 3D Lookup
Tables (SIRLUT). SIRLUT enhances the adaptability of 3D LUTs by
reorganizing the color distribution of images through the integra-
tion of simulated infrared imagery. Specifically, SIRLUT consists of
an efficient Simulated Infrared Fusion (SIF) module and a Simulated
Infrared Guided (SIG) refinement module. The SIF module leverages
a cross-modal channel attention mechanism to perceive global in-
formation and generate dynamic 3D LUTs, while the SIG refinement
module blends simulated infrared images to match image consis-
tency features from both structural and color aspects, achieving
local feature fusion. Experimental results demonstrate that SIRLUT
outperforms state-of-the-art methods on different tasks by up to
0.88 ∼ 2.25dB while reducing the number of parameters. Code is
available at https://github.com/riversky2025/SIRLUT.

CCS Concepts
• Computing methodologies → Computer vision problems;
Image processing.
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1 Introduction
When taking photos with a camera, overexposure, underexposure,
backlit conditions, and other shooting conditions may cause loss
of highlight details, unclear shadow details, color distortion, or
dark subjects. With the rapid development of deep learning, many
algorithms [11–13, 24] based on deep neural networks have been ap-
plied to image enhancement tasks, particularly in addressing these
issues, achieving satisfactory performance. Compared to traditional
methods [1, 18, 27], deep learning-based approaches improve per-
formance while simplifying the processing pipeline. However, these
methods utilize complex network inference for dense pixel map-
ping, which not only consumes high computational and storage
resources but also fails to meet lightweight requirements and ensure
efficient operations on camera hardware.

Researchers utilize static 3D LUTs for color mapping and sim-
plifying the inference process. Based on the RGB color space and
trilinear interpolation, 3D LUTs achieve more accurate color adjust-
ments, effectively improving the quality and effectiveness of image
enhancement [7, 15, 34, 36, 40, 41]. Zeng et al. [38] first propose
learnable 3D LUTs, achieving image enhancement by generating
adaptive 3D LUTs based on image features. However, the uneven
pixel distribution in the original image reduces the pixel utilization
rate of the learnable 3D LUTs during the sampling process. Zhang
et al. [41] propose an efficient hash-based 3D LUTs method called
HashLUT. Building on the concept of hashing, they further develop
a fast and lightweight image enhancement network. Nevertheless,
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Figure 1: PSNR results v.s the size of parameters of differ-
ent methods for image enhancement on MIT-Adobe FiveK
dataset[2]. Our method achieves the optimal results with the
smallest parameters.

the problem of limited feature extraction ability of the learnable
3D LUTs model due to uneven pixel distribution in original images
has not been solved.

To balance the pixel value distributions of the original image,
several methods increase feature components and adjust sampling
methods to address the problem of uneven pixel distribution [5,
36, 37]. SepLUT [37] improves the utilization of 3D LUTs units
by supplementing the ability of mixed color components with 1D
LUTs separated from color components. AdaInt [36] improves the
performance of 3D LUTs by introducing image adaptive sampling
interval to learn non-uniform 3D LUTs layout. These methods
achieve equalization of the pixel distribution of the original image
features to a certain degree. The performance of previous state-of-
the-art methods is partially shown in Figure 1.

In order to fundamentally solve the problem of uneven pixel
distribution in the original images, we introduce the simulated
infrared modality into the process of color mapping learning for
adaptive 3D LUTs, aiming to obtain a more uniform pixel distri-
bution. As shown in Figure 2, the pixel distribution of the original
images is often concentrated due to the influence of the camera,
which limits the effectiveness of the adaptive 3D LUTs learning
ability and impairs network performance. In contrast, simulated
infrared images reflect intensity information at the pixel level. Their
pixel distribution is uniform, and their structural features can also
serve as semantic-level features to enhance network performance.
Specifically, we design a method called Simulated Infrared Fusion
Guided Image-adaptive 3D Lookup Tables (SIRLUT). SIRLUT con-
sists of a Simulated Infrared Fusion (SIF) dynamic 3D LUTs and
a Simulated Infrared Guided (SIG) image refinement module. SIF
utilizes a cross-modal channel attention mechanism to perceive
global information and generate dynamic 3D LUTs. To address the
problem of inconsistent local details in the image after enhancing
with 3D LUTs, SIG refines the image from both structural and color
perspectives using simulated infrared images. The combination of
global adjustments and local refinement modules enables SIRLUT
to achieve lightweight and efficient image enhancement.

raw image

infrared image

SIR LUT result

Figure 2: The pixel distributions corresponding to the origi-
nal, simulated infrared, and enhanced image are presented.
The pixel values of the original image are mainly concen-
trated below 150. The simulated infrared image has two peaks
in its pixel distribution, resulting in a more uniform distri-
bution. The enhanced image leans towards a fusion of the
original and simulated infrared image.

The main contributions of this paper are as follows:
• We propose an end-to-end multimodal image enhancement
network, SIRLUT, which utilizes simulated infrared modality
to enhance the expressive power of 3D LUTs and improve the
details in the enhanced images. To the best of our knowledge,
this is the first work that employs simulated infrared images
to supplement pixel distribution information in 3D LUT-
based image enhancement.

• Wepropose the SIF and SIGmodules. The SIFmodule achieves
the extraction of global features through spatial channel
transformation and cross-modal channel attention mecha-
nism, while the SIG module conducts structural-consistent
feature matching and local feature fusion for further image
refinement.

• Experimental results on publicly benchmark datasets demon-
strate the proposed image enhancement network signif-
icantly outperforms state-of-the-art image enhancement
methods both quantitatively and qualitatively.

2 Related Work
2.1 Image Enhancement
Deep learning-based image enhancement networks can be divided
into two categories. The first category refers to pixel-to-pixel im-
age enhancement networks based on the U-shape architecture
[29, 35, 42]. These methods have large computational overheads
and are difficult to embed in devices such as cameras. The second
category [14, 24] combines neural networks with physical methods,
using color mapping models to achieve lightweight and fast image
enhancement. Typical color mapping models include affine transfor-
mations [8, 32], curve-fitting functions [9, 17, 24], and 3D Lookup
Tables [36–38]. In recent years, researchers have proposed various
LUT-based image enhancement methods [4, 7, 15, 34, 36, 40, 41].
Zeng et al. [38] first propose a learnable 3D LUTs method, which
utilizes multiple basic 3D LUTs for paired and unpaired learning
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Figure 3: The overview of SIRLUT. The SIRLUT consists of two parts: the Simulated Infrared Fusion (SIF) LUT and the Simulated
Infrared Guided (SIG) detail optimization. The SIRLUT takes the original image 𝐼𝑣 and the simulated infrared image 𝐼𝑟 as inputs.
It utilizes the SIF feature extraction model to generate n weight parameters𝑊𝑖 and LUTs for dynamic mapping to enhance the
image, resulting in the obtained enhanced image 𝐼𝑙 . Finally, 𝐼𝑙 is refined using the SIG method to obtain the final image 𝐼𝑒 .

and uses a CNN to predict the weights of multiple 3D LUTs. Sub-
sequently, these weights are merged into an adaptive 3D LUT for
image enhancement. However, the uniform sampling strategy used
in this method [38] limits the expressive power of 3D LUTs. AdaInt
[36] performs dense sampling in highly nonlinear color ranges and
sparse sampling in nearly linear color ranges, enhancing the ex-
pressive power of 3D LUTs. Some researchers also optimize the
lightweight nature of 3D LUTs themselves. HashLUT [41] utilizes
an efficient hash-based form to adaptively learn HashLUT, han-
dling hash conflicts to solve the memory consumption issue of
3D LUTs in image enhancement. However, the parameter memory
consumption inside 3D LUTs is not significant, and few studies
focus on optimizing the weight prediction parameters of 3D LUTs.
We significantly optimize the network for predicting weights by
combining simulated infrared modality to enrich pixel distribution
information and cross-modal channel attention.

2.2 Multimodal Image Processing
In recent years, multimodal fusion has received extensive research
attention in the field of image processing [22, 23, 28, 43–45]. Cong et
al. [5] achieve high-resolution image harmonization by introducing
semantic foreground and background information and using their
structural information to guide pixel-level optimization. However,
the information provided by semantic segmentation modality is
limited and cannot provide effective pixel distribution and texture
features. Some scholars [19, 23] use more detailed features pro-
vided by infrared images to perform image processing tasks. These
methods fuse visible light images with infrared images, retaining

the thermal radiation intensity features of infrared images and the
fine details of visible light images, thereby producing clear high-
brightness targets and rich image details. RTFNet [30] integrates
visible light images and thermal infrared information, fully utiliz-
ing the advantages of thermal imaging cameras in various lighting
conditions, and achieves accurate semantic segmentation tasks in
complex urban scenes. Wang et al. [31] introduce a novel method to
generate cross-modal paired images for RGB-IR Re-ID tasks, solving
the differences between visible light images and infrared images
and improving the accuracy of person re-identification. Therefore,
infrared images are crucial for visual tasks. In image enhancement
tasks, simulated infrared images have uniform pixel distribution
and rich structural texture, eliminating noise introduced by strong
infrared penetration compared to images captured by real infrared
cameras. Our work introduces simulated infrared images to achieve
a more efficient multi-modal 3D LUTs image enhancement method.

3 Method
3.1 Overall Architecture
As shown in Figure 3, SIRLUT consists of a learnable fusion of sim-
ulated infrared fusion 3D LUTs network and a simulated infrared-
guided refinement. The former comprises a weight prediction back-
bone network for cross-modal fusion features and a trilinear inter-
polation color mappingmodule for 3D LUTs, which captures contex-
tual information through spatial transformation and cross-modal
channel attention mechanism. The latter consists of a multi-modal
structure extraction and a refinement module for local multi-modal
feature fusion synergy. In this section, we will discuss 3D LUTs
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and trilinear interpolation, 3D LUTs with simulated infrared fusion,
simulated infrared guided refinement, and loss function.

3.2 3D LUTs and Trilinear Interpolation
3D LUTs stand for 3D Lookup Tables, which are used in image
processing and color correction to map input colors to output
colors based on three-dimensional grids. 3D LUTs define a cube
grid G consisting of 𝐷3 points, where D represents the number
of sampling points for each color channel, and the usual values
in experiments are 1, 9, 17, 25, and 33. Each point in the grid G{
𝑃 (𝑥,𝑦,𝑧 )

}
𝑥,𝑦, 𝑧 = 0, 1, ..., 𝐷 − 1 defines the input RGB index values{

𝑟 (𝑥,𝑦,𝑧 ) , 𝑔(𝑥,𝑦,𝑧 ) , 𝑏 (𝑥,𝑦,𝑧 )
}
and the color-converted mapped values{

𝑟
′

(𝑥,𝑦,𝑧 ) , 𝑔
′

(𝑥,𝑦,𝑧 ) , 𝑏
′

(𝑥,𝑦,𝑧 )

}
. Given the value of D, the RGB color

space is uniformly discretized into the grid G, and different 3D
LUTs have different color conversion RGB outputs, which is the
learnable parameter of the proposed method, and when D=33, the
number of parameters for a single 3D LUTs is 107.8k(3𝐷3). Color
mapping via 3D LUTs is actually achieved through two basic opera-
tions: positioning and trilinear interpolation. Given the input RGB
color

{
𝑟 (𝑖, 𝑗,𝑘 ) , 𝑔(𝑖, 𝑗,𝑘 ) , 𝑏 (𝑖, 𝑗,𝑘 )

}
, the first step is to index and locate

the position coordinates (𝑖, 𝑗, 𝑘) of the RGB color in the grid G, The
specific description is as follows:

𝑖 =
𝑟 (𝑖,𝑗,𝑘 )
𝑙

, 𝑗 =
𝑔(𝑖,𝑗,𝑘 )
𝑙

, 𝑘 =
𝑏 (𝑖,𝑗,𝑘 )
𝑙

, (1)

𝑙 =
𝐶𝑜𝑙𝑜𝑟𝑚𝑎𝑥

𝐷
, (2)

where 𝐶𝑜𝑙𝑜𝑟𝑚𝑎𝑥 represents the maximum color value, and 𝑙
represents the sampling interval of the sampling grid G. After locat-
ing the input RGB color in grid G position, its adjacent 8 element
points can be used to interpolate the color conversion output values{
𝑟
′

(𝑖, 𝑗,𝑘 ) , 𝑔
′

(𝑖, 𝑗,𝑘 ) , 𝑏
′

(𝑖, 𝑗,𝑘 )

}
through trilinear interpolation. Assuming

point P is located at a certain position in the RGB color grid G, the
eight adjacent vertices of point P are {𝑃0, 𝑃1, ..., 𝑃7}. The formula
for calculating trilinear interpolation is as follows:

𝐶
′

(𝑖, 𝑗,𝑘 ) = (1 − 𝑑𝑟 ) (1 − 𝑑𝑔) (1 − 𝑑𝑏 )𝐺 (𝑃0)
+𝑑𝑟 (1 − 𝑑𝑔) (1 − 𝑑𝑏 )𝐺 (𝑃1)
+𝑑𝑟𝑑𝑔 (1 − 𝑑𝑏 )𝐺 (𝑃2)
+(1 − 𝑑𝑟 )𝑑𝑔 (1 − 𝑑𝑏 )𝐺 (𝑃3)
+(1 − 𝑑𝑟 ) (1 − 𝑑𝑔)𝑑𝑏𝐺 (𝑃4)
+𝑑𝑟 (1 − 𝑑𝑔)𝑑𝑏𝐺 (𝑃5)
+𝑑𝑟𝑑𝑔𝑑𝑏𝐺 (𝑃6)
+(1 − 𝑑𝑟 )𝑑𝑔𝑑𝑏𝐺 (𝑃7),

(3)

where 𝐺 (𝑃𝐾 ) , 𝑘 ∈ [0, 7] represent the RGB color values of
point𝑃𝑘 in grid 𝐺 . 𝑑𝑟 , 𝑑𝑔 , and 𝑑𝑏 are the corresponding channel in-
terpolation weight coefficients, respectively, and 𝐶

′

(𝑖, 𝑗,𝑘 ) represents
the color conversion mapping result.

3.3 3D LUTs with Simulated Infrared Fusion
Deep neural network blocks initially train the learnable simulated
infrared fusion 3D LUTs on n-base 3D LUT blocks. Then, the dy-
namic LUT corresponding to the original image is rapidly inferred
using n weights and n base LUTs. Finally, the dynamic LUTs are
used to compute pixel values for the image on a per-pixel using
trilinear interpolation.

Figure 4: The SIG refinement module achieves local feature
fusion by combining simulated infrared images and match-
ing image consistency features from both structure and color
aspects. It is best viewed on a screen.

Weight prediction backbone network.
To ensure the efficiency of themodel, we propose aweight predic-

tion backbone network, which incorporates a cross-modal channel
attention mechanism to capture global information and generate
dynamic 3D LUTs. This module allows the attention mechanism
to operate at lower resolutions, effectively reducing computational
complexity. We extract global features from the original image and
simulated infrared image through three steps. First, we compress
and transform image features using spatial-to-channel transforma-
tion. Next, we extract contextual features using the cross-modal
channel attention mechanism. Finally, in the third step, we restore
features using channel spatial transformation.

First, we align the resolutions of the original image 𝐼𝑣 and the
simulated infrared image 𝐼𝑟 by utilizing the resize and spatial infor-
mation rearrangement mechanism, resulting in the corresponding
features 𝐹𝑣 and 𝐹𝑟 . The specific description is as follows:

𝐹 = 𝑈𝑛𝑠ℎ𝑢𝑓 𝑓 𝑙𝑒 (𝜆, 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒 (𝐼 )), 𝐼 ∈ {𝐼𝑣, 𝐼𝑟 }, (4)

where 𝜆 represents the conversion ratio used during the spatial
transformation. Then, to reduce computational complexity and en-
sure the efficiency of the network feature extractor, we use a linear
transformation with shared parameters to compress the number of
features in 𝐹𝑣 and 𝐹𝑟 by a factor of 𝜇. The description is as follows:

𝐹𝑒𝑣 , 𝐹
𝑒
𝑟 = 𝐶𝑜𝑛𝑣∗ (𝜇, 𝐹𝑣, 𝐹𝑟 ), (5)

where 𝐹𝑒𝑣 and 𝐹𝑒𝑟 respectively represent the features after com-
pression for 𝐹𝑣 and 𝐹𝑟 . Then, we design a multi-head attention
mechanism guided by simulated infrared for fused feature extrac-
tion. We perform a preceding channel expansion for 𝐹𝑒𝑣 and 𝐹𝑒𝑟
through linear transformations for multi-head attention. The spe-
cific procedure is described as follows:

{𝑄𝑣, 𝐾𝑣,𝑉𝑣} = 𝐶ℎ𝑢𝑛𝑘 (𝐶𝑜𝑛𝑣 (3𝑚, 𝐹𝑒𝑣 )),
{𝐾𝑟 ,𝑉𝑟 } = 𝐶ℎ𝑢𝑛𝑘 (𝐶𝑜𝑛𝑣 (2𝑚, 𝐹𝑒𝑟 )),

(6)

where𝑚 represents the number of heads in themulti-head attention.
We obtain the final query 𝑄𝑣 by performing self-attention on the
features of the original image, and self-attention is applied to the
features of the simulated infrared image to obtain 𝐾𝑟 and 𝑉𝑟 . Then,
we conduct cross-channel attention feature extraction using𝑄𝑣 , 𝐾𝑟 ,
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and 𝑉𝑟 . The calculation of attention is as follows:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇

𝜉
)𝑉 , (7)

where 𝜉 is a learnable parameter. Then we extract features by se-
quentially applying self-attention to the original image and cross-
modal channel attention. The cross-modal multi-head channel at-
tention is described as follows:

𝑍 =Concat(𝐻𝑒𝑎𝑑1, 𝐻𝑒𝑎𝑑2, ..., 𝐻𝑒𝑎𝑑𝑚)
=Attention(Attention(𝑄𝑚𝑣 , 𝐾𝑚𝑣 ,𝑉𝑚𝑣 ), 𝐾𝑚𝑟 ,𝑉𝑚𝑟 ), (8)

where𝑚 represents the number of heads in themulti-head attention.
Then, 𝑍 is obtained by aggregating the parameters using adaptive
average pooling, resulting in 𝐹𝑎𝑣𝑔𝑝𝑜𝑜𝑙 ∈ R𝐶,2,2. Subsequently, a
linear transformation with a stride of 2 is applied to convert the
last two dimensions into one-dimensional features. Finally, a fully
connected layer is used to transform the squeezed image into the
weight matrix𝑊 ∈ R𝑛 for the 3D LUTs.

𝑊 𝑛 = 𝐿𝑖𝑛𝑒𝑎𝑟𝑛 (𝑆𝑞𝑢𝑒𝑒𝑧𝑒 (𝐶𝑜𝑛𝑣 (𝐴𝑣𝑔𝑝𝑜𝑜𝑙 (𝑍 )))), (9)

where 𝑛 represents the number of 3D LUTs base blocks. The length
of the predicted weight vector𝑊 is also 𝑛.

LUT transformation.
We define n learnable LUT base blocks𝐺𝑛 ∈ R𝐷×𝐷×𝐷 . The table

lookup process for the LUT is described in Section 3.2. The LUT
mapping for input image 𝐼𝑙 is as follows:

𝐼𝑙 =

𝑛∑︁
𝑖=1

𝑊𝑖𝐺𝑖 (𝐼𝑣), (10)

where 𝐼𝑙 represents the image after mapping conversion.

3.4 Simulated Infrared Guided Refinement
After the aforementioned processing by the SIF module, the en-
hanced image still fails to adequately capture local features. There-
fore, we design the SIG module. As shown in Fig. 4, the SIG module
achieves the capture of local features by extracting structurally
consistent features between the simulated infrared image and the
original image, as well as performing local feature fusion. The spe-
cific description is as follows:

We adopt shared parameter dilated convolution to learn the
structural consistency between 𝐼𝑣 and 𝐼𝑟 , and utilize the fused fea-
tures to refine the pixels. The extraction of structural consistency
between 𝐼𝑣 and 𝐼𝑟 is described as follows:

𝐺𝑣,𝐺𝑟 = 𝑑𝑖𝑙𝑎𝑡𝑒_𝑐𝑜𝑛𝑣∗ (𝐼𝑣, 𝐼𝑟 ), (11)

where𝐺𝑣 and𝐺𝑟 represent the features after structural alignment.
Then, we perform single-pixel convolution on the concatenated

features of 𝐺𝑣 and 𝐺𝑟 , followed by residual refinement with the
activated and normalized 𝐼𝑙 . Subsequently, we apply a single-pixel
convolution with a kernel size of 1 to the fused features. Next, we
apply the LeakyReLU activation function for non-linear processing
of the outputs and normalize them using InstanceNorm2d. The
specific description is as follows:

𝐼𝑒 = 𝐼𝑙 + Φ(𝐶𝑜𝑛𝑣 ( [𝐺𝑣,𝐺𝑟 ])), (12)
where 𝐼𝑒 represents the final enhanced image, and Φ denotes the
cascaded use of LeakyReLU and InstanceNorm2d.

3.5 Loss Function
The overall framework can be trained end-to-end. Our training loss
function is defined as follows:

L = L𝑟𝑒𝑐𝑜𝑛 + 0.0001 × L𝑠 + 10 × L𝑚, (13)

where L𝑟𝑒𝑐𝑜𝑛 denotes the mean squared error (MSE) loss used as
a reconstruction loss. According to [38], the smoothing term L𝑠
and the monotonicity term L𝑚 serve as regularization terms for
the constraint of the look-up table (LUT).

4 Experiments
4.1 Datasets and Implementation
Datasets for Photo Retouching and Tone Mapping. We eval-
uate the effectiveness of SIRLUT on the publicly available MIT-
Adobe FiveK dataset [2] and the PPR10K dataset [20]. To verify
our proposed SIRLUT, we expand the dataset using existing simu-
lated infrared image generation models [6]. The MIT-Adobe FiveK
dataset [2] contains 5,000 raw format images, and we select the C
version images from manually adjusted five authentic samples for
training. Following convention [3, 37, 38], we divide the dataset
into 4,500 pairs of training samples and 500 pairs of testing sam-
ples. The PPR10K dataset [20] contains 11,161 raw portrait photos,
providing three versions of authentic samples (A/B/C), which are
divided into 8,875 pairs of training samples and 2,286 pairs of test-
ing samples for model validation [20, 36]. Our research involves
photo retouching and tone mapping[39]. We utilize sRGB images
and their corresponding simulated infrared images to evaluate the
photo retouching task on the MIT-Adobe FiveK [2] and PPR10K
datasets [20]. For the tone mapping task, we convert 16-bit CIE
XYZ format images to 8-bit sRGB format and perform performance
validation on theMIT-Adobe FiveK dataset [2]. We adopt evaluation
standards previously used in research [38], including PSNR, SSIM,
and the L2-distance in CIE LAB color space (△𝐸𝑎𝑏 ). On PPR10K [20],
we also include the human-centered evaluation metrics (denoted
by the "HC" superscript).

Implementation and Training Details. We conduct experi-
ments on the RTX 3080Ti graphics processing unit using the Py-
Torch environment [26]. For both datasets, we set the spatial trans-
formation ratio 𝜆 to 4 and the feature compression factor 𝜇 to 8.
During training, we employ the same data augmentation settings as
in [20], and we train the model with a batch size of 1. The training
epochs for the MIT-Adobe FiveK and PPR10K datasets are set to
300 and 100 respectively. We use the Adam optimizer [16], set the
initial learning rate to 2×10−4, and gradually decrease it to 1×10−5
using the cosine annealing strategy [21].

4.2 Comparison with State-of-the-Arts
We compare our method with state-of-the-art photo enhancement
methods. To verify the efficiency of the SIRLUT, we select a large
number of methods based on 3D LUTs. For a fair comparison of
methods based on 3D LUTs, we set the 𝑁𝑠 of LUTs to 33 and the
number of basic blocks𝑀 to 3.

Quantitative Comparison. We quantitatively compare state-
of-the-art methods using the PSNR, SSIM, and △𝐸𝑎𝑏 evaluation
metrics. Table 1 displays the comparison results for photo retouch-
ing task on the MIT-Adobe FiveK dataset[2]. RSFNet[25] adopts
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Figure 5: Qualitative comparison of photo retouching and error maps on the MIT-Adobe FiveK dataset [2]. Our method is
obviously superior to other methods. The error maps are placed at the top-right of each image. Best viewed on screen.

Table 1: Quantitative comparisons on the MIT-Adobe FiveK
dataset [2] for photo retouching. "/" means the results are
absent in the original paper. The best performance is indi-
cated by the color red, while the color blue indicates the
second-best performance. Please note that the visualization
is optimized for color viewing.

Method Param. PSNR↑ SSIM↑ △𝐸𝑎𝑏 ↓
UPE[32] 927.1K 21.88 0.853 10.8
DPE[3] 3.4M 23.75 0.908 9.34

3D LUT[38] 593.5K 25.29 0.923 7.55
SA-3D LUT[33] 4.5M 25.50 / /
SepLUT[37] 119.8K 25.47 0.921 7.54
HashLUT[41] 114.0K 25.50 0.926 7.46

3D-LUT+AdaInt[36] 619.7K 25.49 0.926 7.47
SIRLUT 113.3K 27.25 0.942 6.19

parallel region-specific filters, which may limit the model’s ability
to perform complex and fine adjustments to the image, resulting in
poor image enhancement. SepLUT[37] improves the use of 3D LUTs,
but in some cases, sub-transformations independent of components
may lead to information loss or incompleteness, introducing er-
rors. HashLUT[41] employs an approximation mapping method,
which cannot accurately reflect the relationship between origi-
nal data, and compared with traditional 3D LUTs, the nonlinear
transformation effect is not accurate enough, resulting in limited
enhancement effect. AdaInt[36] alleviates the problem of uneven
pixel value distribution in the original image, but does not funda-
mentally supplement the additional pixel distribution information
required. We supplement the pixel distribution information of the
original image using simulated infrared image with uniformly dis-
tributed pixels and obvious semantic features. It is worth noting

Table 2: Quantitative comparison on the PPR10K dataset
[20] is conducted for portrait photo retouching, where a, b,
and c represent the real data retouched by three experts. "/"
indicates the results are absent in the original paper.

Method E PSNR↑ △𝐸𝑎𝑏 ↓ PSNR𝐻𝐶 ↑ △𝐸𝐻𝐶
𝑎𝑏

↓

3D-LUT[38] a 25.64 6.97 28.89 4.53
3D-LUT+HRP[20] a 25.99 6.76 28.29 4.38

SepLUT[37] a 26.28 6.59 / /
HashLut[41] a 26.34 6.56 / /

3D-LUT+AdaInt[36] a 26.33 6.56 29.57 4.26
SIRLUT a 28.31 5.65 31.48 3.72

3D-LUT[38] b 24.70 7.71 27.99 4.99
3D-LUT+HRP[20] b 25.06 7.51 28.36 4.85

SepLUT[37] b 25.23 7.49 / /
HashLut[41] b 25.42 7.40 / /

3D-LUT+AdaInt[36] b 25.40 7.33 28.65 4.75
SIRLUT b 27.67 5.89 30.82 3.84

3D-LUT[38] c 25.18 7.58 28.49 4.92
3D-LUT+HRP[20] c 25.46 7.43 28.80 4.82

SepLUT[37] c 25.59 7.51 / /
HashLut[41] c 25.65 7.30 / /

3D-LUT+AdaInt[36] c 25.68 7.31 28.93 4.76
SIRLUT c 27.79 6.13 31.03 4.02

that our method uses a shallower backbone network and optimizes
the parameter quantity using SIF. On the MIT-Adobe FiveK dataset,
our method achieves improvements of 1.75dB, 0.016, and 1.27 in
terms of PSNR, SSIM, and △𝐸𝑎𝑏 evaluation metrics respectively,
compared to the state-of-the-art methods, while reducing the pa-
rameter count. As shown in Table 2 and 3, similar conclusions can
be drawn regarding the comparison between photo retouching
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Figure 6: Qualitative comparison of photo retouching and error maps conducted on the PPR10K dataset [20]. It can be found
that the proposed method achieves better performance than other methods. The error maps are placed at the top-right of each
image. It is best viewed on a screen.

Table 3: Quantitative comparison of tone mapping on the
MIT-Adobe FiveK dataset [2]. The best performance is in-
dicated by the color red, while the color blue indicates the
second-best performance. Please note that the visualization
is optimized for color viewing.

Method PSNR↑ SSIM↑ △𝐸𝑎𝑏 ↓
UPE[32] 21.56 0.837 12.29
DPE[3] 22.93 0.894 11.09

HDRNet [8] 24.52 0.915 8.04
CSRNet[10] 25.19 0.921 7.63
3D-LUT[38] 25.07 0.920 7.55

3D-LUT+AdaInt[36] 25.28 0.925 7.48
SepLut[37] 25.43 0.922 7.43
SIRLUT 26.31 0.932 6.74

task on the PPR10K dataset [20] and tone mapping task on the
MIT-Adobe FiveK dataset[2].

Qualitative Comparison. We conduct a qualitative analysis of
state-of-the-art methods on the MIT-Adobe FiveK [2] and PPR10K

Table 4: Ablation analysis of SIF and SIG on the MIT-Adobe
FiveK dataset [2].

SIF SIG PSNR↑ SSIM ↑ △𝐸𝑎𝑏 ↓
× × 24.85 0.914 7.94√ × 26.22 0.928 6.83
× √

25.82 0.926 6.93√ √
27.25 0.942 6.19

datasets [20]. As shown in Figure 5, ourmethod producesmore satis-
factory results in the photo retouching task on theMIT-Adobe FiveK
dataset compared to other methods. Specifically, in the first row,
The performance of RSFNet appears unstable under overexposed or
low-light conditions due to the adoption of parallel region-specific
filters. Our method effectively addresses the problem of underexpo-
sure. In the second row, while SepLUT and AdaInt improve the unit
utilization rate of 3D LUTs by separating color components and
non-uniform interval sampling, they fail to fundamentally solve the
problem of uneven pixel distribution in original images, resulting
in discontinuous transitions in smooth areas. Our method better
handles image shadows caused by uneven illumination. In the third
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row, RSFNet, SepLUT, and AdaInt exhibit poor handling of the
reflection gloss of street lamps and building windows in close-up
shots, demonstrating the superiority of our method in dealing with
backlit shooting scenes. In the last row, the results obtained by the
other methods are dark and lose many details, while our method
preserves more texture details of buildings. As shown in Figure 6,
the results on PPR10K demonstrate the efficiency of our method
in handling portraits with background blurring and depth of field
effects, and we observe that our method retains more background
details, even when the background of the portrait is complex.

4.3 Ablation Studies
In this section, we conduct several ablation experiments on the
photo retouching task on the MIT-Adobe FiveK dataset [2].

Simulated infrared images. To validate the effectiveness of
simulated infrared images in SIRLUT, we gradually incorporate
SIF and SIG into the 3D LUTs baseline on the MIT-Adobe FiveK
dataset [2]. SIF refers to the fusion of simulated infrared modality
during the LUT enhancement process, while SIG pertains to the
introduction of simulated infrared modality during the refinement
process. As shown in Table 4, the first row displays results without
using simulated infrared modality, the second and third rows show
results with the introduction of SIF and SIG modules respectively,
while the last row displays the results obtained from the joint use of
SIG and SIF. It is evident that the introduction of only the SIFmodule
significantly enhances the model’s ability to extract global features
and handle image details. While using only the SIG refinement
module also improves the model’s performance, the effect is not as
significant as the SIF module. However, due to the complementary
nature of SIF and SIG, SIRLUT exhibits significant performance
improvements in both color feature mapping 3D LUTs network and
image refinement.

Simulated infrared fusion strategy. To evaluate the impact of
the simulated infrared modality on the dynamic prediction weights
of 3D LUTs, we conduct a comprehensive analysis of different fusion
strategies on global feature extraction. We compare the influence
of fusion methods based on linear transformation (CNN), spatial
attention, and SIF on themodel. Due to the small local receptive field
of CNN, it cannot effectively capture global features. The spatial
attention mechanism focuses on per-pixel feature extraction but
often overlooks global context, resulting in high computational
complexity and resource consumption. As shown in Table 5, it can
be observed that SIF performs the best in both algorithmic model
and enhancement effects, with the smallest number of parameters.
This is because the simulated infrared modality as a complement
to pixel value distribution information can greatly enhance the
unit utilization rate of 3D LUTs. Additionally, the dynamic weight
prediction guided by cross-modal channel attention avoids long-
range dependencies of receptive fields and a large number of matrix
operations in the global feature extraction process.

Spatial transformation ratio and feature compression fac-
tor. In the structure of our SIF module, we integrate a strategy that
combines spatial dimension transformationwith channel dimension
compression. This approach aims to minimize the computational
cost while improving the operational efficiency of the model. As
shown in Figure 7, spatial transformation plays an important role

Figure 7: Effects of spatial transformation ratio 𝜆 and feature
compression factor 𝜇 on the photo retouching performance
on the MIT-Adobe FiveK dataset [2]. Note: The labels on the
points indicate the size of the parameter of the models.

Table 5: Parameter quantity and effectiveness of different
infrared fusion strategies in photo retouching on MIT-Adobe
FiveK dataset[2].

Method Param. PSNR↑ SSIM↑ △𝐸𝑎𝑏 ↓
CNN 115.1K 26.30 0.928 6.80

Space-att 223.0K 26.35 0.929 6.79
SIF 113.3K 27.25 0.942 6.19

in adjusting the size of the model’s parameters and improving its
performance, compared to the adjustment factors of lambda (𝜆) and
feature compression (𝜇). When 𝜆 is set to 8, an augmented spatial
transformation ratio may impair the resolution of the channel at-
tention mechanism in the context feature extraction process. Even
with 𝜇 adjusted to 8, the performance does not reach the expected
level. Nonetheless, setting 𝜆 and 𝜇 to 4 and 8, respectively, allows
the model to achieve an optimal balance between parameter effi-
ciency and performance. Employing this configuration, our method
attains remarkable outcomes, where the PSNR reaches 27.25dB,
SSIM is 0.942, and the △𝐸𝑎𝑏 value stands at 6.19.

5 Conclusions
In this paper, we propose a novel 3D LUT-based multi-modal image
enhancement network called SIRLUT, which integrates simulated
infrared fusion 3D LUTs and simulated infrared guided refinement
to address the uneven pixel distribution in the original images. The
SIF module achieves efficient 3D LUTs through spatial transforma-
tion and cross-modal channel attention mechanism. Meanwhile,
the SIG module merges structurally consistent features from both
simulated infrared images and the original images, incorporating
local feature fusion for further refinement of the images. The com-
bination of these two modules results in our method exhibiting
exceptional performance and efficiency. Our proposed method not
only achieves a significant visual enhancement effect but also is
suitable for integration into both software and hardware devices
such as cameras, mobile phones, and image processing software.
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