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ABSTRACT

Link prediction, a fundamental task on graphs, has proven indispensable in various
applications, e.g., friend recommendation, protein analysis, and drug interaction
prediction. However, since datasets span a multitude of domains, they could have
distinct underlying mechanisms of link formation. Evidence in existing literature
underscores the absence of a universally best algorithm suitable for all datasets.
In this paper, we endeavor to explore principles of link prediction across diverse
datasets from a data-centric perspective. We recognize three fundamental factors
critical to link prediction: local structural proximity, global structural proximity,
and feature proximity. We then unearth relationships among those factors where
(i) global structural proximity only shows effectiveness when local structural
proximity is deficient. (ii) The incompatibility can be found between feature and
structural proximity. Such incompatibility leads to GNNs for Link Prediction
(GNN4LP) consistently underperforming on edges where the feature proximity
factor dominates. Inspired by these new insights from a data perspective, we
offer practical instruction for GNN4LP model design and guidelines for selecting
appropriate benchmark datasets for more comprehensive evaluations.

1 INTRODUCTION

Graphs are essential data structures that use links to describe relationships between objects. Link
prediction, which aims to find missing links within a graph, is a fundamental task in the graph
domain. Link prediction methods aim to estimate proximity between node pairs, often under the
assumption that similar nodes are inclined to establish connections. Originally, heuristic meth-
ods (Zhou et al., 2009; Katz, 1953) were proposed to predict link existence by employing handcrafted
proximity features to extract important data factors, e.g., local structural proximity and feature
proximity. For example, Common Neighbors(CN) algorithm (Zhou et al., 2009) assumes that node
pairs with more overlapping between one-hop neighbor nodes are more likely to be connected. To
mitigate the necessity for handcrafted features, Deep Neural Networks are utilized to automatically
extract high-quality proximity features. In particular, Graph Neural Networks (GNNs) (Kipf &
Welling, 2017; 2016; Hamilton et al., 2017) become increasingly popular owing to their excellence
in modeling graph data. Nonetheless, vanilla GNNs fall short in capturing pairwise structural infor-
mation (Zhang et al., 2021; Liang et al., 2022), e.g., neighborhood-overlapping features, achieving
modest performance in link prediction. To address these shortcomings, Graph Neural Networks for
Link Prediction(GNN4LP)(Zhang & Chen, 2018; Wang et al., 2022; Chamberlain et al., 2023) are
proposed to incorporate different inductive biases revolving on pairwise structural information.

New designs on GNN4LP models strive to improve vanilla GNN to capture diverse pairwise data
patterns, e.g., local structural patterns (Yun et al., 2021; Wang et al., 2023), the number of paths (Zhu
et al., 2021b), and structural position (Zhang & Chen, 2018). These models have found wide
applicability across a myriad of real-world graph problems from multiple domains, e.g., paper
recommendation, drug interaction prediction, and protein analysis (Kovács et al., 2019; Hu et al.,
2020). A recent benchmark (Li et al., 2023) evaluates the performance of GNN4LP models on datasets
from diverse domains, and finds performance disparity as there is no universally best-performing
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GNN4LP model, observing that even vanilla GCN can achieve best performance on certain datasets.
(AbuOda et al., 2020; Chakrabarti, 2022) reveal similar phenomena across heuristic algorithms. We
conjecture the main reasons for such phenomena are that (i) From a model perspective, different
models often have preferred data patterns due to their distinct capabilities and inductive biases. (ii)
From a data perspective, graphs from different domains could originate from distinct underlying
mechanisms of link formation. Figure 1 illustrates this disparity in the number of CNs on multiple
benchmark datasets1. Notably, edges in the OGBL-PPA and OGBL-DDI datasets tend to have many
CNs. Considering both model and data perspectives, performance disparity becomes evident where
certain models perform well when their preferred data patterns align with particular data mechanisms
on particular datasets, but others do not. This suggests that both model and data perspectives are
significant to the success of link prediction. While mainstream research focuses on designing better
models (Zhang & Chen, 2018; Zhang et al., 2021), we opt to investigate a data-centric perspective
on the development of link prediction. Such a perspective can provide essential guidance on model
design and benchmark dataset selection for comprehensive evaluation.
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Figure 1: Distribution disparity of
Common Neighbors across datasets.

To analyze link prediction from a data-centric perspective, we
must first understand the underlying data factors across different
datasets. To achieve these goals, our study proceeds as follows: (i)
Drawing inspiration from well-established literature (Huang et al.,
2015; McPherson et al., 2001) in network analysis, we pinpoint
three key data factors for link prediction: local structural proximity,
global structural proximity, and feature proximity. Comprehensive
empirical analyses confirm the importance of these three factors.
(ii) In line with empirical analysis, we present a latent space model
for link prediction, providing theoretical guarantee on the effec-
tiveness of the empirically identified data factors. (iii) We conduct
an in-depth analysis of relationships among data factors on the
latent space model. Our analysis reveals the presence of incom-
patibility between feature proximity and local structural proximity.
This suggests that the occurrence of both high feature similarity and high local structural similarity
within a single edge rarely happens. Such incompatibility sheds light on an overlooked vulnerability
in GNN4LP models: they typically fall short in predicting links that primarily arise from feature
proximity. (iv) Building upon the systematic understandings, we provide guidance for model design
and benchmark dataset selection, with opportunities for link prediction.

2 RELATED WORK

Link prediction aims to complete missing links in a graph, with applications ranging from knowledge
graph completion (Nickel et al., 2015) to e-commerce recommendations (Huang et al., 2005). While
heuristic algorithms were once predominant, Graph Neural Networks for Link Prediction (GNN4LP)
with deep learning techniques have shown superior performance in recent years.

Heuristic algorithms, grounded in the principle that similar nodes are more likely to connect,
encompass local structural heuristics like Common Neighbor and Adamic Adar (Adamic & Adar,
2003), global structural heuristics like Katz and SimRank (Jeh & Widom, 2002; Katz, 1953), and
feature proximity heuristics(Nickel et al., 2014; Zhao et al., 2017) integrating additional node features.

GNN4LP is built on basic GNNs (Kipf & Welling, 2016; 2017) which learn single node structural
representation by aggregating neighborhood and transforming features recursively, equipped with
pairwise decoders. GNN4LP models augment vanilla GNNs by incorporating more complicated
pairwise structural information inspired by heuristic methods. For instance, NCNC (Wang et al.,
2023) and NBFNet (Zhu et al., 2021b) generalize CN and Katz heuristics with neural functions to
incorporate those pairwise information, thereby achieving efficiency and promising performance. A
more detailed discussion on heuristics, GNNs, and principles in network analysis is in Appendix A.

1More evidence on other data properties can be found in Appendix E.
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3 MAIN ANALYSIS

In this section, we conduct analyses to uncover the key data factors for link prediction and the
underlying relationships among those data factors. Since underlying data factors contributing to
link formation are difficult to directly examine from datasets, we employ heuristic algorithms as a
lens to reflect their relevance. Heuristic algorithms calculate similarity scores derived from different
data factors to examine the probability of whether two nodes should be connected. They are well-
suited for this analysis as they are simple and interpretable, rooted in principles from network
analysis (Murase et al., 2019; Khanam et al., 2020). Leveraging proper-selected heuristic algorithms
and well-established literature in network analysis, we endeavor to elucidate the underlying data
factors for link prediction.

Organization. Revolving on the data perspective for link prediction, the following subsections are
organized as follows. Section 3.1 focuses on identifying and empirically validating the key data
factors for link prediction using corresponding heuristics. In line with the empirical significance of
those factors, Section 3.2 introduces a theoretical model for link prediction, associating data factors
with node distances within a latent space. Links are more likely to be established between nodes with
a small latent distance. Section 3.3 unveils the relationship among data factors building upon the
theoretical model. We then clearly identify an incompatibility between local structural proximity and
feature proximity factors. Specifically, incompatibility indicates it is unlikely that the occurrence of
both large feature proximity and large local structural proximity within a single edge. Section 3.4
highlights an overlooked limitation of GNN4LP models stemming from this incompatibility.

Preliminaries & Experimental Setup. G = (V, E) is an undirected graph where V and E are the set
of N nodes and |E| edges, respectively. Nodes can be associated with features X ∈ Rn×d, where d is
the feature dimension. We conduct analysis on CORA, CITESEER, PUBMED, OGBL-COLLAB, OGBL-PPA,
and OGBL-DDI datasets (Hu et al., 2020; McCallum et al., 2000) with the same model setting as recent
benchmark (Li et al., 2023). Experimental and dataset details are in Appendix K and J, respectively.

3.1 UNDERLYING DATA FACTORS ON LINK PREDICTION

Motivated by well-established understandings in network analysis (Daud et al., 2020; Wang & Le,
2020; Kumar et al., 2020) and heuristic designs (Adamic & Adar, 2003; Katz, 1953), we conjecture
that there are three key data factors for link prediction.

(1)Local structural proximity(LSP)(Newman, 2001) corresponds to the similarity of
immediate neighborhoods between two nodes. The rationale behind LSP is rooted in the principle of
triadic closure (Huang et al., 2015), which posits that two nodes with more common neighbors have a
higher probability of being connected. Heuristic algorithms derived from the LSP perspective include
CN, RA, and AA (Adamic & Adar, 2003), which quantify overlap between neighborhood node sets.
We mainly focus on common neighbors (CN) in the following discussion. The CN score for nodes i
and j is calculated as |Γ(i)∩Γ(j)|, where Γ(·) denotes the neighborhood set. More analysis on other
related heuristics revolving around LSP, e.g., RA, AA, can be found in Appendix C.5.

(2)Global structural proximity(GSP)(Katz, 1953; Jeh & Widom, 2002) goes beyond
immediate neighborhoods between two nodes by considering their global connectivity. The rationale
behind GSP is that two nodes with more paths between them have a higher probability of being
connected. Heuristic algorithms derived from GSP include SimRank, Katz, and PPR (Brin & Page,
2012), to extract the ensemble of paths information. We particularly focus on the Katz heuristic in the
following discussion. The Katz score for nodes i and j is calculated as

∑∞
l=1 λ

l|paths⟨l⟩(i, j)|, where
λ < 1 is a damping factor, indicating the importance of the higher-order information. |paths⟨l⟩(i, j)|
counts the number of length-l paths between i and j.

(3)Feature proximity(FP)(Murase et al., 2019) corresponds to the feature similarity be-
tween nodes. The rationale behind FP is the principle of feature homophily (Khanam et al., 2020;
Evtushenko & Kleinberg, 2021), which posits two nodes with more similar individual characteristics
have a higher probability of being connected. There are many heuristic algorithms (Tang et al., 2013;
Zhao et al., 2017) derived from the FP perspective. Nonetheless, most of them combine FP in addition
to the above structural proximity, leading to difficulties for analyzing FP solely. Hence, we derive a
simple heuristic called feature homophily (FH) focusing on only feature proximity solely for ease of
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Figure 3: Overlapping ratio between top-ranked edges on different heuristic algorithms. Diagonals
are the comparison between two heuristics within the same factor, while others compare heuristics
from different factors. FP is ignored on OGBL-DDI and OGBL-PPA due to no or weak feature quality.
MRR is selected as the metric. More results on hit@10 metric can be found in Appendix D.

analysis. The FH score between nodes i and j is calculated as dis(xi, xj), where xi corresponds to
the node feature, and dis(·) is a distance function. We particularly focus on FH with cosine distance
function in the following discussion. Notably, details on all the heuristics mentioned above can be
found in Appendix A and B. To understand the importance of those data factors, we aim to answer
the following questions: (i) Does each data factor indeed play a key role in link prediction? (ii) Does
each factor provide unique information instead of overlapping information?
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Figure 2: Performance of heuristics
corresponding to different factors.

We first concentrate on examining the significance of each afore-
mentioned factor for link prediction, based on well-established
principles from network analysis. We exhibit the performance
of heuristic algorithms in Figure 2. We make the following
observations: (i) For datasets from the academic domain, CORA,
CITESEER, PUBMED, and OGBL-COLLAB, we find that heuristics
for different factors can achieve satisfying performance. The
Katz corresponding to the GSP factor consistently outperforms
other heuristics. Explanations of the phenomenon are further
presented in the following Section 3.3. (ii) For OGBL-DDI and
OGBL-PPA datasets, CN heuristic corresponding to the LSP fac-
tor consistently performs best while FH performs poorly. We
conjecture that this is due to low feature quality. For instance,
node features for OGBL-PPA are a one-hot vector corresponding
to different categories. (iii) No single heuristic algorithm consistently outperforms across all datasets,
indicating data disparity; detailed discussions are in Section 4.2. The effectiveness of heuristics is
very data-specific which further highlights the importance of investigating link prediction from a data
perspective.

We further investigate the relationship between heuristics from the same and different data factors.
Details on the heuristic selection are in Appendix B. This includes whether heuristics from the same
data factor provide similar information for link prediction and whether those from different data
factors could offer unique perspectives. To this end, we examine disparities in predictions among
different heuristics. Similar predictions imply that they provide similar information, while divergent
predictions indicate that each factor could provide unique information. Predictions for node pairs can
be arranged in descending order according to the predicted likelihood of them being connected. We
primarily focus on top-ranked node pairs since they are likely to be predicted as links. Thus, they
can largely determine the efficacy of the corresponding algorithm. If two algorithms produce similar
predictions, high-likelihood edges should have a high overlap. Else, their overlap should be low.

Experimental results are shown in Figure 3. Due to the low feature quality, we exclude OGBL-DDI and
OGBL-PPA datasets as we conduct analyses on all three factors. It focuses on the overlapping ratio
between the top ranking (25%) node pairs of two different heuristics either from the same data factor
or different data factors. We make the following observations: (i) Comparing two heuristics from
the same factor, i.e., the diagonal cells, we observe that high-likelihood edges for one heuristic are
top-ranked in the other. This indicates heuristics from the same data factor capture similar information.
(ii) Comparing two heuristics derived from different factors, We can observe that the overlapping
of top-ranked edges is much lower, especially when comparing GSP and FP, as well as LSP and FP.
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Though GSP and LSP factors have a relatively high overlapping in top-ranked edges, the overlapping
is still much smaller than that for heuristics from the same factor. These observations suggest that (i)
selecting one representative heuristic for one data factor could be sufficient as heuristics from the
same factors share similar predictions, and (ii) different factors are unique as there is little overlap in
predictions. More analyses are in Appendix E and F.

3.2 THEORETICAL MODEL FOR LINK PREDICTION BASED ON UNDERLYING DATA FACTORS

In this subsection, we rigorously propose a theoretical model for link prediction based on the important
data factors empirically analyzed above. We first introduce a latent space model and then theoretically
demonstrate that the model reflects the effectiveness of LSP, GSP, and FP factors. All proofs can be
found in Appendix C given space constraints.

The latent space model (Hoff et al., 2002) has been widely utilized in many domains, e.g., sociology
and statistics. It is typically utilized to describe proximity in the latent space, where nodes with
a close in the latent space are likely to share particular characteristics. In our paper, we propose
a latent space model for link prediction, describing a graph with N nodes incorporating both
feature and structure proximity, where each node is associated with a location in a D-dimensional
latent space. Intuitions on modeling feature and structure perspectives are shown as follows. (i)
Structural perspective is of primarily significance in link prediction. In line with this, the latent
space model connects the link prediction problem with the latent node pairwise distance d, where
d is strongly correlated with structural proximity. A small dij indicates two nodes i and j sharing
similar structural characteristics, with a high probability of being connected. (ii) Feature perspective
provides complementary information, additionally considering two nodes with high feature proximity
but located distantly in the latent space should also be potentially connected. In line with this, we
introduce the feature proximity parameter βij in the latent space. A larger βij indicates more likely
for node i and j to be connected. Considering feature and structural perspectives together, we develop
an undirected graph model inspired by (Sarkar et al., 2011). Detailed formulation is as follows:

P (i ∼ j|dij) =


1

1 + eα(dij−max{ri,rj})
· (1− βij) dij ≤ max{ri, rj}

βij dij > max{ri, rj}
(1)

where P (i ∼ j|dij) depicts the probability of forming an undirected link between i and j (i ∼ j),
predicated on both the features and structure. The latent distance dij indicates the structural likelihood
of link formation between i and j. The feature proximity parameter βij ∈ [0, 1] additionally
introduces the influence from the feature perspective. Moreover, the model has two parameters α and
r. α > 0 controls the sharpness of the function. To ease the analysis, we set α = +∞. Discussions
on when α ̸= +∞ are in Appendix C.6. ri is a connecting threshold parameter corresponding to
node i. With α = +∞, 1

1+eα(dij−max{ri,rj})
= 0 if dij > max{ri, rj}, otherwise it equals to 1.

Therefore, a large ri indicates node i is more likely to form edges, leading to a potentially larger
degree. Nodes in the graph can be associated with different r values, allowing us to model graphs
with various degree distributions. Such flexibility enables our theoretical model to be applicable to
more real-world graphs. We identify how the model can reveal different important data factors in link
prediction. Therefore, we (i) derive heuristic scores revolving around each factor in the latent space
and (ii) provide a theoretical foundation suggesting that each score can offer a suitable bound for the
probability of link formation. Theoretical results underscore the effectiveness of each factor.

Effectiveness of Local Structural Proximity (LSP). We first derive the common neighbor (CN)
score on the latent space model. Notably, since we focus on the local structural proximity, the effect of
the features is ignored. We therefore set the FP parameter βij = 0, for ease of analysis. Considering
two nodes i and j, a common neighbor node k can be described as a node connected to both nodes
i and j. In the latent space, it should satisfy both dik < max {ri, rk} and dkj < max {rk, rj},
which lies in the intersection between two balls, V (max {ri, rk}) and V (max {rk, rj}). Notably,
V (r) = V (1)rD is the volume of a radius r, where V (1) is the volume of a unit radius hypersphere.
Therefore, the expected number of common neighbor nodes is proportional to the volume of the
intersection between two balls. Detailed calculations are in Appendix C.1. With the volume in the
latent space, we then derive how CN provides a meaningful bound on the structural distance dij .
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Proposition 1 (latent space distance bound with CNs). For any δ > 0, with probability at least

1 − 2δ, we have dij ≤ 2

√
rmax
ij −

(
ηij/N−ϵ

V (1)

)2/D
, where ηij is the number of common neighbors

between nodes i and j, rmax
ij = max{ri, rj}, and V (1) is the volume of a unit radius hypersphere in

D dimensional space. ϵ is a term independent of ηij . It vanishes as the number of nodes N grows.

Proposition 1 indicates that a large number of common neighbors ηij results in a smaller latent
distance dij , leading to a high probability for an edge connection. We then extend the above analysis
on local structure to global structure with more complicated structural patterns.

Effectiveness of Global Structural Proximity (GSP). We first derive the number of paths between
node i and j on the latent space. Notably, most heuristics on the GSP factor can be viewed as a
weighted number of paths. The key idea is to view each common neighbor node as a path with
a length ℓ = 2, serving as the basic element for paths with a length ℓ > 2. We denote that the
nodes i, j are linked through path of length ℓ, i.e., i = k0 ∼ k1 ∼ . . . ∼ kℓ−1 ∼ kℓ = j.
As we assume each node is only associated with its neighborhood, the probability that the path
P (k0 ∼ k1 ∼ . . . ∼ kℓ−1 ∼ kℓ) exists can be easily bounded by a decomposition of P (k0 ∼ k1 ∼
k2) ·P (k1 ∼ k2 ∼ k3) · · ·P (kℓ−2 ∼ kℓ−1 ∼ kℓ) =

∏ℓ−1
l=1 P (kℓ−1, kℓ, kℓ+1). Notably, each element

is the common neighbor probability discussed in Proposition 1, equivalent to the path with ℓ = 2. We
then calculate the volume of the number of paths and derive how it bound the latent distance dij .
Proposition 2 (latent space distance bound with the number of paths). For any δ > 0, with probability

at least 1− 2δ, we have dij ≤
∑M−2

n=0 rn+2

√
rmax
M −

(
ηℓ(i,j)−b(N,δ)

c(N,δ,ℓ)

) 2
D(ℓ−1)

, where ηℓ(i, j) is the

number of paths of length ℓ between i and j in D dimensional Euclidean space. M ∈ {1, · · · , ℓ− 1}
is the set of intermediate nodes.

Proposition 2 indicates that a large number of paths ηℓ(i, j) results in a smaller latent distance dij ,
leading to a high probability for an edge connection. It demonstrates the effectiveness of GSP factor.

Effectiveness of Feature Proximity (FP). We next focus on the role of FP parameter βij . In particular,
we extend Proposition 1 which ignored the FP with βij = 0, to βij = [0, 1]. This allows distant nodes
in the latent space to be connected with each other if they share similar features. Specifically, two
nodes i, j with latent distance dij > rmax{ri, rj} are connected to each other with a probability βij .
Instead of defining that there is no edge connected with p = 0 when dij > max{ri, rj}, nodes are
instead connected with a probability of p = βij . This provides a connection probability for node pairs
with high FP. Revolving on the additional consideration of FP, we show the proposition as follows:
Proposition 3 (latent space distance bound with feature proximity). For any δ > 0, with probability

at least 1−2δ, we have dij ≤ 2

√
rmax
ij −

(
βij(1−A(ri,rj ,dij))+A(ri,rj ,dij)

V (1)

)2/D
, where βij measures

feature proximity between i and j, rmax
ij = max{ri, rj} and V (1) is the volume of a unit radius

hypersphere in D dimensional Euclidian space. A(ri, rj , dij) is the volume of intersection of two
balls of V (ri) and V (rj) in latent space, corresponding to the expectation of common neighbors.

We can observe that when A (ri, rj , dij) is fixed, a larger βij leads to a tighter bound with close
distance in the latent space. Proposition 3 indicates that a high FP results in a small latent distance
dij , leading to a high probability for an edge connection. Notably, the conclusion could easily extend
two Proposition 2 on global structural proximity with details in Appendix C.4. The above theoretical
results indicate the significance of the three data factors.

3.3 INTRINSIC RELATIONSHIP AMONG UNDERLYING DATA FACTORS

In this subsection, we conduct a rigorous analysis elucidating the intrinsic relationship among different
factors, upon the theoretical model. Our analyses are two-fold: (i) the relationship between structural
factors, i.e., LSP and GSP; and (ii) the relationship between factors focusing on feature and structure,
i.e., FP and LSP, FP and GSP. Proof details are in Appendix C.

The relationship between local and global structural proximity. To consider both local and global
structural factors, we treat the CN algorithm as the number of paths ηℓ(i, j) with length ℓ = 2.
Therefore, analysis between local and global structural factors can be regarded as the influence of
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η(i, j) on different lengths ℓ. The key for the proof is to identify the effect of ℓ by bounding other
terms related with ℓ in Proposition 2, i.e., ηℓ(i, j) and c(N, δ, ℓ). We also ignore the feature effect to
ease the structural analysis.

Lemma 1 (latent space distance bound with local and global structural proximity). For any δ > 0,

with probability at least 1− 2δ, we have dij ≤
∑M−2

n=0 rn + 2

√
rmax
M −

(√
N ln(1/δ)

2 − 1

) 2
D(ℓ−1)

,

where
∑M−2

n=0 rn, rmax
M serve as independent variables that do not change with ℓ.

Given the same number of paths ηℓ with different lengths ℓ, a small ℓ provides a much tighter bound
with close distance in the latent space. The bound becomes exponentially loose with the increase of

ℓ as the hop ℓ in
(√

N ln(1/δ)
2 − 1

) 2
D(ℓ−1)

acts as an exponential coefficient. This indicates that (i)

When both LSP and GSP are sufficient, LSP can provide a tighter bound, indicating a more important
role. (ii) When LSP is deficient, e.g., the graph is sparse with not many common neighborhoods, GSP
can be more significant. The theoretical understanding can also align with our empirical observations
in Section 3.1. Figure 2 illustrates that (i) heuristics derived from GSP perform better on sparse
graphs with deficient common neighbors shown in Figure 1. (ii) The heuristics derived from LSP
perform better on the dense graph, i.e., OGBL-DDI and OGBL-PPA with more common neighbors.
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Figure 4: Performance comparison between
GNN4LP models and SAGE on the OGBL-
COLLAB dataset. Bars represent the perfor-
mance gap on node pairs dominated by fea-
ture and structural proximity, respectively.
Figures correspond to compare FP with GSP
and LSP, respectively

The relationship between structural and feature prox-
imity. Our analysis then focuses on the interplay between
feature and structural proximity. The key for the proof is to
recognize how feature proximity could affect the number
of common neighbors derived from the LSP factor.

Lemma 2 (Incompatibility between LSP and FP factors).
For any δ > 0, with probability at least 1− 2δ, we have
ηij =

c′

1−βij
+N(1+ϵ), where ηij and βij are the number

of common neighbor nodes and feature proximity between
nodes i and j. c′ < 0 is an independent variable that does
not change with βij and ηij . ηij is negatively correlated
with βij .

Lemma 2 demonstrates that node pairs with a large num-
ber of common neighbors ηij tend to have low feature
proximity βij and vice versa. Such findings underscore
the incompatibility between LSP and feature proximity, where it is unlikely that both large LSP
and FP co-exist in a single node pair. It challenges the conventional wisdom, which posits that LSP
tends to connect people, reinforcing existing FP, e.g., connecting people with similar characteristics.
However, our findings suggest that LSP could offset the feature proximity. One intuitive explanation
of such phenomenon from social network literature (Abebe et al., 2022) is that, in contexts with FP,
similar individuals tend to connect. Thus, if nodes with common neighbors (mutual friends) do not
have a link connected, their features may be quite different. The new edge forms between those nodes
with high LSP actually connect individuals with low FP. A similar relationship is also established
between GSP and FP with proof in Appendix C.4.

3.4 AN OVERLOOKED VULNERABILITY IN GNN4LP MODELS INSPIRED FROM DATA FACTORS

In this subsection, we delve into how the incompatibility between structural proximity and feature
proximity affects the effectiveness of GNN4LP models. These models are inherently designed to
learn pairwise structural representation, encompassing both feature and structural proximity. Despite
their strong capability, the incompatibility between structural and feature factors leads to potentially
conflicting training signals. For example, while structural proximity patterns may imply a likely
link between two nodes, feature proximity patterns might suggest the opposite. Therefore, it seems
challenging for a single model to benefit both node pairs with feature proximity factor and those with
the structural ones. Despite most research primarily emphasizing the capability of GNN4LP models
on structural proximity, the influence of incompatibility remains under-explored.
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Figure 5: The original SEAL and the proposed decoupled SEAL architectures. Xfeat and Xdrnl are
the original node feature and the structural embedding via Double-Radius Node Labeling.

To validate our statement, we conduct experiments to compare the performance of vanilla GNNs, e.g.,
SAGE and GCN, with the advanced GNN4LP models including Buddy, NeoGNN, and NCNC. The
fundamental difference between GNN4LP models and vanilla GNNs is that vanilla GNNs only learn
single-node structural representation with limitations in capturing pairwise structural factors while
GNN4LP models go beyond. Such comparison sheds light on examining how the key capacity of
GNN4LP, i.e., capturing pairwise structural factor, behaves along the incompatibility. Comparisons
are conducted on node pairs dominated by different factors, represented as node pairs Es \ Ef and
Ef \ Es with only structural proximity and only feature proximity accurately predicted, respectively.
Es and Ef denote node pairs accurately predicted with structural proximity and feature proximity,
respectively. Experimental results are presented in Figure 4, where the x-axis indicates node pairs
dominated by different underlying factors. The y-axis indicates the performance differences between
GNN4LP models and vanilla GraphSAGE. More results on GCN can be found in Appendix E. A
notable trend is that GNN4LP models generally outperform vanilla GNNs on edges governed by LSP
and GSP while falling short in those on feature proximity. This underlines the potential vulnerability
of GNN4LP models, especially when addressing edges primarily influenced by feature proximity.
This underlines the overlooked vulnerability of GNN4LP models on node pairs dominated by the FP
factor due to the incompatibility between feature and structural proximity.

4 GUIDANCE FOR PRACTITIONERS ON LINK PREDICTION

In this section, we provide guidance for the new model design and how to select benchmark datasets
for comprehensive evaluation, based on the above understandings from a data perspective.

4.1 GUIDANCE FOR THE MODEL DESIGN
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(b) Comparison between
SEAL models and SAGE.

Figure 6: Effectiveness of proposed decoupled SEAL comp.

In Section 3, we highlight the incompatibil-
ity between structural and feature proxim-
ity factors in influencing GNN4LP models.
When both structural and feature factors
come into play simultaneously, there is a
potential for them to provide conflicting
supervision to the model. Such understand-
ing suggests that the model design should
learn the feature proximity factors and pair-
wise structural ones independently before
integrating their outputs, in order to mitigate such incompatibility. In particular, we apply such a
strategy to the SEAL (Zhang & Chen, 2018), a representative GNN4LP model. Different from the
vanilla GNNs only utilizing original node features Xfeat as feature input, it additionally employs
local structural features Xdrnl by double-radius node labeling (DRNL) based on their structural
roles. Xfeat and Xdrnl are concatenated and then forwarded to one single GNN, as depicted in
Figure 5(a). Therefore, the GNN must wrestle with the incompatibility between FP and structural
factors. Guided by the above understanding, we propose the decoupled SEAL, which separates
the original node features Xfeat and local structural features Xdrnl into different GNNs. Each
dedicated GNN could learn either feature patterns or pairwise structural patterns separately. The
decoupled model architecture is depicted in Figure 5(b). Experimental results comparing the original
SEAL and our proposed decoupled SEAL are illustrated in Figure 6(a). Notably, our decoupled
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SEAL consistently outperforms, with gains reaching up to 1.03% on the large OGBL-COLLAB dataset.
Furthermore, Figure 6(b) shows comparisons with GraphSAGE, following the same setting with
Figure 4. The decoupled SEAL demonstrates a reduced performance drop on node pairs dominated
by the FP factor with a larger gain on those by structural factors. Code is available at here.

Table 1: The Hit@10 performance on the newly selected datasets.

CN Katz FH MLP SAGE BUDDY

POWER 12.88 29.85 NA 5.03 ± 0.88 6.99 ± 1.16 19.88 ± 1.37
PHOTO 18.34 7.07 13.78 12.37 ± 4.13 18.61 ± 5.97 18.09 ± 2.52

4.2 GUIDANCE FOR BENCHMARK DATASET SELECTION

With the recognized data factors and their relationships, we enumerate all potential combinations
among different data factors, illuminating the complete dataset landscape. It allows us to categorize
prevalent datasets and pinpoint missing scenarios not covered by those datasets. Consequently,
we introduce new datasets addressing those identified gaps and offer guidance for practitioners on
more comprehensive benchmark dataset selection. In particular, we recognize datasets into four
categories considering two main aspects: (i) From the feature perspective, we verify whether FP
dominates, indicated with decent performance on FH. (ii) From the structural perspective, we verify
whether GSP dominates, indicated by whether a GSP heuristic can provide additional improvement
over LSP (if not, then LSP dominates). Section 3.3 demonstrates that such scenario happens when
LSP is inadequate. Therefore, there are four categories including category 1: both LSP and FP
factors dominate. Category 2: Only LSP factor dominates. Category 3: both GSP and FP factors
dominate. Category 4: Only GSP factor dominates. Evidence in Figure 2 helps to categorize existing
benchmarking datasets. The prevalent datasets like CORA, CITESEER , and PUBMED are in category 3
with both GSP and FP factors dominating, while datasets like OGBL-DDI and OGBL-PPA primarily are
in category 2, focusing on the LSP factor. We can then clearly identify that two significant dataset
categories, 1 and 4, are not covered on existing datasets.

To broaden for a more comprehensive evaluation beyond existing benchmark datasets, we introduce
more datasets to cover these categories . This includes the unfeatured POWER dataset in category 4
and the PHOTO dataset in category 1. The categorizations of these datasets are confirmed through
experimental results illustrated in Table 1. We observe: (i) For the POWER dataset with only GSP
matters, the Katz significantly outperforms other algorithms, even the GNN4LP model, BUDDY. (ii)
Deep models do not show superior performance on both datasets, indicating that success focusing on
existing datasets cannot extend to the new ones, suggesting potential room for improvement. We can
then provide the following guidance for benchmarking dataset selection for practitioners: (i) selecting
algorithms that perform best on the datasets belonging to the same category as the proposed one. (ii)
selecting datasets from their own domain rather than datasets from other domains. To help with that,
we collect most of the existing datasets for link prediction covering most domains including biology,
transportation, web, academia, and social science, assisting in a more comprehensive evaluation
aligning with real-world scenarios. Details on all datasets are in Appendix D and the repository.

5 CONCLUSION

In this work, we explore link prediction from a data perspective, elucidating three pivotal factors: LSP,
GSP, and FP. Theoretical analyses uncover the underlying incompatibility. Inspired by incompatibility,
our paper shows a positive broader impact as we identify the overlooked biased prediction in GNN4LP
models and show the potential solution to address this issue. Our understanding provides guidance
for the new model design and how to select benchmark datasets for comprehensive evaluation. Such
understanding also gains insights for future direction including (1) adding a more careful discussion
on the above fairness issue and (2) designing specific GNN4LP models for datasets in different
dataset categories mentioned in Sec 4.2. Nonetheless, our paper shows minor limitations as we make
the assumption that the feature proximity is an additional noise parameter rather than adaptively
combining that information in the same subspace in theoretical analysis. A more comprehensive
discussion on Limitation, broader impact, and future works are in Appendix G,H, and I.
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A RELATED WORK

Link prediction is a fundamental task in graph analysis. It seeks to determine the probability of a
connection between two nodes in a graph, leveraging both the existing graph topology and node
features. This task plays a critical role in a variety of applications, such as improving knowledge graph
completion (Nickel et al., 2015), enhancing metabolic networks (Oyetunde et al., 2017), suggesting
potential friends in social media platforms (Adamic & Adar, 2003; Gupta et al., 2013), predicting
protein-protein interactions (Kovács et al., 2019), and refining e-commerce recommendations (Huang
et al., 2005). Heuristic algorithms initially dominated, serving as the primary methodology, due to
their simplicity, interpretability, and scalability. Then, GNNs are introduced which leverages the
power of deep learning. It allows for automatic feature extraction with superior performance.

Heuristic algorithms are based on the hypothesis that nodes with higher similarity have an increased
probability of connection. The proximity score between two nodes represents their potential con-
nection probability. This score is tailored to the characteristics of specific node pairs, viewed from
various perspectives. Generally, there are three types of heuristic approaches to measure the proximity
and the formal definition of some representative ones are listed in Table 2. (1) Local structural
heuristics. This category includes four prevalent algorithms: Common Neighbor (CN) (Newman,
2001), Jaccard (Jaccard, 1902), Adamic Adar (AA) (Adamic & Adar, 2003) and Resource Alloca-
tion (RA) (Zhou et al., 2009). These methods are fundamentally based on the assumption that nodes
sharing more common neighbors are more likely to connect. AA and RA are weighted variants of
common Neighbors. Typically, they incorporate node degree information, emphasizing that nodes
with a lower degree have a higher influence. (2) Global structural proximity heuristics. This
category includes algorihms Katz (Katz, 1953), SimRank (Jeh & Widom, 2002), and Personalized
PageRank (PPR) (Brin & Page, 2012) in the graph. They consider the global structural patterns with
the number of paths between two nodes, where more paths indicate high similarity and are more
likely to connect. Specifically, Katz counts the number of all paths between two nodes, emphasizing
shorter paths by penalizing longer ones with a factor. SimRank assumes that two nodes are similar
if they are linked to similar nodes, and PPR produces a ranking personalized to a particular node
based on the random walk. (3) Feature proximity heuristics is available when node attributes are
available, incorporating the side information about individual nodes. (Nickel et al., 2014; Zhao et al.,
2017) combines graph structure with latent features and explicit features for better performance.

Graph Neural Networks Graph Neural Networks (GNNs) have emerged as a powerful technique
in Deep Learning, specifically designed for graph-structured data. They address the limitations of
traditional neural networks in dealing with irregular data structures. GNNs learn node representations
by aggregating neighborhood and transforming features recursively.

Graph Neural Networks (Kipf & Welling, 2017; 2016; Hamilton et al., 2017; Velickovic et al., 2017)
aim to learn high-quality features from data instead of predefined heuristics developed with domain
knowledge. Despite satisfying results in many tasks via utilizing structural information, (Zhang
& Chen, 2018; Zhang et al., 2021; Liang et al., 2022) find that vanilla GNNs are still sub-optimal
suffering from disability on capturing important pairwise patterns for Link Prediction, e.g., Common
Neighborhood. Graph Neural Networks for Link Prediction (GNN4LP) (Zhang & Chen, 2018; Zhang
et al., 2021; Yun et al., 2021; Wang et al., 2022; 2023; Chamberlain et al., 2023; Zhu et al., 2021b)
are then proposed which incorporates different inductive bias to capturing more pairwise information.
SEAL (Zhang & Chen, 2018), Neo-GNN (Yun et al., 2021) and NCNC (Wang et al., 2023) involve
more neighbor-overlapping knowledge. BUDDY (Chamberlain et al., 2023), and NBFNet (Zhu
et al., 2021b) exploit the higher order structural information, e.g., number of paths between nodes.
Nonetheless, advanced GNN4LP models with better effectiveness usually have more complicated
model designs, leading to the efficiency issue. (Yin et al., 2022; 2023; Wu et al., 2021; Zhu et al.,
2022; Kong et al., 2022) are then proposed to improve efficiency via approximating methods, e.g.,
hashing algorithm, A* algorithm, and random walk approximations.

The node embedding models (Yang et al., 2015; Grover & Leskovec, 2016) are graph learning
algorithms used to transform the nodes of a graph into low-dimensional vectors, capturing the
network topology and the node feature properties. This approach learns representations through
data-driven algorithms, enabling effective capturing of complex patterns within the graph structure
and node features for link prediction. For instance, Node2Vec (Grover & Leskovec, 2016) captures
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both local and global structural proximity while TADW (Grover & Leskovec, 2016) [3] captures both
local structural proximity and feature proximity.

Notably, our paper provides a comprehensive analysis with the latent space model to understand
the important data factors for the link prediction task and how different link prediction algorithms
work. The analysis can be used to understand all the above algorithms including graph embedding
algorithms, GNNs, and heuritics in a holistic manner.

Principles in Link Prediction & Network Analysis Over the years, various theories and expertise
knowledge have emerged to understand and predict links in networks. We typically review the
foundational theories shaping the landscape of link prediction and network analysis. Moreover, we
provide a detailed comparison with particular works.

Homophily (Khanam et al., 2020) is a long-standing principle in social network analysis, stemming
from the shared beliefs and thoughts of individuals. It suggests that people with aligned perspectives
are likely to connect with one another, despite potential differences in their social position. (Murase
et al., 2019; Evtushenko & Kleinberg, 2021; Khanam et al., 2020; Currarini et al., 2009; McPherson
et al., 2001) provide further study illustrating how homophily induced different phenomenons in
social networks.

Tradic closure (Huang et al., 2015) is another fundamental concept in social network analysis,
stemming from that friends of friends become friends themselves. It suggests that two individuals,
who have a mutual friend, become connected themselves. (Dong et al., 2017; Rossi et al., 2020;
Huang et al., 2018; Opsahl, 2013) provide further study illustrating how homophily induced different
phenomenons in social networks. (Sarkar et al., 2011) theoretically proves the effectiveness of
heuristics algorithms. The key differences between our work and (Sarkar et al., 2011) are as follow:
1. (Sarkar et al., 2011) assumes nodes are with the same degree in most cases, while our model can
adapt to graphs with all kinds of degree distribution. 2. (Sarkar et al., 2011) only focuses on the
structural perspective while our model considers both effects from feature and structural 3. (Sarkar
et al., 2011) focuses on the deterministic model while the non-deterministic one is largely ignored.

More recently, (Murase et al., 2019; Asikainen et al., 2020; Abebe et al., 2022) focus on investigating
the interplay between the role of the tradic closure and homophily. (Asikainen et al., 2020) first
demonstrate that triadic closure intensifies the impacts of homophily. Nonetheless, (Abebe et al.,
2022) points out that (Asikainen et al., 2020) builds on the existence of sufficient tradic closure
rather than considering the tradic closure and homophily simultaneously. With a modest modification,
(Abebe et al., 2022) finds that tradic closure can introduce individuals to those unlike themselves,
consequently reducing segregation. The key differences between our work and (Abebe et al., 2022)
are as follows: (1) (Abebe et al., 2022) typically focuses on alleviating the effects of segregation (Tóth
et al., 2021) via the tradic closure rather than the link prediction task in our work. (2) (Abebe et al.,
2022) focuses on the typical graph model in social science, while our work aims to understand link
prediction in various domains.

Despite those principles focusing on network analysis, more theories and principles are proposed
revolving around deep learning models, especially for GNN4LP models. (Zhang & Chen, 2018) pro-
poses the γ-decaying heuristic theory indicating that subgraph GNN can capture sufficient structural
information for link prediction. (Zhang et al., 2021) proposes the labeling trick theory indicating
how to identify the most structural node representation. (Zhou et al., 2022) revolves around the size
stability of inductive OOD link prediction problem from a causal perspective.

B DETAILS ON HEURISTIC ALGORITHMS

We then explain more implementation details on those heuristics as follows:

Katz. λ < 1 is a damping factor, indicating the importance of the higher-order information. We
set λ = 0.1 in our implementation. |paths⟨l⟩(i, j)| counts the number of length-l paths between
i and j. We compute the Katz index (Katz, 1953) by approximating the closed-form solution
S = (I − λA)−1 − I with λA + λ2A2 + · · · + λnAn, where S is the score matrix. We utilize
λ = 0.05 and n = 3 in our implementation.

PPR. [πi]j is the stationary distribution probability of j under the random walk from i with restart,
see more details in Brin & Page (2012). We adapt 1e-3 as the stop criterion.
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Table 2: Popular heuristics for link prediction, where Γ(i) denotes the neighbor set of vertex i.

Name Formula Factor

common neighbors (CN) |Γ(i) ∩ Γ(j)| LSP

Adamic-Adar (AA)
∑

k∈Γ(i)∩Γ(j)
1

log |Γ(k)| LSP

resource allocation (RA)
∑

k∈Γ(j)∩Γ(i)
1

|Γ(k)| LSP

Katz
∑∞

l=1 λ
l|paths⟨l⟩(i, j)| GSP

Personal PageRank (PPR) [πi]j + [πj ]i GSP

SimRank γ
∑

a∈Γ(i)

∑
b∈Γ(j)score(i,j)

|Γ(i)|·|Γ(j)| GSP

Feature Homophily (FH) dis(xi, xj) FP

SimRank. We utilize the efficient framework (Zhu et al., 2021a) with the LocalPush SimRank
algorithm (Wang et al., 2019b). Code is available at https://github.com/UISim2020/UISim2020.

FH. It estimates the node feature similarity between a pair of nodes. Different feature distance
metrics can be utilized for estimation. Typically, we include two feature distance metrics: cosine
distance and Euclidean distance.

Double-Radius Node Labeling. It aims to extract the position information based on the source and
target nodes i and j. It can be calculated as: fl(i) = 1 +min(dx, dy) + (d/2)[(d/2) + (d%2)− 1]
where dx = d(i, x), dy = d(y, i). d(i, j) is the node with a distance i to the source node and a
distance j to the target node.

Heuristic selection . In section 3, we majorly focus on one default heuristic for each factor, which
are CN for LSP, Katz for GSP, and FH for FP. Moreover, for experiments in Section 3.1, we make a
comparison between two heuristics from the same factors. The details for the second heuristic are
RA for LSP, PPR for GSP. For FP factor, the default one is with cosine distance while the second one
is with Euclidean distance.

C THEORETICAL ANALYSIS ON THE GRAPH LATENT SPACE MODEL

In Section 3.2, we introduce the latent space model and theoretically verify the effectiveness of
heuristic algorithms derived from three factors: local structural proximity (LSP), global structural
proximity (GSP), and feature proximity (FP). In this section, we provide all the proof details in
Section 3.2 and 3.3 on the signifiance of the data factors and their underlying relationship. In
particular, the following proof is inspired by the latent model proposed in (Sarkar et al., 2011). The
main differences between our model and (Sarkar et al., 2011) are two-fold with better alignment to the
real-world scenario. (1) Our model can easily extend to graphs under arbitrary degree distributions
in (Sarkar et al., 2011) rather than only considering regular graphs with the same node degree. (2)
Our model adds node features into consideration rather than only considering unfeatured graphs
in (Sarkar et al., 2011). Moreover, we provide a deep analysis of the interplay between feature and
structure proximity.

C.1 EXTENDED LATENT SPACE MODEL FOR LINK PREDICTION

To ease the analysis, we utilize the latent space model as the data assumption showing as follows:
Definition 1 (Latent space model for link prediction). The generated nodes are uniformly distributed
in a D dimensional Euclidean space. Each node possesses a subordinate radius r and corresponding
volume V (r). For any nodes i, j, The probability of link formation P (i ∼ j) is determined by the
radius (ri, rj) and distance dij of the nodes at its ends.

1) V (r) = V (1)rD, where V (r) is the volume of a radius r and V (1) is the volume of a unit radius
hypersphere.

2)Deg(i) = NV (ri), where Deg(i) is degree of node i and N is the total number of nodes.
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3) P (i ∼ j|dij) = 1/(1+ eα(dij−max{ri,rj})), where P (i ∼ j|dij) depicts the probability of forming
a unidirectional link between i and j (i ∼ j), α > 0 controls the sharpness of the function and r
determines the threshold.

In order to normalize the probabilities, we assume that all points lie inside a unit volume hypersphere
in D dimensions. The maximum rMAX satisfies V (rMAX) = V (1)rDMAX = 1, i.e., rMAX =

( 1
V (1) )

1/D. For any node i,j in graph, we define the volume of intersection of two balls of V (ri) and
V (rj) as A(ri, rj , dij), which can be bounded using hypersphere as:(

ri + rj − dij
2

)D

≤ A (ri, ri, dij)

V (1)
≤

(
rmax
ij −

(
dij
2

)2
)D/2

(2)

where rmax
ij = max{ri, rj} and Eq.(2) above bridges A(ri, rj , dij) and dij through the volume of

hypersphere.

The latent space model above is well-fitted for link prediction because the distance dij in the model
portrays the probability of forming a link between node i and j, and for a given node, the most likely
node it would connect to is the non-neighbor at the smallest distance. In addition, Deg(i) = NV (ri)
describes the sum of the first-order link neighbors of the node. Our latent space model can be applied
to the dataset where nodes are distributed independently in some latent metric space; given the
positions links are independent of each other.

C.2 THE EFFECTIVENESS OF LOCAL STRUCTURAL PROXIMITY (LSP)

Proposition 1 (latent space distance bound with CNs). For any δ > 0, with probability at least

1 − 2δ, we have dij ≤ 2

√
rmax
ij −

(
ηij/N−ϵ

V (1)

)2/D
, where ηij is the number of common neighbors

between nodes i and j, rmax
ij = max{ri, rj}, and V (1) is the volume of a unit radius hypersphere in

D dimensional space. ϵ is a term independent of ηij . It vanishes as the number of nodes N grows.

Note N (i) as the set of neighbors of node i and let Yk be a random variable depending on the position
of point k, which is 1 if k ∈ N (i) ∩N (j), and 0 otherwise. Therefore, we have

E [Yk | dij ] = P (i ∼ k ∼ j | dij) =
∫
dik,djk

P (i ∼ k | dik)P (j ∼ k | djk)P (dik, djk | dij) d (dij)

= A(ri, rj , dij)
(3)

For the sake of brevity, we denote E [Yk | dij ] as E [Yk]. It can be easy observed that
∑N

k=0 Yk = ηij ,
i.e., the common neighbour number (CN) of node i and j, denoted as ηij here. Through empirical
Bernstein bounds (Maurer & Pontil, 2009), we have

P

[∣∣∣∣∣
N∑
k

Yk/N − E [Yk]

∣∣∣∣∣ ≥
√

2 varN (Y ) log 2/δ

N
+

7 log 2/δ

3(N − 1)

]
≤ 2δ (4)

where varN (Y ) =
ηij(1−ηij/N)

N−1 is the sample variance of Y . Setting ϵ =
√

2 varN (Y ) log 2/δ
N +

7 log 2/δ
3(N−1)

P
[ηij
N

− ϵ ≤ A (ri, rj , dij) ≤
ηij
N

+ ϵ
]
≥ 1− 2δ (5)

Combining Eq. (2) and equation above, we can get the bounds of dij as:

(
ri + rj − dij

2

)D

V (1) ≤ ηij
N

+ ϵ(
rmax
ij −

(
dij
2

)2
)D/2

V (1) ≥ ηij
N

− ϵ

(6)
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i.e.,

ri + rj − 2

(
ηij/N + ϵ

V (1)

)1/D

≤ dij ≤ 2

√
rmax
ij −

(
ηij/N − ϵ

V (1)

)2/D

(7)

The R.H.S of the above equation, i.e., the upper bound of dij decreases as ηij increases. In other
words, the greater CN number ηij of two nodes i,j will cause the upper bound on the distance dij
between them to decrease more, thus indicating the effectiveness of local structural proximity.

Notably, the above theoretical analysis can be easily extended to many other local heuristics, e.g.,
RA, AA (Zhou et al., 2009), which can be viewed as a weighted version for common neighbors. The
key to extending proof to those heuristics is to change the definition of Yk mainly distinguished from
CN by their weight design, can also be proven the existence of similar conclusions. Details show in
section C.5

C.3 THE EFFECTIVENESS OF GLOBAL STRUCTURAL PROXIMITY (GSP)

Proposition 2 (latent space distance bound with the number of paths). For any δ > 0, with probability

at least 1− 2δ, we have dij ≤
∑M−2

n=0 rn+2

√
rmax
M −

(
ηℓ(i,j)−b(N,δ)

c(N,δ,ℓ)

) 2
D(ℓ−1)

, where ηℓ(i, j) is the

number of paths of length ℓ between i and j in D dimensional Euclidean space. M ∈ {1, · · · , ℓ− 1}
is the set of intermediate nodes.

In this session, we analyze how dij can be upper-bounded through the number of simple ℓ-hop paths.
Definition 1. (simple path and set) Given node i, j in graph G(V,E), define a simple path of length
ℓ between i, j as path(i, k1, k2, · · · , kℓ−2, j) such that i ∼ k1 ∼ k2 ∼ . . . kℓ−2 ∼ j and Sℓ(i, j) as
the set of all possible path(i, k1, k2, · · · , kℓ−2, j), {k1, k2, ·, kl−2} ∈ V

Let Y (i, k1, k2, · · · , kℓ−2, j) be a random variable which is 1 if (i, k1, k2, · · · , kℓ−2, j) ∈ Sℓ(i, j)
and 0 else. We denote ηℓ(i, j) as the number of paths of length ℓ between i and j.

ηℓ(i, j) =
∑

k1,...kℓ−2∈S(ℓ−2)

Y (i, k1, . . . , kℓ−2, j | dij) (8)

Our goal is to infer bounds on dij given the observed number of ηℓ(i, j). We first bound the maximum
degree ∆ as follows.

Lemma 1. ∆ < N
(
1 +

√
−2 ln δ/N

)
with probability at least 1− δ.

Proof: The degree Deg(k) of any node k is a binomial random variable with expectation
E[Deg(k)] = NV (rk), where V (rk) is the volume of a hypersphere of radius rk. Thus, us-

ing the Chernoff bound, Deg(k) < NV (rk)
(
1 +

√
−2 ln δ
NV (rk)

)
holds with probability at least

1 − δ. Applying the union bound on all nodes yields the desired proposition, i.e., ∆ <

NV (rMAX)
(
1 +

√
−2 ln δ

NV (rMAX)

)
= N

(
1 +

√
−2 ln δ/N

)
.

Next, we use ∆ to bound the maximum possible value of ηℓ(i, j).
Lemma 2. For any graph with maximum degree ∆, we have: ηℓ(i, j) ≤ ∆ℓ−1.

Proof: This can be proved using a simple inductive argument. If the graph is represented by adjacency
matrix M , then the number of length ℓ paths between i and j is given by M ℓ(i, j). Trivially M2

ij can
be at most ∆. This happens when both i and j have degree ∆, and their neighbors form a perfect
matching. Assuming this is true for all m < ℓ, we have: M ℓ(i, j) =

∑
p M(i, p)M ℓ−1(p, j) ≤

∆ℓ−2
∑

p M(i, p) ≤ ∆ℓ−1

Lemma 3. For ℓ < ∆,
∣∣∣ηℓ (i, j | X1, . . . , Xp, . . . , XN )− ηℓ

(
i, j | X1, . . . , X̃p, . . . XN

)∣∣∣ ≤ (ℓ−
1) ·∆ℓ−2.

Proof: The largest change in ηℓ(·) occurs when node p was originally unconnected to any other
node, and is moved to a position where it can maximally add to the number of ℓ-hop paths between
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i and j (or vice versa). Consider all paths where p is m hops from i (and hence ℓ −m hops from
j . From Lemma 2, the number of such paths can be at most ∆m−1 · ∆ℓ−m−1 = ∆ℓ−2. Since
m ∈ {1, . . . , ℓ− 1} , the maximum change is (ℓ− 1) ·∆ℓ−2.

Define Pℓ(i, j) as the probability of observing an ℓ-hop path between points i and j. Next, we
compute the expected number of ℓ-hop paths.

Theorem 1. E [ηℓ(i, j)] ≤ ∆ℓ−1
∏ℓ−1

p=1 A
(
r, p× r, (dij − (ℓ− p− 1)r)+

)
, where x+ is defined

as max(x, 0).

Proof: Consider an ℓ-hop path between i, j, for clarity of notation, let us denote the distances
di,k1 , dk1,k2 etc. by a1, a2, up to aℓ−1 and radius ri, rk1 , · · · , rj by r0, r1, · · · , rℓ−1. We also denote
the distances djk1

, djk2
, etc. by d1, d2, · · · , dℓ−1. Note r′j = max(rj−1, rj), j ∈ {1, 2, · · · , ℓ− 1}

From the triangle inequality, dℓ−2 ≤ aℓ−1 + aℓ ≤ rℓ−1 + rℓ, and by induction, dk ≤
∑ℓ

m=k+1 rm.

Similarly, d1 ≥ (dij − a1)+ ≥ (dij − ri)+ , and by induction, dk ≥
(
dij −

∑k−1
n=0 rn

)
+

.

Pℓ(i, j) = P (i ∼ k1 ∼ . . . ∼ kℓ−1 ∼ j | dij)
= P

(
a1 ≤ r′1 ∩ . . . ∩ aℓ ≤ r′ℓ−1 | dij

)
=

∫
d1,...,dℓ−2

P
(
a1 ≤ r′1, . . . , aℓ−1 ≤ r′ℓ−1, d1, . . . , dℓ−2 | dij

)
=

∫ rℓ−1+rℓ

dℓ−2=(dij−
∑ℓ−3

n=0 rn)
+

. . .

∫ ∑ℓ
m=2 rm

d1=(dij−r0)+

P (a1 ≤ r′1, d1 | dij) . . . P
(
aℓ−1 ≤ r′ℓ−1, aℓ ≤ r′ℓ | dℓ−2

)
≤ A

(
r′1,

ℓ∑
m=2

rm, dij

)
×A

(
r′2,

ℓ∑
m=3

rm, (dij − r0)+

)
× . . .×A

(
r′ℓ−1, rℓ, (dij −

ℓ−3∑
n=0

rn)+

)

≤
ℓ−1∏
p=1

A

(
r′p,

ℓ∑
m=p+1

rm,

(
dij −

p−2∑
n=0

rn

)
+

)
(9)

Since there can be at most ∆ℓ−1 possible paths (from Lemma 2), the theorem statement follows.

Theorem 2. ηℓ(i, j) ≤

[∏ℓ−1
p=1 A

(
r′p,
∑ℓ

m=p+1 rm,
(
dij −

∑p−2
n=0 rn

)
+

)
+

(ℓ−1)

√
ln(1/δ)

2√
N

(
1+

√
−2 ln δ

N

)
]
·(

N +
√
−2N ln δ

)ℓ−1
with probability at least (1− 2δ).

Proof: From McDiarmid’s inequality (McDiarmid et al., 1989), we have:

ηℓ(i, j) ≤ E [ηℓ(i, j)] + (ℓ− 1)∆ℓ−2

√
N ln(1/δ)

2
(10)

≤ E [ηℓ(i, j)] + ∆ℓ−1

√
N ln(1/δ)

2
(11)

≤ ∆ℓ−1

[
ℓ−1∏
p=1

A

(
r′p,

ℓ∑
m=p+1

rm,

(
dij −

p−2∑
n=0

rn

)
+

)
+

√
N ln(1/δ)

2

]
(12)

≤

[
ℓ−1∏
p=1

A

(
r′p,

ℓ∑
m=p+1

rm,

(
dij −

p−2∑
n=0

rn

)
+

)
+

√
N ln(1/δ)

2

]
·
(
N +

√
−2N ln δ

)ℓ−1

(13)

The inequality above can be rewritten as:

ηℓ(i, j) ≤ c(N, δ, ℓ)

ℓ−1∏
p=1

A

(
r′p,

ℓ∑
m=p+1

rm,

(
dij −

p−2∑
n=0

rn

)
+

)
+ b(N, δ) (14)
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where c(N, δ, ℓ) and b(N, δ) contain coefficients that do not vary with dij . Note rmax
p =

max{r′p,
∑ℓ

m=p+1 rm}, and dij can be upper-bounded through the number of simple ℓ-hop paths
ηℓ(i, j) with Eq. (2).

ηℓ(i, j) ≤ c(N, δ, ℓ)

ℓ−1∏
p=1

rmax
p −


(
dij −

∑p−2
n=0 rn

)
+

2


2

D/2

+ b(N, δ)

= c(N, δ, ℓ)

ℓ−1∏
p=1

rmax
p −

(
dij −

∑p−2
n=0 rn

2

)2
D/2

+ b(N, δ)

≤ c(N, δ, ℓ)

ℓ−1∏
p=1

rmax
M −

(
dij −

∑M−2
n=0 rn
2

)2
D/2

+ b(N, δ) ∃M ∈ {1, · · · , ℓ− 1}

≤ c(N, δ, ℓ)

rmax
M −

(
dij −

∑M−2
n=0 rn
2

)2
D(ℓ−1)/2

+ b(N, δ)

i.e.,

dij ≤
M−2∑
n=0

rn + 2

√
rmax
M −

(
ηℓ(i, j)− b(N, δ)

c(N, δ, ℓ)

) 2
D(ℓ−1)

(15)

Since b is ignorable, we can observe the upper bound decreases as ηℓ(i, j) increases which implies
the effectiveness of GSP as well.

The relationship between global structural proximity (GSP) and local structural proxim-
ity (LSP) :

The detailed proof of the relationship between global and local structural proximity is shown as
follows. The key is to view the CN algorithm as the count on the number of paths ηℓ(i, j) with length
ℓ = 2.

Lemma 4 (latent space distance bound with local and global structural proximity). For any δ > 0,

with probability at least 1− 2δ, we have dij ≤
∑M−2

n=0 rn + 2

√
rmax
M −

(√
N ln(1/δ)

2 − 1

) 2
D(ℓ−1)

,

where
∑M−2

n=0 rn, rmax
M serve as independent variables that do not change with ℓ.

Proof: Replace c and b in Eq. (15), we can obeserve that

dij ≤
M−2∑
n=0

rn + 2

√√√√√rmax
M −

(√
N ln(1/δ)

2
− ηℓ(i, j)(

N +
√
−2N ln δ

)ℓ−1

) 2
D(ℓ−1)

(16)

≤
M−2∑
n=0

rn + 2

√√√√
rmax
M −

(√
N ln(1/δ)

2
−
(

∆

N +
√
−2N ln δ

)ℓ−1
) 2

D(ℓ−1)

(17)

≤
M−2∑
n=0

rn + 2

√√√√√√rmax
M −

√N ln(1/δ)

2
−

 1

1 +
√

−2 ln δ
N

ℓ−1


2
D(ℓ−1)

(18)

≤
M−2∑
n=0

rn + 2

√√√√
rmax
M −

(√
N ln(1/δ)

2
− 1

) 2
D(ℓ−1)

(19)

22



Published as a conference paper at ICLR 2024

Since ℓ in
(√

N ln(1/δ)
2 − 1

) 2
D(ℓ−1)

acts as an exponential coefficient, the upper bound of dij grows

at a surprisingly fast rate as ℓ increases (i.e. the order of the structure’s proximity goes higher), which
makes the effectiveness of structure proximity much weaker.

C.4 THE EFFECTIVENESS OF FEATURE PROXIMITY (FP) & RELATIONSHIP WITH FEATURE
PROXIMITY

Proposition 3 (latent space distance bound with feature proximity). For any δ > 0, with probability

at least 1−2δ, we have dij ≤ 2

√
rmax
ij −

(
βij(1−A(ri,rj ,dij))+A(ri,rj ,dij)

V (1)

)2/D
, where βij measures

feature proximity between i and j, rmax
ij = max{ri, rj} and V (1) is the volume of a unit radius

hypersphere in D dimensional Euclidean space. A(ri, rj , dij) is the volume of intersection of two
balls of V (ri) and V (rj) in latent space, corresponding to the expectation of common neighbors.

For graphs with node features, feature proximity (FP) is also often used as a similarity measure. In
this section, we briefly analyze the effect of FP on dij . Since FP is not directly related to the spatial
concepts of the individuals in the model (e.g., radius r, distance d), we can think of it as a noise
parameter that affects the probability of a connecting edge of two nodes. According to the original
deterministic model, i ∼ j iff dij < max{ri, rj}, it relies almost exclusively on structural proximity.
The introduction of the FP can serve as a noise parameter βij to extend the deterministic model further
into a non-deterministic model, i.e. i ∼ j with probability βij ∈ (0, 1) (if dij > max{ri, rj}), or
with probability 1− βij (otherwise). Now, the probability of having a common neighbor between
node i, j will be Aβij (ri, rj , dij) = βij + (1− βij)A (ri, rj , dij). Substituting Aβij (ri, rj , dij) for
A(ri, rj , dij) in Eq. (2), we have:

(
ri + rj − dij

2

)D

≤ Aβ (ri, rj , dij)

V (1)
≤

(
rmax
ij −

(
dij
2

)2
)D/2

(20)

The upper bound of dij is

dij ≤ 2

√
rmax
ij −

(
βij(1−A (ri, rj , dij)) +A (ri, rj , dij)

V (1)

)2/D

(21)

An increase in FP value βij can reduce the upper bound of dij , which reveals the effectiveness of FP.
Since A (ri, rj , dij) ∈ [0, 1) and β ∈ (0, 1).

The relationship between local structural proximity (LSP) and feature proximity (FP):

Lemma 5 (Incompatibility between LSP and FP factors). For any δ > 0, with probability at least
1− 2δ, we have ηij = c′

1−βij
+N(1 + ϵ), where ηij and βij are the number of common neighbor

nodes and feature proximity between nodes i and j. c′ < 0 is an independent variable that does not
change with βij and ηij . ηij is negatively correlated with βij .

Proof : Combining Eq. (5) and Eq. (21), we have for any δ > 0, with probability at least 1− 2δ,

dij ≤ Udij
= 2

√
rmax
ij −

(
βij + (1− βij)(

ηij

N − ϵ)

V (1)

)2/D

(22)

where ϵ =
√

2 varN (Y ) log 2/δ
N + 7 log 2/δ

3(N−1) , varN (Y ) =
ηij(1−ηij/N)

N−1 is the sample variance of Y , and
ηij represents the common neighbour number between node i and j. Eq. (22) can be rewritten as:

ηij =
c′(Udij

, rmax
ij , N)

1− βij
+N(1 + ϵ) (23)
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where

c′(Udij
, rmax

ij , N) = NV (1)(rmax
ij − (

Udij

2
)2)D/2 −N (24)

≤ NV (1)(rmax
ij − (

dij
2
)2)D/2 −N (25)

< NV (1)
1

V (1)
−N = 0 (26)

Since β ∈ (0, 1), we can learn from Eq. (23) that numerically, ηij decreases as βij increases, and
vice-versa. It indicates that when the ground truth dij is determined, we can learn from Eq. (23) that
there is a conflict between LSP ηij and FP βij : these two cannot be increased at the same time.

The relationship between global structural proximity (GSH) and feature proximity (FP)

After the introduction of feature proximity into the model, we can rewrite Eq. (14) as:

ηℓ(i, j) ≤ c(N, δ, ℓ)

ℓ−1∏
p=1

Aβ

(
r′p,

ℓ∑
m=p+1

rm,

(
dij −

p−2∑
n=0

rn

)
+

)
+ b(N, δ)

= c(N, δ, ℓ)

ℓ−1∏
p=1

[
βij + (1− βij)A

(
r′p,

ℓ∑
m=p+1

rm,

(
dij −

p−2∑
n=0

rn

)
+

)]
+ b(N, δ)

≤ c(N, δ, ℓ)

ℓ−1∏
p=1

βij + (1− βij)

rmax
p −

(
dij −

∑p−2
n=0 rn

2

)2
D/2


+ b(N, δ)

≤ c(N, δ, ℓ)


βij + (1− βij)

rmax
M −

(
dij −

∑M−2
n=0 rn
2

)2
D/2


ℓ−1
+ b(N, δ) ∃M ∈ {1, · · · , ℓ− 1}

(27)
i.e.

dij ≤ Udij =

M−2∑
n=0

rn + 2

√√√√√√rmax
M −


(

ηℓ(i,j)−b(N,δ)
c(N,δ,ℓ)

)1/(ℓ−1)

− 1

1− βij
+ 1


2/D

(28)

i.e.,

βij = 1 +

(
ηℓ(i,j)−b(N,δ)

c(N,δ,ℓ)

)1/(ℓ−1)

− 1

1−

[
rmax
M −

(
Udij

−
∑M−2

n=0 rn

2

)2
]D/2

(29)

Since
(

ηℓ(i,j)−b(N,δ)
c(N,δ,ℓ)

)
> 1, We can learn from Eq. (23) that numerically, βℓ(i, j) decreases as ηij

increases, and vice-versa. It indicates that there is a conflict between GP ηij and FP βij : these two
cannot be increased at the same time.

C.5 THEORETICAL ANALYSIS FOR OTHER LOCAL STRUCTRAL HEURISTICS

Except for common neighbor number(CN), there are still many local heuristics metrics, e.g. RA,
and AA. In this session, we will analyze the relationship between dij and them , which gives a
broader account of the effectiveness of local structural proximity (LSP). We define RA and AA
between node i and j as ηRA

ij =
∑

k∈Γ(x)∩Γ(y)
1

Deg(k) and ηAA
ij =

∑
k∈Γ(x)∩Γ(y)

1
log(Deg(k) . Note

min(Degxy) = mink Deg(k), k ∈ Γ(x)∩Γ(y) and max(Degxy) = maxk Deg(k), k ∈ Γ(x)∩Γ(y).
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For RA, let Yk be a random variable depending on the position of point k, which is Yk = 1
Deg(k) if

k ∈ N (i) ∩N (j), and 0 otherwise. Therefore we have:

E [Yk | dij ] =
∫
k

1

Deg(k)
· P (i ∼ k ∼ j | dij)

=

∫
dik,djk

1

Deg(k)
· P (i ∼ k | dik)P (j ∼ k | djk)P (dik, djk | dij) d (dij)

≤ 1

min(Degxy)
A(ri, rj , dij)

(30)

For the sake of brevity, we denote E [Yk | dij ] as E [Yk]. Similarly, we can obtain:

1

max(Degxy)
A(ri, rj , dij) ≤ E [Yk] ≤

1

min(Degxy)
A(ri, rj , dij) (31)

It can be easy observed that
∑N

k=0 Yk = ηRA
ij , i.e., the RA number of node i and j, denoted as ηRA

ij
here. Through empirical Bernstein bounds (Maurer & Pontil, 2009), we have:

P

[∣∣∣∣∣
N∑
k

Yk/N − E [Yk]

∣∣∣∣∣ ≥
√

2 varN (Y ) log 2/δ

N
+

7 log 2/δ

3(N − 1)

]
≤ 2δ (32)

where varN (Y ) =
ηRA
ij (1−ηRA

ij /N)

N−1 is the sample variance of Y . Setting ϵ =
√

2 varN (Y ) log 2/δ
N +

7 log 2/δ
3(N−1) .

P

[
ηRA
ij

N
− ϵ ≤ E[Yk] ≤

ηRA
ij

N
+ ϵ

]
≥ 1− 2δ (33)

Combining Eq. (2) and equation above, we can get the bounds of dij as:
V (1)

max(Degxy)

(
ri + rj − dij

2

)D

≤
ηRA
ij

N
+ ϵ

V (1)

min(Degxy)

(
rmax
ij −

(
dij
2

)2
)D/2

≥
ηRA
ij

N
− ϵ

(34)

i.e.,

ri + rj − 2

(
ηRA
ij /N + ϵ

V (1)/max(Degxy)

)1/D

≤ dij ≤ 2

√√√√rmax
ij −

(
ηRA
ij /N − ϵ

V (1)/min(Degxy)

)2/D

(35)

In fact, we can make a more accurate approximation in Eq. (30) if the degree distribution of the graph
is known in advance. Similarly, we can provide a proof for AA, with the only difference that Yk in
AA becomes Yk = 1

log(Deg(k)) if k ∈ N (i) ∩N (j), and 0 otherwise.

C.6 NON-DETERMINISTIC CASE FOR LATENT SPACE MODEL

In this section, we extend our previous analysis based on the infinite values of α (α → +∞) in Eq.
(1) with finite α. It could help to generalize our conclusion to more diverse graphs with different
underlying mechanisms.

The core idea underlying almost all of our previous results has been the computation of the probability
of two nodes i and j having a common neighbor. For the deterministic case, this is simply the area of
intersection of two hyperspheres, A(ri, rj , dij). However, in the non-deterministic case, there is no
such intuitive equivalence. Therefore, our primary goal is to find the representation in the latent space
model associated with common neighbor ηij . The analysis is similar with section C.3 Set β = 0
and P (i ∼ j|dij) = 1/

(
1 + eα(dij − rmax

ij )
)

depicts the probability of forming an undirected link
between i and j (i ∼ j), influenced by both feature and structure. From the triangle inequality, we
have dik < dij + djk, and dik > max{dij − djk, djk − dij}.
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Note N (i) as the set of neighbors of node i and let Yk be a random variable depending on the position
of point k, which is 1 if k ∈ N (i) ∩N (j), and 0 otherwise. Therefore, we have:

E [Yk | dij ] = P (i ∼ k ∼ j | dij)

=

∫
P (i ∼ k | dik)P (j ∼ k | djk)P (dik, djk | dij) d (dij)

=

∫ +∞

0

∫ dij+djk

max{dij−djk,djk−dij}

1

1 + eα(dik−rmax
ik )

· 1

1 + eα(djk−rmax
jk )

d (dik) d (djk)

=

∫ dij

0

∫ dij+djk

dij−djk

1

1 + eα(dik−rmax
ik )

· 1

1 + eα(djk−rmax
jk )

d (dik) d (djk) +∫ ∞

dij

∫ dij+djk

djk−dij

1

1 + eα(dik−rmax
ik )

· 1

1 + eα(djk−rmax
jk )

d (dik) d (djk)

≤
∫ ∞

0

∫ +∞

0

1

1 + eα(dik−rmax
ik )

· 1

1 + eα(djk−rmax
jk )

d (dik) d (djk) +∫ ∞

dij

∫ +∞

0

1

1 + eα(dik−rmax
ik )

· 1

1 + eα(djk−rmax
jk )

d (dik) d (djk)

=

(∫ ∞

0

1

1 + eα(dik−rmax
ik )

d (dik) +

∫ ∞

dij

1

1 + eα(dik−rmax
ik )

d (dik)

)
·
∫ +∞

0

1

1 + eα(djk−rmax
jk )

d (djk)

=

(
c1(r

max
ik , α) +

∫ ∞

dij

1

1 + eα(dik−rmax
ik )

d (dik)

)
· c1(rmax

jk , α) (Notation for brevity)

=

(
c1(r

max
ik , α) + log

(
1 + eα·r

max
ik

eα(1+2dij)

))
· c1(rmax

jk , α)

= e1(r
max
ik , rmax

jk , α) ·
(
e2(r

max
ik , rmax

jk , α)− (1 + 2dij)
)

(Notation for brevity)
(36)

where e1(r
max
ik , rmax

jk , α), e2(r
max
ik , rmax

jk , α) > 0 are independent items which do not vary with dij .

For the sake of brevity, we denote E [Yk | dij ] as E [Yk]. It can be easy observed that
∑N

k=0 Yk = ηij ,
i.e., the common neighbour number (CN) of node i and j, denoted as ηij here. Through empirical
Bernstein bounds (Maurer & Pontil, 2009), we have:

P

[∣∣∣∣∣
N∑
k

Yk/N − E [Yk]

∣∣∣∣∣ ≥
√

2 varN (Y ) log 2/δ

N
+

7 log 2/δ

3(N − 1)

]
≤ 2δ (37)

where varN (Y ) =
ηij(1−ηij/N)

N−1 is the sample variance of Y . Setting ϵ =
√

2 varN (Y ) log 2/δ
N +

7 log 2/δ
3(N−1) .

P
[ηij
N

− ϵ ≤ E [Yk] ≤
ηij
N

+ ϵ
]
≥ 1− 2δ (38)

Combining Eq. (36) and Eq. (38), we can further obtain that for any δ > 0, with probability at least
1− 2δ,

ηij
N

− ϵ ≤ E [Yk] ≤ e1(r
max
ik , rmax

jk , α) ·
(
e2(r

max
ik , rmax

jk , α)− (1 + 2dij)
)

(39)

i.e.,

dij ≤
ηij/N − ϵ

2e1(rmax
ik , rmax

jk , α)
+

1

2

(
1− e2(r

max
ik , rmax

jk , α)
)

(40)

From the above analysis, we can obtain two conclusions in the non-deterministic model (finite α) : 1)
An analogous proposition 1, which centers on the fact that the upper bound of dij decreases as ηij
increases. 2) We have succeeded in finding an upper bound on E [Yk] (with dij) in the latent space
model, which allows us to similarly obtain all the conclusion of the deterministic model, i.e., the
theoretical analyses derived from our model are not constrained by α.
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D DESCRIPTIONS ON MORE DATASETS

To ensure the diversity and completeness of our analysis, we collect datasets from many different
domains, e.g., biology (Watts & Strogatz, 1998; Zhang et al., 2018; Von Mering et al., 2002; Oughtred
et al., 2019), transport (Batagelj & Mrvar, 2006; Watts & Strogatz, 1998), web (Ackland et al., 2005;
Leskovec et al., 2009; Yang & Leskovec, 2012), academic (Newman, 2006; Leskovec et al., 2007;
2005; Yang & Leskovec, 2012) and social networks (Leskovec & Mcauley, 2012; Leskovec et al.,
2010; Richardson et al., 2003). With the domain diversity, the graphs in our datasets also cover a
large range of types and sizes. Their types include the weighted and the unweighted, the directed and
the undirected. The number of nodes in graphs varies from 102 to 106, while the number of edges
varies from 103 to 107. Below is a detailed description of the datasets used:

Selected datasets We first present the selected datasets with ignored factors in the existing bench-
marking datasets as mentioned in Section 4.2. The statistics of selected domain datasets are listed in
table 3. Power (Watts & Strogatz, 1998) is an electrical grid of western US. Each node represents a sta-
tion, and each edge represents a power line between two connected stations. Amazon-photo (Shchur
et al., 2018) is a portion of the Amazon co-purchase graph (McAuley et al., 2015) in which nodes
symbolize products. The presence of an edge between two nodes suggests that these products are
often purchased together. The features of each node are derived from product reviews using a
bag-of-words encoding. Reddit (Zeng et al., 2019) is an undirected graph from the online discussion
forum. The nodes represent a post, while the edges indicate posts commented by the same user.
The node features the bag-of-word representation of the forum. Flicker (Zeng et al., 2019) is an
undirected graph originating from NUS-wide. The nodes represent one image uploaded to Flickr,
while the edges indicate two images share some common properties (e.g., same geographic location,
same gallery, comments by the same user, etc.). The node features the 500-dimensional bag-of-word
representation of the images provided by NUS-wide.

Table 3: Selected Datasets Statistics.

Power Reddit Amazon Photo Flicker

#Nodes 4,941 232,965 7,650 334,863
#Edges 6,594 114,615,892 238,162 899,756

#Feature NA 602 745 500
Mean Degree 2.67 98.38 6.21 5.69

Split Ratio 80/10/10 80/10/10 80/10/10 80/10/10
Domains Transport Social Web Social

Table 4: Web Domain Datasets Statistics.

PB Email-Enron Amazon Photo Amazon Google

#Nodes 1,222 36,692 7,650 334,863 875,713
#Edges 16,714 183,831 238,162 899,756 5,105,039

Mean Degree 27.36 10.02 6.21 5.69 116.49
Split Ratio 80/10/10 80/10/10 80/10/10 80/10/10 80/10/10
Domains Web Web Web Web Web

Biology Domain C.ele (Watts & Strogatz, 1998) is an undirected and unweighted neural network
of C. elegans. The nodes represent neurons and each edge represents there exists a pathway between
two connected neurons. E.coli (Zhang et al., 2018) is an undirected, unweighted metabolic network
in E. coli. The nodes represent participating metabolites, and the edges indicate that two connected
metabolites can interact. Yeast (Von Mering et al., 2002) is an undirected and unweighted protein-
protein interaction network in yeast. The nodes represent different kinds of proteins and the edges
indicate two proteins can interact. The statistics of biology domain datasets are listed in table 5.
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Transport Domain USAir (Batagelj & Mrvar, 2006) is a weighted, directed network of US Airlines,
in which nodes represents airports while weighted edges indicate airline frequency between two
airports. Power (Watts & Strogatz, 1998) is an electrical grid of western US. Each node represents
a station, and each edge represents a power line between two connected stations. The statistics of
transport domain datasets are listed in table 6.

Web Domain PB (Ackland et al., 2005) is a directed network of US political blogs, where the
nodes represent blogs and the directed edges represent links from one blog to another. Email-
Enron (Leskovec et al., 2009) is a directed, unweighted graph covering around half a million emails.
The nodes represent email addresses, and the edges indicate that an address sends an email to another.
Amazon (Yang & Leskovec, 2012) is an undirected and unweighted graph constructed by Amazon
shopping data. The nodes represent products while the edges indicate two connected nodes are used
to be bought together. Google (Leskovec et al., 2009) is a directed, unweighted graph of website
hyperlinks. The nodes represent websites, while the edges indicate that a website has a link to another.
The statistics of web domain datasets are listed in table 4.

Academic Domain NS (Newman, 2006) is an unweighted and undirected network of collaboration
of researchers in network science, where nodes represent scientists and edges represent collaborating
relationships. Ca-AstroPh (Leskovec et al., 2007) is an undirected, unweighted collaboration
network from the e-print arXiv and covers scientific collaborations between authors papers submitted
to Astro Physics category. The nodes represent authors and the edges represent the co-authorship.
Ca-CondMat (Leskovec et al., 2007) is an undirected, unweighted collaboration network from the
e-print arXiv and covers scientific collaborations between authors papers submitted to Condense
Matter category. The nodes represent authors and the edges represent the co-authorship. Cit-
HepPh (Leskovec et al., 2005) is a directed and unweighted citation graph from the e-print arXiv.
The nodes represent papers and the edges indicate that a paper is cited by another. DBLP (Yang
& Leskovec, 2012) is an undirected, unweighted collaboration network from the computer science
domain. The nodes represent authors and the edges represent the co-authorship. The statistics of
academic domain datasets are listed in table 7.

Social Domain Facebook (Leskovec & Mcauley, 2012) is a undirected, unweighted social network.
The nodes represent users, and the edges represent a friendship relation between any two users.
Vote (Leskovec et al., 2010) is a directed, unweighted graph of a wiki vote. The nodes represent
participants, while the edges indicate the participants vote for one another. Epinions (Richardson
et al., 2003) is a directed, unweighted who-trust-whom online social network on which users could
decide whether to "trust" each other. Each node represents a user, and each edge indicates whether a
user trusts another or not. Slashdot (Leskovec et al., 2010) is an directed, weighted social network.
The nodes represent users, while the edges indicate whether the user thinks another is a friend or
foe. The statistics of social domain datasets are listed in table 8. Reddit (Zeng et al., 2019) is an
undirected graph from the online discussion forum. The nodes represent a post, while the edges
indicate posts commented by the same user. The node features the bag-of-word representation of the
forum. Flicker (Zeng et al., 2019) is an undirected graph originating from NUS-wide. The nodes
represent one image uploaded to Flickr, while the edges indicate two images share some common
properties (e.g., same geographic location, same gallery, comments by the same user, etc.). The
node features the 500-dimensional bag-of-word representation of the images provided by NUS-wide.
Amazon-photo (Shchur et al., 2018) is a portion of the Amazon co-purchase graph (McAuley et al.,
2015) in which nodes symbolize products. The presence of an edge between two nodes suggests
that these products are often purchased together. The features of each node are derived from product
reviews using a bag-of-words encoding.

E ADDITIONAL RESULTS IN MAIN ANALYSIS

Additional analysis on whether heuristics offer unique perspectives In Section 3.1, we conduct
an analysis on the complementary effect of different factors. Additional results on Cora and CiteSeer
are shown in Figure 7. More results with Hit@10 metric can be found in Figures 8 and 9. Similar
observations can be found.
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Table 5: Biology Domain Datasets Statistics.

C.ele E.coli Yeast

#Nodes 297 1,805 2,375
#Edges 2,148 14,660 11,693

Mean Degree 14.46 12.55 9.85
Split Ratio 80/10/10 80/10/10 80/10/10
Domains Biology Biology Biology

Table 6: Transport Domain Datasets Statistics.

USAir Power

#Nodes 332 4,941
#Edges 2,126 6,594

Mean Degree 12.82 2.67
Split Ratio 80/10/10 80/10/10
Domains Transport Transport

Additional analysis on the overlooked weakness in GNN4LP models In Section 3.4, we conduct
an analysis that find the overlooked weakness in GNN4LP models. Additional comparison results
with GraphSAGE are shown in Figure ??. Results of the comparison with GCN are shown in
Figure 10. Similar observations can be found.

Data Analysis In section 1, we exhibit the data disparity via the distribution of CN scores on
different datasets. In this section, we provide more analysis across GSP, LSP, and FP factors in
Figure 11. Similar data disparities can be found. Similar observations can be found.

F ADDITIONAL ANALYSIS AMONG DATA FACTORS

In Section 3.1, we analyze the significance of link prediction and the complementary effect among
them. In this section, we provide further analysis for integrating all these factors for a holistic view.
We ultimately investigate whether those data factors could provide a complete view for link prediction
with no neglected factors. Typically, we examine whether heuristics derived from different data
factors share similar hard negative pairs. The hard negative pairs, the top-ranked negative pairs, pose
the main obstacle to link prediction. The negative pair set can be denoted as Ei where i indicates the
i-th heuristic algorithm. We conduct experiments to examine the proportion of hard negative edges
remaining after including more data factors. The experimental results are shown in Figure 12. The
y-axis is the proportion of remaining hard negative edges. It can be calculated as |∩i∈SEi|

|E0| , where S is
the set of heuristic algorithms, E0 is the hard negative edges of the basis heuristic algorithm. The
x-axis indicates heuristic algorithms derived from different data factors. Looking x-axis from left
to right, we gradually add new heuristics into the candidate heuristic set, beginning with a single
basic algorithm. We can find that when adding each heuristic with a new factor, e.g., adding CN
algorithm, the ideal performance increases substantially, indicating the significance of each factor
and its complementary effects. Such observations indicate a complete view of those three factors
with no factor neglected.

G LIMITATION

It is important to acknowledge certain limitations in our work despite our research providing valuable
insights on unveiling the underlying factors across different datasets for the link prediction. Notably,
there are a series of heuristic algorithms revolving around each factor while we only focus on a few
typical ones. To this end, we show experimental results in Section 3.1. It provides a more concrete
discussion on the overlapping of heuristic algorithms revolving around the same factors. Nonetheless,
there may still remain potential for some ignored heuristic algorithms.
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Figure 7: Overlapping ratio between top ranking edges (top 25%) on different heuristic algorithms.
Diagonals are the comparison between two heuristics within the same factor, while others compare
between heuristics derived from different factors. Experiments are conducted on the hit@10 metric
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Figure 8: Overlapping ratio between top ranking edges (top 25%) on different heuristic algorithms
utilizing Hit@10 metric. Experiments are conducted on Cora, Citeseer, Pubmed and Ogbl-collab.
Diagonals are the comparison between two heuristics within the same factor, while others compare
between heuristics derived from different factors.
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Table 7: Academic Domain Datasets Statistics.

NS Ca-AstroPh Ca-ConMat Cit-HepPh DBLP

#Nodes 1,589 18,772 23,133 34,546 317,080
#Edges 2,742 5,105,039 93,497 421,578 1,049,866

Mean Degree 3.45 543.90 8.08 24.41 6.62
Split Ratio 80/10/10 80/10/10 80/10/10 80/10/10 80/10/10
Domains Academic Academic Academic Academic Academic

Table 8: Social Domain Datasets Statistics.

Facebook Vote Epinions Slashdot Reddit Flickr

#Nodes 4,039 7,115 75,879 82,140 232,965 89,250
#Edges 88,234 103,689 508,837 549,202 114,615,892 925,872

Mean Degree 43.69 29.15 13.41 13.37 98.38 20.75
Split Ratio 80/10/10 80/10/10 80/10/10 80/10/10 80/10/10 80/10/10
Domains Social Social Social Social Social Social

In order to facilitate a more feasible theoretical analysis, we have made several assumptions, the most
significant one is that we separately examine the effect from feature and structure. Typically, we
model the feature proximity as an additional noise parameter. The correlation between feature and
structure perspectives is only analyzed on the conflict on their effects on link prediction. Such an
assumption is subject to a notable drawback since it ignores the correlation between features and
existing structural information. It restricts the generality of our theoretical analysis. Moreover, when
analyzing the effectiveness of global structural proximity with the number of paths rather than the
number of random walks. Paths are deterministic and non-repetitive sequences connecting two points,
while random walks are probabilistic sequences with repeat. Extension to the random walks should
be the next step.

Our current findings lay a strong foundation for further exploration. It is worth mentioning that
our theoretical analysis predominantly focuses on a data perspective. We only show an empirical
comparison between vanilla GNN and GNN4LP models, while lacking theoretical analysis from a
model perspective. The major obstacle is that the GNN4LP model design is too diverse, making it
difficult to analyze comprehensively.

We hope that these efforts will contribute significantly to the Link Prediction research community.
Moving forward, we aspire to broaden our findings to encompass more advanced GNN4LP algorithm
design, with particular emphasis on the conflict effects on feature similarity and structural similarity.
Besides, the guidance we provided on the dataset selection depends entirely on the existing but
ignored datasets. We acknowledge that there may still be graphs with distinguishing properties from
domains not considered in our work.

H BROADER IMPACT

Link prediction is one of the fundamental tasks with multiple applications in the graph domain.
Recently, various GNN4LP models have been proposed with state-of-the-art performance. A key
aspect of GNN4LP models is to capture pairwise structural information, e.g. neighborhood over-
lapping features. In this study, we find that, despite GNN4LP models being more expressive to
capture pairwise structural patterns, they inherently reveal performance degradation on those edges
without sufficient pairwise structural information. Such characteristics may lead to a biased test
prediction. For example, if social media utilize GNN4LP models to recommend friends in a social
network, introverts with fewer friends will receive low-quality recommendations. Such flaws lead to
bad experiences with obstacles for introverts. Therefore, a vicious spiral happens leading to worse
situations. Our research offers an understanding of these limitations rather than introducing a new
methodology or approach. We identify the overlooked problem and show the potential solution to
address this issue. Consequently, we do not foresee any negative broader impacts stemming from
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Figure 9: Overlapping ratio between top ranking edges (top 25%) on different heuristic algorithms
utilizing hit@10 metric. Experiments are conducted on Ogbl-ppa and Ogbl-ddi. Diagonals are the
comparison between two heuristics within the same factor, while others compare between heuristics
derived from different factors.
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Figure 10: Performance comparison between GNN4LP models and vanilla GCN. Two bar groups rep-
resent the performance gap on node pairs dominated by feature and structural proximity, respectively.
Two sub-figures correspond to compare FP with GSP and LSP, respectively. Vanilla GraphSAGE
often outperforms GNN4LP models on node pairs dominated by feature proximity while GNN4LP
models outperform on those dominated by structural proximity.

our findings. We expect our work to contribute significantly to the ongoing research efforts aimed at
enhancing the versatility and fairness of GNN models when applied to diverse data settings.
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Figure 11: Distribution disparity of different heuristic scores across datasets
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Figure 12: The impact of various heuristic algorithms on the proportion of remaining hard negative
edges. The y-axis depicts the remaining hard negative proportion, calculated as |∩i∈SEi|

|E0| , where E0
represents hard negative edges from the basic heuristic, the title for each subfigure. Moving from left
to right on the x-axis, more heuristics are incrementally added, starting from a basic one.

I FUTURE DIRECTION

In section 4.1, we show how our understanding can help guide the model design and dataset selections.
It is worth noting that our findings can derive new understandings and inspire us to identify new
problems in link prediction with future opportunities. We further illustrate more understanding and
initial thoughts on the future of link prediction as follows.

Dataset categorization for Link Prediction. In our work, we identify datasets with different data
factors based on the performance of the test set, and ease of analysis. However, test edges are not
available in real-world scenarios. How to identify data factors becomes an essential problem. One
potential direct solution is to utilize the validation set. After identifying the correct direction, we can
then select a suitable model for link prediction.
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Specific GNN4LP design for graphs in particular domain. instead of viewing the link prediction
as a whole problem, we suggest decoupling this problem and designing specific models for graphs
with different factors. For instance, the specific GNN4LP model should be designed for dense graphs
like OGBL-DDI and OGBL-PPA.

Automatic Machine Learning on Link Prediction. With specific model designs on graphs with
different categories, we can then combine all those components for automatical model architecture
selection. The selected model should be able to adaptively decide what type of factors to use,
thereby tailoring the pairwise encoding to each individual. It also allows non-experts to benefit from
data-driven insights without expert knowledge.

Inherent connection between node classification and link prediction. Notably, homophily is a
concept popularly discussed in node classification while it is largely ignored in GNN4LP models.
The interplay between homophily in link prediction and node classification is a chicken-egg problem.
More specifically, link prediction considers that nodes with similar features are likely to be connected.
In contrast, node classification considers nodes connected are likely to share similar features. Such
a relationship indicates that the principles for node classification and link prediction may benefit
from each other. Recently, there has been an attempt (Liu et al., 2023) on utilizing principle in link
prediction for node classification. Nonetheless, there is still a lack of exploration on the other side,
utilizing the principle of node classification for link prediction.

Fairness problem in Link Prediction. In section 3.4, we find the drawback of GNN4LP models over
vanilla GNNs. While the overall performance is promising, GNN4LP models may not be satisfying.
However, such bias leads to can potentially affect the fairness of the models in real-world applications
as discussion in Appendix H. There should be a systematical task design for the fairness problem on
link prediction.

Extension to Network Evolution. Network evolution (Zaheer & Soda, 2009) is about understanding
and modeling how networks change over time. This includes the formation of new links as well as
the deletion of existing ones. The link prediction considers the network at a fixed point in time and
doesn’t account for how the network might evolve and grow temporally. Moreover, link prediction
generally only considers a link addition while ignoring the link deletion. We leave extending our
understanding of link prediction to network evolution as the future work. The core future steps for
extension are:

• link deletion: Despite considering node pairs with high proximity to be more likely to be
connected, we need to extend to verify that node pairs with low proximity are more likely to
be deleted.

• Temporal feature: Network evolution introduces the time-series feature, considers capturing
the time evolution features of link occurrences, and predicts the link occurrence probability.
Temporal proximity will be an additional data factor besides the existing three data factors.

More application in recommendation. The recommendation (Fu et al., 2022; Wang et al., 2019a;
He et al., 2020) can be viewed as a particular link prediction problem on the bipartite graph between
users and items. Nonetheless, the graph is generally much more sparse. The mechanism underlying
such a specific link prediction problem remains unknown.

J DATASETS DETAILS

Table 9: Datasets Statistics.

Cora Citeseer Pubmed ogbl-collab ogbl-ddi ogbl-ppa

#Nodes 2,708 3,327 18,717 235,868 4,267 576,289
#Edges 5,278 4,676 44,327 1,285,465 1,334,889 30,326,273

Mean Degree 3.9 2.81 4.74 10.90 625.68 105.25
Split Ratio 85/5/10 85/5/10 85/5/10 92/4/4 80/10/10 70/20/10
Domains Academic Academic Academic Academic Chemistry Biology
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The basic dataset statistics are shown in Table 9. Notably, three planetoid datasets, CORA, CITESEER,
and PUBMED are smaller toy datasets while OGB datasets (Hu et al., 2020) have much more nodes
and edges. We include most of the OGB datasets except for ogbl-citation2. The reason is that the
standard evaluation method for ogbl-citation2 is different from other datasets (1) Most datasets adopt
a shared negative sample setting where all positive samples share the same negative sample set. In
contrast, each positive sample in ogbl-citation2 corresponds to an individual negative sample set. (2)
The ogbl-citation2 dataset utilizes MRR as the default evaluation metric rather than Hit@K in other
datasets. Moreover, we can still achieve a convincing empirical conclusion without ogbl-citation2
since there still remain four citation graphs with varied sizes.

For the data split, we adapt the fixed split with percentages 85/5/10% for planetoid datasets, which
can be found at https://github.com/Juanhui28/HeaRT. For OGB datasets, we use the fixed splits
provided by the OGB benchmark (Hu et al., 2020).

K EXPERIMENTAL SETTINGS & MODEL PERFORMANCE

K.1 EXPERIMENTAL SETTINGS

We provide implementation details in the following section. Code for our paper can be found in
https://anonymous.4open.science/r/LinkPrediction-5EC1/. Notably, we adopt all the settings and
implementation from the recent Link Prediction benchmark (Li et al., 2023) for a fair comparison.
Codes can be found at https://github.com/Juanhui28/HeaRT. More details are shown as follows.

Training Settings. The binary cross entropy loss and Adam optimizer (Kingma & Ba, 2014) are
utilized for training. For each training positive sample, we randomly select one negative sample for
training. Each model is trained with a maximum of 9999 epochs with the early stop training strategy.
We set the early stop epoch to 50 and 20 for planetoid and OGB datasets, respectively.

Evaluation Settings For OGB datasets, we utilize the default evaluation metrics provided by (Hu
et al., 2020), which are Hits@50, Hits@20, Hits@100 for OGBL-COLLAB, OGBL-DDI, and OGBL-PPA

datasets, respectively. For planetoid datasets, we utilize Hit@10 as the evaluation metric.

Hardware Settings The experiments are performed on one Linux server (CPU: Intel(R) Xeon(R)
CPU E5-2690 v4 @2.60GHz, Operation system: Ubuntu 16.04.6 LTS). For GPU resources, eight
NVIDIA Tesla V100 cards are utilized The Python libraries we use to implement our experiments are
PyTorch 1.12.1 and PyG 2.1.0.post1.

Hyperparameter Settings. For deep models, the hyparameter searching range is shown in Table 10.
The general hyperparameter search space is shown in Table 10. The weight decay, number of model
and prediction layers, and the embedding dimension are fixed. Notably, several exceptions occur in
the general search space resulting in significant performance degradations. Adjustments are made
with the guidance of the optimal hyperparameters published in the respective source codes. This
includes:

• NCNC (Wang et al., 2023): When training on OGBL-DDI, we adhere to the suggested optimal
hyperparameters used in the source code.2 Specifically, we set the number of model layers
to be 1, and we don’t apply the pretraining for NCNC to facilitate a fair comparison.

• SEAL (Zhang & Chen, 2018): Due to the computational inefficiency of SEAL, when training
on CORA, CITESEER and PUBMED, we further fix the weight decay to 0. Furthermore, we
adhere to the published hyperparameters 3 and fix the number of model layers to be 3 and
the embedding dimension to be 256.

• BUDDY (Chamberlain et al., 2023): When training on OGBL-PPA, we incorporate the RA
and normalized degree as input features while excluding the raw node features. This is
based on the optimal hyperparameters published by the authors.4

2https://github.com/GraphPKU/NeuralCommonNeighbor/
3https://github.com/facebookresearch/SEAL_OGB/
4https://github.com/melifluos/subgraph-sketching/
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Table 10: Hyperparameter Search Ranges

Dataset Learning Rate Dropout Weight Decay # Model Layers # Prediction Layers Embedding Dim

Cora (0.01, 0.001) (0.1, 0.3, 0.5) (1e-4, 1e-7, 0) (1, 2, 3) (1, 2, 3) (128, 256)
Citeseer (0.01, 0.001) (0.1, 0.3, 0.5) (1e-4, 1e-7, 0) (1, 2, 3) (1, 2, 3) (128, 256)
Pubmed (0.01, 0.001) (0.1, 0.3, 0.5) (1e-4, 1e-7, 0) (1, 2, 3) (1, 2, 3) (128, 256)
ogbl-collab (0.01, 0.001) (0, 0.3, 0.5) 0 3 3 256
ogbl-ddi (0.01, 0.001) (0, 0.3, 0.5) 0 3 3 256
ogbl-ppa (0.01, 0.001) (0, 0.3, 0.5) 0 3 3 256

K.2 MODEL PERFORMANCE

We include baseline models that are both representative and scalable to most datasets. Models like
NBFNet (Zhu et al., 2021b) are not included since they meet severe out-of-memory issue on those
larger OGB datasets. The detailed model performance is shown in Table 11. Since the ogbl-ddi has
no node features, we mark the MLP results with a “N/A". Notably, there is no consistent winning
solution across different settings. All results except for SimRank, PPR, and FH are from Li et al.
(2023).

Table 11: Model performance on Cora, CiteSeer, Pubmed, and OGB datasets.

Cora Citeseer Pubmed Ogbl-collab Ogbl-ddi Ogbl-ppa
CN 42.69 35.16 27.93 61.37 17.73 27.65
AA 42.69 35.16 27.93 64.17 18.61 32.45
RA 42.69 35.16 27.93 63.81 6.23 49.33
Katz 51.61 57.36 42.17 64.33 17.73 27.65

SimRank 50.28 52.52 37.03 21.75 OOM OOM
PPR 32.96 31.88 32.84 54.53 7.19 4.97
FH 47.13 48.19 34.57 23.92 4.74 NA

MLP 53.59 ± 3.57 69.74 ± 2.19 34.01 ± 4.94 35.81 ± 1.08 N/A 0.45 ± 0.04
GCN 66.11 ± 4.03 74.15 ± 1.70 56.06 ± 4.83 54.96 ± 3.18 49.90 ± 7.23 29.57 ± 2.90
SAGE 63.66 ± 4.98 78.06 ± 2.26 48.18 ± 4.60 59.44 ± 1.37 49.84 ± 15.56 41.02 ± 1.94

NeoGNN 64.10 ± 4.31 69.25 ± 1.90 56.25 ± 3.42 66.13 ± 0.61 20.95 ± 6.03 48.45 ± 1.01
BUDDY 59.47 ± 5.49 80.04 ± 2.27 46.62 ± 4.58 64.59 ± 0.46 29.60 ± 4.75 47.33 ± 1.96
NCNC 75.07 ± 1.95 82.64 ± 1.40 61.89 ± 3.54 65.97 ± 1.03 70.23 ± 12.11 62.64 ± 0.79
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