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1 Conceptual diagram and algorithm flow of proposed method

We illustrate the principle of our proposed self-paced contrastive learning mechanism in Fig. 1,
where slice position is used as the meta-label. Our loss is computed on top of the conventional
contrastive loss, while considering the self-paced coefficient wij given a batch of unlabeled images.
The self-paced coefficient wij , which measures thee reliability of a positive pair (i, j), is calculated
as in Equ. (6). We also include in Algorithm 1 the algorithm flow of our method used with arbitrary
meta-labels.

Figure 1: Conceptual diagram for our proposed self-paced contrastive learning method with meta-
labels.
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2 Dataset description
– ACDC dataset This publicly-available dataset [2] contains 200 short-axis cine-MRI scans

obtained from 100 patients. Scans were acquired using 1.5 and 3 T systems with an in-plane
resolution from 0.70× 0.70 mm to 1.92× 1.92 mm and a through-plane resolution from
5 mm to 10 mm. Volumetric images were obtained for end-diastolic (ED) (100 scans)
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and end-systolic (ES) (100 scans) phases of the cardiac cycle. Ground-truth segmentation
masks are provided for the following four regions of interest: left ventricle endocardium
(LV), left ventricle myocardium (Myo), right ventricle endocardium (RV), and background.
Due to a highly-variable resolution, we slice 3D scans through-plane into 2D images, and
re-sample these 2D images to a fixed resolution of 1.0× 1.0 mm. For each scan, intensities
were normalized using the 1% and 99% percentile of the scan’s intensity histogram before
performing slicing. Normalized 2D images are then cropped to a size of 384 × 384. For
our experiments, we used a random split of 175 scans as our training set, from which we
randomly select 1, 2 or 4 scans as our labeled data, and considered others as unlabeled
images1. We then divided the remaining 25 scans into a validation set consisting of 8 scans
and a test set with 17 scans. Both the validation and test sets were set aside during model
optimization. We employed a diverse set of data augmentations during training, for both
labeled and unlabeled images, which include random crops of 224× 224 pixels, random
flips, random rotations within [−45, 45] degrees, and color jitters.
We leveraged the rich meta information available in ACDC to obtain three types of meta-
labels. Following [3], we first considered slice position and patient identity as meta-labels in
our experiments, referring respectively as L1

con/SP and L2
con/SP the standard contrastive loss

and self-paced contrastive loss based on these meta-labels. As [3], we defined the position
of a 2D image in a volume based on the partition of this volume into S = 3 equal-sized
groups of consecutive slices. Additionally, we used the cardiac phase of the scan (i.e., ED
or ES) as third meta-label, and write as L3

con/SP the contrastive losses using this meta-label.
We detail the metal labels in the next section.

– PROMISE12 dataset The second dataset [7] used to evaluate our method focuses on
prostate MRI segmentation. It comprises multi-centric transversal T2-weighted MR images
from 50 subjects, acquired with scanners from multiple vendors and different scanning
protocols. Image resolution ranges from 15× 256× 256 to 54× 512× 512 voxels with a
spacing between 2×0.27×0.27 and 4×0.75×0.75 mm3. We sliced scans into 2D images
along the short-axis and resized these images to a size of 256× 256 pixels. Intensities were
once again normalized based on the 1% and 99% percentiles of the intensity histogram
for each scan before the slicing operation. We randomly selected 40 scans as our training
set, and used 3, 5 or 7 scans from this set as our labeled data. We considered a validation

1Once selected, we fixed these splits across all experiments.



3

set with 4 scans and a test set with 6 scans. For data augmentation, we utilized the same
set of transformations as with the ACDC dataset, except that we limit random rotations to
[−10,10] degrees. Similar to [3], we adopted slice position (S=5 partitions) and patient
identity as meta-labels for this dataset.

– MMWHS dataset The third dataset considered in our evaluation, the Multi-Modality Whole
Heart Segmentation (MMWHS) dataset [17], consists of high resolution CT images from 20
subjects. Four segmentation classes were used in our experiments: left ventricle myocardium
(LVM), left atrium blood cavity (LAC), left ventricle blood cavity (LVC) and ascending
aorta (AA). Following a similar protocol as with the ACDC dataset, volumetric images were
first normalized based on their intensity histogram, then sliced along the short-axis, and
finally resized to a resolution of 256× 256 pixels. We randomly selected 10 scans as our
training set, from which 1 or 2 were used as our labeled data and the others as unlabeled data.
Validation and test sets contain 4 and 6 scans, respectively. The same set of transformation
as with the ACDC dataset was used to augment images on the fly during training. Once
again, we adopted slice position (S= 7 partitions) and patient identity as meta-labels for
this dataset.

– Hippocampus dataset The fourth dataset, as a sub-track of Medical Segmentation Decathlon
[1], aims to segment hippocampus from 260 T1-sequence MRI images acquired from both
healthy adults and adults with a non-affective psychotic disorder. As before, volumetric
images were normalized according to their histogram and sliced to 2D images along the
short axis with a spatial size of 96× 96 pixels. We randomly split the images into training,
validation and test set, consisting of 223, 12 and 25 scans, respectively. To perform semi-
supervised segmentation, we then chose 1, 2, or 4 scans from these training examples as the
labeled ones, while keeping others as unlabeled. We used the same data augmentation as the
ACDC dataset and considered slice position (S = 3 partitions) as the meta-label.

– Spleen dataset The last dataset [1] consists of patients undergoing chemotherapy treatment
for liver metastases. A total of 41 portal venous phase CT scans were included in the dataset
with acquisition and reconstruction parameters described in [1]. Similar to the previous
datasets, 2D slices were obtained by slicing the high-resolution CT volumes along the axial
plane. Intensities in each slice were clipped to a range of [−100, 400] and resulting images
resized to a resolution of 512 × 512 pixels. We randomly split the dataset into training,
validation and test sets, comprising CT scans of 35, 2, and 5 patients respectively. To
evaluate algorithms in a semi-supervised setting, we then randomly chose 2 or 4 scans from
the training set as labeled examples and considered remaining images as unlabeled. We
again applied the same set of data augmentations as for the ACDC dataset and employed
slice position (S = 5 partitions) as the meta-label for this dataset.

3 Meta information visualization

In Fig. 2-4, we visualize examples of images from the three first datasets, corresponding to different
patients (ACDC, PROMISE12 and MMWHS), slice partition (ACDC, PROMISE12 and MMWHS),
and phase of the cardiac cycle (ACDC only). Although a given slice partition exhibits a high-level
structural similarity across different volumes, we also observe important variability in corresponding
images, due to differences in acquisition conditions, individual anatomy of subjects and imperfect
image registration. Thus, without human interaction, this meta-label can lead to the learning of noisy
representations. The second meta-label, patient identity, reflects global differences between scans.
These differences are particularly notable for the PROMISE12 and MMWHS datasets, where the
structural shape and the image contrast differ significantly across patients. We experimentally show
that using this global meta-label by itself may improve segmentation performance, however it is
more useful when combined with other meta-labels like slice partition. Our third meta-label for the
ACDC dataset is the cardiac cycle phase (i.e., ES or ED). A single cycle of cardiac activity can be
divided into two basic phases, the diastole where the ventricles are relaxed (not contracting), and
the systole where the left and right ventricles contract and eject blood into the aorta and pulmonary
artery, respectively. The first two rows of Fig. 2 show images corresponding to these two phases for
the same patient. One can see that the size of the left and right ventricles changes considerably, and
is much smaller at the end of the systole phase (ES). As shown in our experiments, incorporating
information on the cardiac phase into the network’s encoder generally helps improve segmentation
quality.
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Figure 2: Examples of ACDC images with meta-labels. Volumetric images are sliced thought the
short-axis and split into S=3 partitions. One can see that different slices in the same partition can
share similar structure across volumes. We also consider the patient identity and the cardiac cycle
phase as global meta-labels to guide the model optimization.

Figure 3: Examples of PROMISE12 images with their meta-labels. Slice partition and patient identity
are used as the two meta-labels. We fixed the number of partitions to S=5. One can see a smooth
transition on anatomical structures from a partition to the next. Note that this dataset exhibits high
appearance variability across different patients.

3.1 Evaluation metric

We used the commonly-adopted Dice similarity coefficient (DSC) metric to evaluate segmentation
quality of the tested methods. DSC measures the overlap between the predicted labels (S) and the
corresponding ground truth labels (G):

DSC(S,G) =
2 |S ∩G|
|S|+ |G|

(1)

DSC values range from 0 to 1, a higher value corresponding to a better segmentation. In all
experiments, we reconstruct the 3D segmentation for each scan by aggregating the predictions made
on 2D slice and report their 3D DSC metric on the test set.

3.2 Experimental details

We assessed the performance of our self-paced contrastive learning approach when used in two differ-
ent stages: pre-training and semi-supervised learning. The pre-training stage consists in optimizing
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Figure 4: MMWHS images with their meta-labels. Slice partition and patient identity are also used
as the two meta-labels. We fixed the number of partitions to S=7. Smooth transition on anatomical
structures can be observed from a partition to the next. This dataset also exhibits high appearance
variability across different patients.

the encoder of a segmentation network on all available images via the contrastive loss. An additional
fine-tune step is usually appended to this setting, which trains the whole network on a few labeled
scans. In contrast, semi-supervised learning trains the network jointly with both labeled and unlabeled
images. In both cases, we applied a learning rate warm-up strategy to increase the initial learning
rate lrint by a factor of N in the first 10 epochs, and then decrease it with a cosine scheduler for the
following max_epoch− 10 epochs, as shown in Fig. 5.

Figure 5: Learning rate warm-up and decay strategy used in our experiments

For pre-training stage, lrint was set to 5×10−5, N as 400 and max_epoch as 80 for the PROMISE12,
MMWHS, Hippocampus and Spleen datasets, whereas we used max_epoch = 120 for ACDC. For
the semi-supervised training stage or the fine-tuning procedure, we set lrint to 1×10−7 for ACDC,
Hippocampus, and Spleen datasets, 5×10−7 for PROMISE12, and 2×10−6 for MMWHS, with N
being set to 300 for all datasets. We fixed max_epoch to 75 for ACDC dataset and to 80 for the
remaining datasets.

The generation of mini-batches is crucial for the contrastive learning. Following [3], we randomly
sampled 10 scans from ACDC and drew one image per partition for each scan, resulting in 30 images
per iteration. However, for the two other datasets, we randomly sampled 30 scans without considering
meta-labels. We used a supervised loss Lsup to guide the network optimization during both the
fine-tune procedure (for evaluating the quality of the pre-trained weights) and the semi-supervised
training. Although different loss functions can be considered, such as the Dice loss [16] and Tversky
loss [10], we adopted the well-known cross entropy loss in all experiments. This loss is defined as

Lsup = − 1

|Dl| |Ω|
∑

(x,y)∈Dl

∑
i∈Ω

C∑
c=1

yic log pic(x) (2)
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where Dl is labeled dataset, Ω is the 2-D pixel space and pic(x) is the probability of class c ∈
{1, . . . , C} predicted by the network at pixel i .

For our contrastive pre-training experiments, we take the feature maps E(x) at the end of the encoder
and, following [5, 3], project them to low-dimensional vectors via a projector g which consists of
an average pooling to flatten the output of the encoder followed by a two-layer MLP to have a final
dimensionality of 256.

Our proposed approach and compared methods have several tunable hyper-parameters, such as the
weighting coefficient for each loss, the evolution strategy for γ from Equ. (16) of the main paper, etc.
Those hyper-parameters were chosen based on the performance of the method on the validation set.
We ran our experiments on a computing cluster with Nvida P-100 GPUs. Running the pre-training
stage usually takes less than 4 hours for all datasets, while the semi-supervised learning can take
4− 6 hours depending on the approach.

For our experiments shown in Tables 1, 2 and 3 of the main paper, we fixed the hyper-parameters as
follows. The temperature τ was set to 0.07, close to related works [4, 13, 3] and working fine across
different datasets. For λ in Equ. (14), we used λ1 = 1.0, λ2 = 1×10−3 and λ3 = 1.0× 10−2 for
the ACDC dataset, while values of λ1 = 1.0, λ2 = 1 × 10−1 were selected for the PROMISE12
and MMWHS dataset. For our combined model of Equ. (15), which involves a supervised loss, a
regularization loss (Mean Teacher) and our SP-based contrastive loss, we fixed λreg to 0.1 and λsp to
5×10−3 for the ACDC dataset, whereas λreg was set to 0.2 and λsp to 2×10−2 for both the Prostate
and MMWHS datasets. We also include a hyper-parameter sensitivity analysis of λ in Sec. 4.6 to
show the contribution of each loss component.

3.3 Details of compared methods

In Table 2 and 3, we compare our proposed self-paced contrastive method against several baselines,
ablation variants of our method, and recently-proposed approaches for semi-supervised medical
segmentation. We give a description of tested approaches below:

– Contrastive loss [3]: This setup evaluates the performance of a normal contrastive learning loss
Lcon as in Equ. (2) of the main paper. In this case, we only consider the encoder features without
our self-paced learning strategy to adapt the importance of positive pairs in the contrastive loss.

– Self-Paced Contrastive Loss (SP-Con): This is our full formulation of Equ. (3) in the main paper
which exploits meta-labels for computing LkSP, where k ∈ {1, . . . ,K}. As explained in Section 5.2,
this loss can be used for pre-training as well as for semi-supervised learning. In our experiments,
we test different combinations of this loss and other semi-supervised approaches.

– Mean Teacher [11]: This powerful method for semi-supervised learning adopts a teacher-student
framework, where two networks sharing the same architecture learn from each other. Given an
unlabeled image x, the student model ps(·) seeks to minimize the prediction difference with the
teacher network pt(·) whose weights are a temporal exponential moving average (EMA) of the
student’s:

LMT =
1

|Du| |Ω|
∑
x∈Du

∑
i∈Ω

C∑
c=1

(
ptic(x)− psic(x)

)2
(3)

Following the standard practice, we fix the decay coefficient to 0.999. The coefficient balancing
the supervised and regularization losses is selected by grid search, from 1× 10−4 to 10.0.

– Entropy Minimization (Entropy Min.) [12]: This method, which has been successfully applied
in semi-supervised classification [6] and segmentation [12] with domain gap, imposes a low
conditional entropy on unlabeled images:

Lent = − 1

|Du| |Ω|
∑
x∈Du

∑
i∈Ω

C∑
c=1

pic(x) log pic(x). (4)

By increasing its confidence for unlabeled images, the network pushes the decision boundary away
from dense regions of the input space, thereby improving generalization. For this method, we
performed a hyper-parameter search on the coefficient balancing the two losses, Lsup and Lent,
from 1× 10−5 to 1× 10−1.

– MixUp [14]: We also evaluated the effectiveness of mixup, an effective data argumentation strategy
on medical image segmentation, following [3].
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– Adversarial Training [15]: This semi-supervised segmentation method trains a segmentation net-
work and a classifier-based discriminator jointly in a min-max game. Its core idea is to enforce
the segmentation predictions on unlabeled images being indistinguishable from those of labeled
images, thus aligning the output distributions between labeled and unseen images. This method
works particularly well in a scenario where scans present large variability causing a domain gap.

– Discrete Mutual Information maximization [8]: This semi-supervised segmentation technique
maximizes the mutual information between two sets of feature maps undergoing different geo-
metric transformations. These feature maps are taken from different hierarchical levels of the
segmentation network, thus regularizing the network at multiple scales. It was shown effective for
segmenting medical images with limited supervision. In this experiment, we optimize the mutual
information between features taken from both the encoder (as our proposed method), and from the
decoder.

– Global and Local Contrastive [3]: This last approach is our full implementation of [3], which takes
into account not only the encoder’s features as a global descriptor, using Equ. (2) of the main
paper, but also dense features from decoder blocks that allow an effective contrastive learning at the
pixel level. For the decoder, we chose the output of the third decoder block and resized the dense
features to a fixed resolution of 10×10 pixels with adaptive average pooling. For each feature map,
we then randomly sampled 5 different spatial locations and performed contrastive learning using
Equ. (1) of the main paper on these 5× 2Nbatch vectors, where Nbatch is the number of images in
the current batch. Following [3], we adopted a two-step pre-training strategy, and pre-trained the
decoder while freezing the encoder. Using the well pre-trained weights, we report the test score
when fine-tuning models on a few labeled scans.

4 Additional experimental results

4.1 Supplementary experiments on two extra datasets

The proposed method could work with any segmentation task where meta-labels are available. This
includes segmenting volumetric data of any organ for which a rough correspondence can be obtained
between 2D slices in the volume. In order to further highlight the robustness of our proposed method,
we carried out additional experiments on two extra datasets segmenting the hippocampus and spleen
from MRI and CT images. For these two dataset, we only tested our proposed variant SP-Con (pre-
train) on the slice position meta-label (L1

sp) and compared it against strong concurrent approaches
such as Contrastive (L1

con) [3] and Mean Teacher [11].

As one can see from Table 1, our proposed method outperforms Contrastive in most cases and reaches
a performance comparable with Mean Teacher. This confirms the general usefulness of our self-paced
learning strategy for the semi-supervised segmentation of different organs.

Table 1: 3D DSC performance of the proposed SP-Con (pre-train) variant using slice position as
meta-label and other approaches on hippocampus and spleen datasets with few labeled scans.

Method Pretrain Train
Hippocampus Spleen

1 scan 2 scans 4 scans 2 scan 4 scans

Baseline - Lsup 60.87 73.33 78.82 65.51 68.59

Mean Teacher [9] - Lsup + Lmt 70.06 75.65 80.60 55.02 68.10
Contrastive [3] L1

con Lsup 64.40 75.00 81.45 65.14 67.21

SP-Con (Pre-train) L1
sp Lsup 66.70 76.89 81.25 69.05 69.64

4.2 Fine-tuning the model on the whole dataset with annotations

We showed previously that pre-training a network with images and meta-labels from the dataset helps
to improve performance when fine-tuning it using a few labeled examples. In this section, we consider
the following question: “is our pre-training loss helpful when fine-tuning the model on the entire
dataset with ground-truth annotations, instead of just a few of them?” To answer this question, we
first pre-trained a network with our SP-Con (pre-train) loss and fine-tuned it with different numbers
of labeled images on the ACDC dataset. Table 2 summarizes the segmentation performance of our
method after fine-tuning, and compares it to Mean Teacher.
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Table 2: 3D DSC improvements brought by SP-Con (Pre-train) with slide position as meta-label with
various numbers of labeled scans.

Methods 1 scan 2 scans 4 scans 8 scans 175 scans

Baseline 57.53 67.06 75.64 82.64 88.06

Mean Teacher 62.85 72.84 79.12 84.35 N/A2

SP-Con (pre-train) 73.99 81.01 82.83 84.29 88.35

Our Improvement 16.46 13.95 7.18 1.65 0.29

We observe that our method’s relative improvement with respect to the baseline reduces as the number
of labeled samples increases. This is expected since there is no additional unlabeled data to exploit
when using the entire set of images as labeled data (175 scans). However, SP-Con still yields a small
improvement (0.29%) compared to the full supervision (Baseline with 175 scans as labeled images).

4.3 Segmentation performance when randomly selecting labeled volumes per experiment

For the previous experiments, when fine-tuning the model or using a semi-supervised training with a
few labeled data, we kept a fixed split on the labeled/unlabeled images for each number of labeled
scan, and reported results were obtained by averaging performance from three independent runs with
different random seeds controlling model initialization, data augmentation randomness, and data
fetch ordering. In order to remove the possible bias from the choice of these fixed splits, we ran three
additional experiments using different labeled/unlabeled splits per experiment, the results of which
are reported in Table 3.

Table 3: 3D DSC performances for different splits on the ACDC dataset. Best cases are highlighted
in bold.

Method Pretrain Train
Split 1 Split 2 Split 3 Mean (std) over splits

1 scan 2 scans 1 scan 2 scans 1 scan 2 scans 1 scan 2 scans

Baseline - Lsup 61.36 71.11 35.76 71.48 39.74 76.44 45.62 (11.25) 73.01 (2.43)

Unsup. Con. Lunsup.
con Lsup 65.70 77.84 50.69 72.87 59.65 80.22 58.68 (6.17) 76.98 (3.06)

Unsup. Con. + SP Lunsup.
sp Lsup 69.34 77.49 61.96 73.11 66.55 80.82 65.95 (3.04) 77.14 (3.16)

Contrastive
L1

con

Lsup

72.56 80.58 67.68 73.97 68.64 82.35 69.63 (2.11) 78.97 (3.61)
L2

con 68.19 76.69 43.69 71.57 57.34 80.31 56.41 (10.02) 76.19 (3.59)
L3

con 65.40 76.33 64.93 69.10 58.82 80.06 63.05 (3.00) 75.16 (4.55)

Mean Teacher - Lmt 73.04 78.97 60.91 72.82 55.07 80.26 63.01 (7.48) 77.35 (3.25)

SP-Con
(pre-train)

L1
sp

Lsup

76.24 79.96 68.18 76.46 74.18 82.46 72.87 (3.42) 79.63 (2.46)
L2

sp 71.77 80.08 58.07 71.95 58.02 81.07 62.62 (6.47) 77.70 (4.09)
L3

sp 66.77 77.10 63.65 73.41 62.03 82.11 64.15 (1.97) 77.54 (3.57)

In this new set of experiments, we followed the same experimental protocols as in previous one,
where we first pre-train the network with different contrastive losses (unsupervised, contrastive with
three meta-labels, and those with self-paced learning) and then fine-tune them using a few labeled
scans. However, this time vary the scans used as labeled data for each run and compute the final
performance by averaging results from the three experiments.

As one can see from Table 3, using different splits for the labeled data leads to a large variance in
performance. When given a single labeled scan, the baseline DSC for different splits varies from
35.75% to 61.36%, with a standard derivation up to 11.25%. On the other hand, our model using
meta-labels obtains more robust results (e.g., standard deviation of 3.42% for L1

sup using one labeled
scan) and outperforms the contrastive counterparts in all but one cases.

4.4 Self-paced learning analysis

As discussed in Section 5.1 of the main paper, we include the self-paced weights wij taken from
different epochs, corresponding to four different γ (marked as orange star) in Fig. 1 of the main
paper. Notice that wij is only defined on positive pairs, however we visualize wij for all image

2Mean Teacher requires unlabeled examples for its consistency loss, thus was not considered for the full
supervision setting.
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pairs to verify whether our proposed self-paced strategy can successfully learn weights that capture
the corresponding meta-label’s quality. We train our proposed loss using slice position as the only
meta-label (i.e., L1

sp).

Figure 6: Self-paced importance weight wij for two scans during the optimization. We plot not only
the wij for positive pairs, but also for negative pairs.

marker 1 marker 2 marker 3 marker 4

In Fig. 6, we first compare two scans from the same patient with different cardiac phases (first row of
the figure). As can be seen, in the beginning of the training (marker 1), self-paced weights have a high
value for pairs of slices from the same position, even when corresponding to different phases of the
cardiac cycle. As the training progresses, our proposed strategy learns to assign relatively high values
on positive pairs, and keep low values for negative pairs (marker 2). At the end of the training, sharper
blocks form in weight matrix based on meta-label classes, and the network learns to distinguish
different slice partitions (marker 3-4). In contrast, conventional contrastive loss lacks the ability
to learn gradually and does not have an effective selection mechanism in the beginning of training.
We also conducted a similar analysis with two scans taken from different patients (second row of
the figure). It can be seen that the proposed loss learns to assign weights based on the network’s
uncertainty for each pair. We can observe that the network is slower to assign high values to positive
pairs across patients in the first few epochs, since they differ in terms of appearance.

4.5 Sensitivity to γ parameters

The next experiment investigates the impact of γstart and γend in Equ. (16) of the main paper, where
we fixed p = 1/2 and adopt the linear strategy to ramp-up γ. Theorem 2 of the main paper states
that `ij is bounded by log 2N + 2/τ . However, for the linear strategy, where wij = 1 − 1

γ `ij , we
found that further increasing γ boosts the segmentation performance. Table 4 shows the results of a
grid search varying these two hyper-parameters (γstart in rows and γend in columns) and measuring
the performance on the validation set. As can be seen, the segmentation DSC reaches its maximum
value when γstart is 2.0. Given a fixed ramp-up strategy, choosing a small γstart causes the learning
to ignore most of the examples in the beginning of the training and, thus, results in under-fitting. In
contrast, a large value of γstart pushes the network to treat all examples equally. Since γend controls
the level of weights in the end of the training, it has a similar behavior as γstart.

4.6 Sensitivity to λk parameters

We then present a sensitivity analysis for λk in Equ. (14) on the ACDC dataset. As L1
sp (the one

using slice partition as the supervision signal) resulted in the best performance across all dataset, we
fixed λ1 as 1.0 and performed a grid search on λ2 and λ3 with logarithmic scales ranging from 0.1 to
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Table 4: Sensitivity analysis of hyper-parameter γ.

γstart
γend

40.0 50.0 60.0 70.0 80.0

1.0 72.65 73.83 72.98 72.60 72.99
1.5 72.56 73.95 74.97 72.56 73.79
2.0 73.20 75.08 73.32 73.39 72.70
2.5 72.61 73.75 72.26 72.49 73.20
3.0 72.95 73.50 72.89 73.96 73.33
3.5 73.62 73.08 74.28 74.38 73.06

0.001. We report the 3D DSC performance on the validation set using just one scan as labeled data,
as shown in Table 5. We see that varying both λ2 and λ3 leads to relatively stable performance for
the downstream segmentation tasks, while the best performance is achieved by setting λ2 = 0.01 and
λ3 = 0.001. This suggests that, for the ACDC dataset, using Patient Identity as the meta-label brings
a more useful information compared to Cardiac cycle phase.

Table 5: Sensitivity analysis of hyper-parameters λ2 and λ3 for the ACDC dataset.

λ2

λ3

0.1 0.01 0.001

0.1 73.09 74.12 74.61
0.01 73.99 74.56 74.89

0.001 73.52 74.38 74.52

4.7 Visual result inspection

Last, we provide a visual inspection on segmentation predictions for different approaches on the three
first datasets. As can be seen, the proposed method effectively enhances the segmentation quality on
the different datasets, and reaches a segmentation prediction closer to the ground truth than other
tested approaches.
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Ground truth Baseline Mean Teacher Contrastive on
Encoder [3]

Our Self-paced
Contrastive

Our Combined
Method

Figure 7: Visual comparison of tested methods on test images. Rows 1–3: the ACDC; Rows 4–5:
the PROMISE12; Rows 6–7: MMWHS.
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