
7 Appendix

8 The Relationship Between Software Portability and Innovation

While some innovation happens de-novo, building something new from scratch, much happens from
local adaptation, where an existing innovation is adapted [Eisenhardt and Tabrizi, 1995]. This practice
is ubiquitous in machine learning where there is extensive reuse of code and models. Lack of software
portability constrains innovation because it means that someone who has previously developed their
work in a framework is tied to a particular piece of hardware and may be unable to switch to another
advantageous framework if that other framework lacks the functionality/performance needed. While
it is hard to count instances of non-invention attributable to hardware because “didn’t invent” also
means “didn’t publish,” we can nevertheless see particular examples where the lack of software
portability has stifled innovation such as:

1. Efficiency gains from early exiting [Teerapittayanon et al., 2017] (Abadi et al. 2016) is
a very popular efficiency strategy for avoiding unnecessary computation. However, early
exiting has no impact on memory requirements or efficiency when using software stacks
that fully instantiate the computation graph prior to running the program (i.e., TensorFlow).
Thus this is an optimization that works well in other frameworks but gains us nothing in the
case of TensorFlow.

2. Naive multi-device training distribution strategies are sensitive to the choice of software
stack used. It can have a pronounced impact on differences in dispatch overhead and com-
munication patterns with PyTorch not being able to engage in some distributed workloads
[Barham et al., 2022].

3. Capsule networks [Sabour et al., 2017] have unique operations like squashing and routing
that stray from the matrix multiplies. Capsule networks are far less efficient in TensorFlow,
given the requirement for adaptive routing [Barham and Isard, 2019].

4. Adaptive learning or data pruning. Both require removing examples from a batch that
are estimated not to be important (adaptive pruning does it over the course of training, and
data pruning can be a single shot before training). Both techniques have no impact on
efficiency when using software stacks that require fixed shapes (i.e., TensorFlow), as instead
of changing the batch size on the fly, you need to pad the batch with zeros.

5. Proximal gradient optimization and variants [Parikh and Boyd, 2014]. Implementing
these techniques in PyTorch is straightforward due to PyTorch’s flexible design granting
granular control over the training loop. Conversely, Keras abstracts much of the under-
lying intricacies, which can limit the direct control users have over specific training loop
customizations.

We will continue to curate a list of examples where lack of software portability has impacted
innovation in research. If you have other examples we should add to this list, please reach out to the
authors of this paper.

9 Discussion of Differences in Latency

While an in-depth analysis of differences between GPU and TPU kernels of functions is beyond the
scope of our paper, we wanted to categorize some high-level reasons for differences as a starting
point for discussion. We note these are anecdotal observation, but may be of interest to the reader as
a starting point for discussion.

Broadly, we expect slowdowns to be attributed to one of the following categories:

1. Misalignment between workload and implementation: frameworks and hardware may
assume certain usage patterns (e.g., uniform input sizes) that are mismatched with actual
workloads.

2. Memory architectures: The substantially different memory architecture choices made
by TPU and GPU architects advantage particular data structures and operations, making
framework optimizations uneven in their effectiveness [Zhu et al., 2020].

14

3. Bottlenecks: Unimplemented features in some frameworks can lead to data transfer bottle-
necks that lead to the full performance not being able to be taken advantage of.

PyTorch Latency Differences For TPUs, we observe long data transfer times between the TPUs
memory and CPUs can be a bottleneck. This is a problem that is much worse in PyTorch than
TensorFlow due to a lack of an infeed processing implementation. TensorFlow specifically runs input
processing on the CPU while TPU operations take place. PyTorch has chosen not to implement this,
which makes TPUs slower than GPUs for PyTorch. Another contributing bottleneck for TPUs is
kernel recompilation on dynamic shapes which can lead to slower results in tests that use dynamic
shapes when running on TPUs.

TensorFlow Latency Differences kernel recompilation on dynamic shapes is also a contributing
factor for TensorFlow. This leads to our greatest latency difference in TensorFlow on the SVD
function. Data transfer pauses: While input processing is implemented in TensorFlow, data transfer
remains a bottleneck. In some cases, this data preparation and transfer can take longer than the XLA
process itself. Unequal Speedups Due to Specialization: The largest benefits of TPUs will be on
operations involving matrix multiplication. For other operations, large speed-ups are not ensured.

Performance Comparison Across Hardware Versions: Referring to Figure 7, 9.09% of TensorFlow
functions exhibit a 1.5X performance enhancement when transitioning from a T4 GPU to a A100
GPU. Additionally, 28.07% and 9.09% of PyTorch functions achieve a 1.5X speed improvement
when operating newer GPU and TPU versions, respectively. In contrast, JAX functions display
minimal gains of just 0.05% on the GPU and 0.02% on the TPU.

10 Why Functions

To avoid overfitting to specific machine learning workloads that may not capture future machine
learning research directions, we evaluate the portability of functions and not scripts. A major
concern when overly focusing on popular architectures or tasks is the sidelining the diverse range of
code and ideas that researchers are exploring, some of which might not have reached popularity or
high optimization levels. In addition, choosing to analyze workloads instead of functions would have
posed several challenges for fairly comparing frameworks:

1. Analysis can be difficult: For example, if we have input x, go through three functions F ,
G, and H in the order F (G(H(x))). If the middle function, which is G in this case, fails
because it is not portable, we will not be able to test the function F .

2. Different workloads use different framework versions: If we use a deprecated function,
we might face (1).

3. Privileging common workloads introduces bias: The function X might work on a common
task, but it might not work in a more niche case. Therefore, the function sampling is much
more thorough and thus more suitable for extrapolation.

4. Operations are the building blocks of ML workloads: The performance and portability
of the operations directly impact the workloads that use them.

11 Hardware Evaluation and Device Running Procedures

Types of Hardware Evaluated: We primarily ran test suites on a T4 GPU and a v3-8 TPU [Jouppi
et al., 2017]. For certain analyses, we utilized an A100 GPU and v2-8 TPU, and we specifically
indicate such instances in the charts and tables. Unless otherwise indicated, readers should assume
the use of a T4 GPU and a v3-8 TPU.

Ensuring operations executed on correct device: To ensure that PyTorch, TensorFlow, and JAX
tests ran on the right hardware, we provided a device environment variable, which we then referred to
in test helpers and startup code to force tests to be on the correct device.

This ensures that operations are not split between multiple devices but instead run on a single device.
This was necessary because many tests specifically test transferring values between the CPU and
another device, whereas our goal is to establish the viability of running a function on a single device.

15

We include more details in the appendix Section 13 about the technical implementation of ensuring
functions are only run on the device of interest.

Latency measuring procedure: For every script and each framework we wrap the relevant operation
with time.perf counter(). Before recording the ending time, we include a synchronization point.
This will synchronize asynchronous XLA and Cuda operations, allowing the operations to finish
before we take the time. We include more details in the appendix in Section 14 about how we
implement the synchronization points. We record 3 runs for every test, framework, and device
combination. Unless indicated otherwise, results are reported as the average of the 3 runs.

12 Data Filtering

We filter the files obtained from the CodeParrot-clean dataset to only include files that import
the respective framework using the regexes ’(from.*tensorflow|import.*tensorflow)’,
’(from.*jax|import.*jax)’, and ’(from.*torch|import.*torch)’ respectively. These
files were subsequently parsed and tokenized [Richter and Wehrheim, 2022] to obtain frequency
count for functions. Our goal was to approximate the frequency of functions in everyday engineering
usage. While this process was imperfect due to name collisions with identifiers with the same names
as framework functions, we managed to get a broad overview of framework function use.

To ensure we capture function calls and variables without including irrelevant pieces of the code, we
tokenize each individual Python file. We use code tokenize [Richter and Wehrheim, 2022] to parse
the files and determine if something is an identifier. We run the tokenization on each file and then
count the frequencies of relevant identifiers. This ensured we were not looking at import statements,
control statements, and other parts of Python code. Instead, we include just function calls, variables,
and class usages. Next, we count the frequency of identifiers that were also functions in the respective
framework.

While framework functions are our primary interest, classes were necessary to include as well. A
frequent pattern is to see classes that act in a very function-like way. A good example of this would
be ReLU in PyTorch. It is a common pattern in PyTorch to initialize a class and use the resulting
instance as a function you can pass input to. With ReLU, this would look like this example from the
documentation6. This brought a certain level of ambiguity because we need to include classes but
not all classes are directly relevant. In the interest of ensuring we included everything relevant, we
included all class names in the list of all relevant identifiers in a framework.

13 Ensuring Functions are Run on Device of Interest

PyTorch Device Running Procedure: For PyTorch we leverage the existing instantiate_

device_type_tests functionality found in the PyTorch test suite. This function allows you to pass
a device parameter into each test and use that to set the device of any tensors. We customized this to
include XLA TPU support. This involved us overriding the onlyNativeDeviceTypes decorator to
include the TPU while running. We also created a new decorator to go along with this functionality
called onlyAcceleratedDeviceTypes for tests that previously had the onlyCuda decorator. The
onlyAcceleratedDeviceTypes decorator ensures that only accelerated devices, such as GPUs and
TPUs, are used to run the test. This was necessary because many tests specifically test transferring
values between the CPU and another device. So just using onlyNativeDevices would not work on
those tests.

TensorFlow Device Running Procedure: To ensure that all TensorFlow tests were using the correct
device we needed to handle the following cases:

1. Tensors running eagerly in the default way.

2. Tensors utilizing graph mode through self.session and self.cached session which
are built into the TensorFlow test suite.

3. Tensors utilizing tf.Graph.as default to set the graph. This undoes any device setting
we do with our contexts and thus needs device setting within tf.Graph.as default call.

6https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html

16

https://github.com/cedricrupb/code_tokenize
https://github.com/cedricrupb/code_tokenize

To handle these cases, we did the following:

1. Utilize a device context that sets the device to the one specified in our environment variable.
2. Handle tests utilizing self.session and self.cached session by monkeypatching the

TensorFlow TestCase class to use our environment specified device. This was done by
overriding the private method constrain devices and set default.

3. Handle tests utilizing tf.Graph.as default by using a monkeypatched
tf.Graph.as default to include the device based upon our environment variable
within the call tf.Graph.as default. For most tests this was sufficient. But for several,
this broke something else inside these tests. For these specific tests, we created a blacklist
upon which we do not apply the monkey patch, and instead, we set the device manually
inside the tf.Graph.as default call.

14 Measuring Latency on Devices

The synchronization points are as follows:

• TensorFlow on GPU and TPU: We call .numpy on the result of the operation which forces
all asynchronous operations to finish before times are recorded.

• PyTorch on GPU: We use torch.cuda.synchronize() in order to sync the operation.
• PyTorch on TPU: We use xm.mark step() as a synchronization point.
• JAX on GPU and TPU: We use block until ready() on the output of the operation as a

synchronization point.

Table 5: Latency in milliseconds for PyTorch on GPU and TPU. The table is ordered by the ratio
GPU/TPU in descending order. Note that values are rounded to 3 decimal places.

Function GPU TPU TPU/GPU

1 torch.argsort 0.157 948.210 6039.554
2 torch.optim.Adamax 0.069 392.712 5691.478
3 torch.fliplr 0.201 725.480 3609.353
4 torch.broadcast tensors 0.044 39.030 887.045
5 torch.nn.AdaptiveAvgPool3d 0.074 65.219 881.338
6 torch.addr 0.106 83.030 783.302
7 torch.cat 0.100 64.652 646.520
8 torch.optim.LBFGS 0.097 50.358 519.155
9 torch.triangular solve 0.091 33.536 368.527
10 torch.nn.Module.state dict 0.053 19.508 368.075
11 torch.nn.Module.zero grad 0.057 17.572 308.281
12 torch.sum 0.084 23.921 284.774
13 torch.Tensor.is same size 0.025 6.973 278.920
14 torch.nn.KLDivLoss 0.187 48.865 261.310
15 torch.nn.LSTMCell 0.372 93.617 251.659
16 torch.moveaxis 0.034 7.878 231.706
17 torch.nn.functional.dropout 0.041 8.847 215.780
18 torch.lt 0.055 8.857 161.036
19 torch.autograd.Variable 0.051 7.519 147.431
20 torch.utils.data.Subset 0.069 8.722 126.406
21 torch.nn.Sequential 0.115 11.639 101.209
22 torch.multinomial 1.193 115.240 96.597
23 torch.nn.Linear 0.459 37.842 82.444
24 torch.nn.BCEWithLogitsLoss 0.855 55.768 65.226
25 torch.diag 0.494 27.232 55.126
26 torch.von mises.VonMises 0.680 31.054 45.668

Continued on next page

17

Function GPU TPU TPU/GPU

27 torch.zeros 0.252 10.577 41.972
28 torch.round 0.301 12.178 40.458
29 torch.range 0.193 5.627 29.155
30 torch.autograd.functional.jvp 0.788 22.298 28.297
31 torch.linalg.matrix rank 2.568 68.511 26.679
32 torch.nn.GELU 0.787 19.317 24.545
33 torch.Tensor.to 0.105 1.728 16.457
34 torch.nn.Transformer 216.593 3066.136 14.156
35 torch.bitwise not 1.925 23.535 12.226
36 torch.nn.Conv3d 0.240 1.202 5.008
37 torch.slogdet 30.606 151.092 4.937
38 torch.optim.lr scheduler.ExponentialLR 0.037 0.157 4.243
39 torch.utils.data.Dataset 0.035 0.117 3.343
40 torch.utils.data.ConcatDataset 0.031 0.092 2.968
41 torch.nn.Parameter.register parameter 0.039 0.091 2.333
42 torch.cuda 0.041 0.061 1.488
43 torch.nn.Conv2d 46.053 67.081 1.457

Table 6: Latency in milliseconds for TensorFlow on GPU and TPU. The table is ordered by the ratio
GPU/TPU in descending order. Note that values are rounded to 3 decimal places.

Function GPU TPU TPU/GPU

1 tf.linalg.svd 0.931 112.843 121.206
2 tf.math.reduce logsumexp 13.028 474.586 36.428
3 tf.nn.conv3d 3.596 49.867 13.867
4 tf.tensor scatter nd update 1.625 21.626 13.308
5 tf.signal.idct 6.965 87.764 12.601
6 tf.python.ops.numpy ops.clip 1.223 15.409 12.599
7 tf.image.adjust brightness 10.264 129.021 12.570
8 tf.train.list variables 0.358 4.032 11.263
9 tf.reshape 1.161 10.185 8.773
10 tf.cast 1.214 10.546 8.687
11 tf.lookup.KeyValueTensorInitializer 2.534 17.919 7.071
12 tf.Tensor.eval 3.332 22.366 6.712
13 tf.range 2.108 13.782 6.538
14 tf.convert to tensor 2.027 9.683 4.777
15 tf.sequence mask 10.962 46.188 4.213
16 tf.compat.v1.distributions.Normal 1.871 5.340 2.854
17 tf.debugging.assert less 5.541 14.911 2.691
18 tf.math.reduce mean 7.629 19.746 2.588
19 tf.python.framework.smart cond 3.067 7.838 2.556
20 tf.compat.v1.test.compute gradient error 164.855 377.978 2.293
21 tf.nn.conv2d transpose 72.639 152.463 2.099
22 tf.dtypes.as dtype 0.009 0.018 2.000
23 tf.compat.v1.distributions.Normal.survival function 9.521 18.128 1.904
24 tf.compat.v1.distributions.Normal.param shapes 0.542 1.022 1.886
25 tf.contrib.framework.nest.map structure up to 0.404 0.760 1.881
26 tf.numpy function 1.572 2.954 1.879
27 tf.sets.intersection 1.926 3.606 1.872
28 tf.compat.v1.saved model.simple save 27.784 50.100 1.803
29 tf.compat.v1.placeholder 0.721 1.293 1.793
30 tf.keras.optimizers.experimental.Adadelta 7.951 13.918 1.750
31 tf.linalg.set diag 1.409 2.344 1.664
32 tf.compat.v1.variable scope 3.017 4.834 1.602

Continued on next page

18

Function GPU TPU TPU/GPU

33 tf.constant 1.094 1.717 1.569
34 tf.nn.space to batch 1.597 2.492 1.560
35 tf.summary.flush 0.823 1.274 1.548
36 tf.Variable 12.660 18.490 1.461
37 tf.compat.v1.metrics.accuracy 26.136 38.095 1.458
38 tf.compat.v1.get collection 0.015 0.021 1.400
39 tf.math.igammac 0.918 1.274 1.388
40 tf.test.TestCase.assert equal 0.040 0.052 1.300
41 tf.compat.v1.global variables initializer 0.585 0.760 1.299
42 tf.Graph.as default 0.117 0.152 1.299
43 tf.train.ExponentialMovingAverage 0.021 0.025 1.190
44 tf.compat.v1.TextLineReader.restore state 1.201 1.416 1.179
45 tf.distribute.Strategy.get per replica batch size 0.016 0.018 1.125
46 tf.estimator.CheckpointSaverHook 0.051 0.055 1.078
47 tf.Tensor.get shape 0.040 0.042 1.050
48 tf.nest.map structure 0.084 0.087 1.036
49 tf.compat.v1.train.get global step 0.069 0.071 1.029
50 tf.estimator.LoggingTensorHook 0.042 0.038 0.905
51 tf.compat.v1.Session.run 5.722 3.804 0.665

Table 7: Latency in milliseconds for JAX on GPU and TPU. The table is ordered by the ratio
GPU/TPU in descending order. Note that values are rounded to 3 decimal places.

Function GPU TPU TPU/GPU

1 jax.named call 0.007 0.012 1.714
2 jax.numpy.array 0.435 0.638 1.467
3 jax.numpy.zeros 0.673 0.890 1.322
4 jax.lax.select 197.595 225.906 1.143
5 jax. src.interpreters.partial eval 0.012 0.013 1.083
6 jax.core.eval context() 0.005 0.005 1.000
7 jax.lax.all gather 0.348 0.342 0.983
8 jax.lax.integer pow 0.197 0.190 0.964
9 jax.numpy.size 0.015 0.014 0.933
10 jax.tree util.Partial 0.013 0.012 0.923
11 jax.make jaxpr 2.608 2.395 0.918
12 jax.numpy.log 0.309 0.283 0.916
13 jax.numpy.isscalar 0.010 0.009 0.900
14 jax.tree util.tree unflatten 0.008 0.007 0.875
15 jax.vjp 9.834 8.565 0.871
16 jax.numpy.einsum path 0.282 0.243 0.862
17 jax.numpy.delete 0.013 0.011 0.846
18 jax. src.interpreters.partial eval.trace to jax pr dynamic 0.380 0.308 0.811
19 jax.scipy.stats.norm.cdf 0.005 0.004 0.800
20 jax.lax.stop gradient 0.166 0.132 0.795
21 jax.numpy.reshape 3.714 2.845 0.766
22 jax.numpy.average 0.004 0.003 0.750
23 jax.disable jit 0.027 0.020 0.741
24 jax.tree util.tree map 0.051 0.033 0.647
25 jax. src.core.get aval 0.073 0.047 0.644
26 jax.scipy.signal.convolve2d 401.254 206.587 0.515
27 jax.lax.erf 14.456 7.296 0.505
28 jax.scipy.special.ndtr 77.206 33.315 0.432
29 jax.numpy.convolve 211.884 86.244 0.407
30 jax.numpy.linalg.svd 794.990 301.459 0.379

Continued on next page

19

Function GPU TPU TPU/GPU

31 jax.numpy.compress 133.591 45.108 0.338
32 jax.numpy.stack 145.019 44.748 0.309
33 jax.scipy.special.i0 389.510 118.412 0.304
34 jax.numpy.var 309.684 93.786 0.303
35 jax.numpy.tril 192.110 57.478 0.299
36 jax.numpy.sum 63.060 18.442 0.292
37 jax.numpy.triu indices 357.124 103.997 0.291
38 jax.numpy.power 114.465 33.004 0.288
39 jax.numpy.ones 42.366 12.144 0.287
40 jax.lax.pmax 69.271 19.671 0.284
41 jax.numpy.max 147.327 39.700 0.269
42 jax.scipy.linalg.lu 654.291 164.111 0.251
43 jax.numpy.prod 180.961 45.276 0.250
44 jax.lax.slice in dim 30.590 7.504 0.245
45 jax.lax.bitwise and 109.078 25.885 0.237
46 jax.numpy.tril indices from 923.872 217.183 0.235
47 jax.numpy.arange 466.126 107.242 0.230
48 jax.numpy.add 130.517 29.742 0.228
49 jax.numpy.all 206.400 46.815 0.227
50 jax.scipy.special.gammaln 161.529 34.914 0.216
51 jax.numpy.mean 222.164 47.596 0.214
52 jax.numpy.flip 75.649 14.542 0.192
53 jax.numpy.split 252.392 46.583 0.185
54 jax.numpy.fliplr 64.010 11.766 0.184
55 jax.lax.top k 122.615 22.130 0.180
56 jax.numpy.exp 45.239 7.792 0.172
57 jax.lax.ge 90.087 15.302 0.170
58 jax.nn.one hot 138.935 23.335 0.168
59 jax.random.PRNGKey 1485.077 227.995 0.154
60 jax.numpy.cos 172.002 26.102 0.152
61 jax.numpy.sqrt 98.118 13.860 0.141

Table 8: Comparison of TPUs and GPUs in terms of failure and success counts.
Comparison of TPU and GPU in terms of failure and success counts

GPUs TPUs
Partial Failure Complete Failure Success Partial Failure Complete Failure Success

TensorFlow 5/65 9/65 51/65 10/65 9/65 46/65
PyTorch 2/63 3/63 58/63 17/63 11/63 36/63
JAX 0/63 1/63 62/63 0/63 2/63 61/63

20

Figure 8: Distribution of times for operations in TensorFlow on GPUs and TPUs.

21

Figure 9: Distribution of times for operations in PyTorch on GPUs and TPUs.

22

Figure 10: Distribution of times for operations in JAX on GPUs and TPUs.

23

	Introduction
	Methodology
	Data collection

	Results and discussion
	Portability of functions across hardware types
	Efficiency cost to switching tooling

	Related work
	Limitations
	Conclusion
	Appendix
	The Relationship Between Software Portability and Innovation
	Discussion of Differences in Latency
	Why Functions
	Hardware Evaluation and Device Running Procedures
	Data Filtering
	Ensuring Functions are Run on Device of Interest
	Measuring Latency on Devices

