
Appendix

Primary Keywords: Learning, Imitation Learning, Information Theory

Algorithm Optimization
Practical Optimization
In Equation 3 of the main paper, we adopt H(z) instead
of H(z|s) to optimize the latent skill representation. Skills
are mostly irrelevant to the state of the instruction following
tasks. Formally, we build the mutual-information between
latent skill z and s:

I(z; s) = H(z|s)−H(z),

where H(z|s) is the conditional entropy of the skill z
given the state s, and H(z) is the entropy of the skill z. We
assume that the mutual information between skill and state5

is low, in which case H(z|s) can be approximated by H(z).
The entropy of skills measures the degree of randomness or
disorder. As we introduce code reinitialization to make dis-
crete skill selection rather than training only a few codes (as
shown in Figure 6(a)), we implicitly increase the random-10

ness of skills.

Mutual Information entropy loss
Here, we explain how to transform the objective from maxi-
mizing entropy to minimizing MSE error and incorporate it
into VQVAE training; we provide the following proof: First,15

we have our optimal goal from Equation 3.
F(θ, ϕ) = H(z|s) + E[log p(z|s, l)] + E[log q(l|z)]
In our implimentation we have skill encoder pθ(z|s, l) and

language decoder qϕ(z). The first term is optimized by code
reinitialization, which is mentioned in the appendix. Here,20

to prove how we transfer maximizing conditional entropy
into minimizing MSE loss. The conversion mode of the third
term of the formula is illustrated below.

E[log p(z | l)] =
m∑
i=1

log p (li | zi; θ)

=

m∑
i=1

(
log

1√
2πσ

exp

(
(li − qϕ (zi))

2

2σ2

))

=
1

2σ2

∑
(li − qϕ(zi))

2 −m lnσ
√
2π

By removing the constant term, we can equivalently max- 25

imize entropy, equivalent to minimizing the mean squared
error (MSE) loss. In Equation 5, we optimize this term in
each episode by concatenating skill into trajectory instruc-
tion and compute MSE loss with language embedding from
the CLIP encoder. The second term can also be optimized 30

with |pθ(s, l)− sg(zq)|22.

Implementation Details
We provide details on the implementation of our LCSD al-
gorithm in this section.

Language Encoder: We use a pre-trained CLIP 35

ResNet50 text encoder network as our language encoder.
This part is used only to decouple the complex language and
will not be involved in the subsequent updates.

Observation Encoder: We use linear MLP layers as our
state encoder. In the LORel environment, image observa- 40

tions are encoded by a convolution network similar to the
original paper.

Skill Encoder: We use linear MLP as our skill encoder
with language embeddings and states as input. The output
skills correspond to the states of each step. 45

Skill Decoder: We use a three-linear-layer MLP as our
language decoder with unique skill sets as our input. The
output vector is consistent with the dimensionality of the
language embedding.

Diffusion Model: We define a conditional U-net model 50

for fusing different modal information. This denoising
model also extends to the language condition, which only
requires changing the initialization dimension. The denois-
ing network structure is shown in Figure 1.

Our implementation uses the PyTorch framework on an 55

NVIDIA A100 GPU1. Parameters of that LCSD method
used on different environments are listed in Table 4. For
tasks of different difficulty, we use different sizes of code-
book to measure. We use 20 skill codes for Babyai and
Calvin as these environments do not contain many skills. For 60

the LORel environment, we use 30 skill codes to represent
more skills. Our method remains robust in varying hyperpa-
rameters, which is shown in Section .

1Our PyTorch code and datasets would be public after publish-
ing

256 128

128 64

64

64 128

128 256
Action

dim

input

MLP output

linear layer with Mish

linear layer

Figure 1: Denoising Network Architecture. We use a network similar to U-net. Different linear layers reduce and expand the
spatial dimensions while fusing multimodal features.

Table 1: Parameters of LCSD

Hyperparameter BabyAI LORel Calvin
Behavior loss Weight 5.0 5.0 5.0
Skill loss Weight 2.0 2.0 5.0
Reconstruct loss Weight 0.01 0.01 0.1
commitment Weight 1.0 1.0 1.0
Batch size 256 256 128
Codebook Dim 16 16 16
Skill Number 20 30 20
Reconstruct Option 3 4 2
Policy lr 2e-4 2e-4 2e-4
Skill lr 1e-4 1e-4 1e-4
Timesteps 50 100 50

Experimental Details
We describe detailed information about the evaluation envi-65

ronments and the specific demonstration trajectories.
Babyai: Babyai is a two-dimensional grid game with mul-

tiple task settings, where the agent performs a series of sub-
tasks according to the language instructions, such as ”open
the yellow door” and ”go to the key behind you”. To evaluate70

our skill-based model, we select three relatively challenging
tasks: GoToSeq, SynthSeq, and BossLevel. We use 10,000
trajectories for each task in our experiments. An example of
BabyAI BossLevel sequence is shown in Figure 2.

LORel: LORel is a robot manipulation environment75

based on Metaworld in a tabletop scenario, where a simu-
lated Sawyer robot manipulates a faucet, a drawer, and two
cups in different colors. Each trajectory is labeled with a lan-
guage and contains one or more tasks, such as ”Move black
mug left and turn faucet left”. Two trajectories of different80

tasks are shown in Figure 3. We collect an offline dataset of
50,000 trajectories in our experiments from the official code.

Calvin: Calvin is a manipulation environment that uses a
Franka Panda arm in four different settings. We adopt the

tasks proposed by the original paper and modify the eval- 85

uation on six tasks: Open Drawer, Close Drawer, Turn on
Lightbulb, Turn off Lightbulb, Move Slider Left, and Move
Slider Right. We directly select 1,216 trajectories from the
Calvin-D dataset that are relevant to the above six tasks as
our offline dataset. Since RGB image inputs depend on fac- 90

tors such as image encoders and multiple perspectives, in
order to eliminate interference and focus solely on evaluat-
ing the underlying policy and their performance on DT, we
directly selected the 21-dimensional perspective state of the
Calvin environment as the input for LCSD. As this type of 95

state space does not include the spatial aspect of the ball,
we excluded tasks related to the ball in our task selection,
which is mentioned above. The dataset can be downloaded
from the official link.

Table 2 lists the language labels used in our training 100

dataset for the Calvin environment. We observe that the lan-
guage labels for each task in Calvin are not standardized but
vary as much as possible, similar to the different test set-
tings in LORel. However, unlike LORel, the training dataset
in Calvin consists of diverse language instructions, making 105

it more challenging to train our LCSD algorithm.
As a result, we find that the language condition model

outperformed the skill condition in the Calvin environment,
where we use a diverse offline dataset with varying instruc-
tion labels. This outcome is reasonable, given the nature of 110

the training dataset in Calvin. It demonstrates the impor-
tance of considering the language condition in our LCSD
algorithm when dealing with diverse and varied language
instructions. We are pleased to see that our LCSD maintains
a high level of performance in all tasks. 115

Additional Experiments
Effect of Skill and Reconstruction Option Numbers
Codebook size and the number of reconstruction options
are important hyperparameters that may affect skill learning

Figure 2: Babyai Bosslevel on task Pick up the purple key and go to green ball, then open the yellow door and pick up the blue
ball .

Figure 3: LORel trajectory on two different tasks

Table 2: Calvin dataset language settings

Catagory Detail tasks Training Language Evaluation language Num

lightbulb turn on/off lightbulb
toggle the light switch to turn on/off the light bulb

use the switch to turn on/off the light bulb 95turn on/off the light bulb
move the light switch to turn on/off the light bulb

drawer open/close drawer
open/close the cabinet drawer

pull/push the handle to open/close the drawer 303grasp the drawer handle and open/close it
pull/push the handle of the drawer

slider move slider left/right
grasp the door handle, then slide the door to the left/right

push the sliding door to the left/right side 382move the door all the way to the left/right
slide/push the door to the left/right

light push down the button to turn on/off the led
press the button to turn on/off the led light

push the sliding door to the left/right side 382turn on/off the led light
toggle the button to turn on/off the led light

Unknown tasks Turn on/off green/yellow lamp move/toggle the light switch to turn off the yellow/green light 227

Figure 4: Data visualize in LORel.

Table 4: Diffusion language policy performance on Babyai

Timestep SynthSeq GoToSeq BossLevel
100 54.1% 65.2% 55.2%
50 52.2% 65.4% 48.5%

performance. In our approach, the upper limit of the skill set120

used by the decoder needs to be adjusted depending on the
task, similar to how codebook size is adjusted in VQ-VAE.
In Figure 10, we have shown the stability of skills gener-
ated by LCSD in varying codebook sizes. We further show
our success rate in LORel environments in Table 3 to see125

that the overall result is stable in the process of parameter
change. (Note that this success rate is an overall result of all
tasks, which is different from the main paper.)

Table 3: LCSD performance on LORel with different sizes
of codebook and number of reconstruction options

CodebookOption 3 4 5
20 35.10% 35.34% 38.92%
30 37.40% 38.70% 36.36%
40 37.66% 38.96% 37.92%

In Table 3, We find that the best result is achieved when
LCSD with the setting of 40 skills and four reconstruction130

options. Meanwhile, we observe that the performance of
each parameter fluctuated within a normal range. These re-
sults confirm the robustness of our LCSD algorithm on these
two hyperparameters. It demonstrates that our algorithm can
handle varying codebook sizes and the number of recon-135

struction options while still achieving stable performance.

Figure 5: Diffusion performance and training loss on Calvin
with different timesteps.

How do Diffusion timestep affect results

Additionally, we evaluate the effect of timestep on the re-
sults of behavioral cloning in the DDPM process. A larger
timestep can provide a more accurate distribution for the in- 140

put recovery, but it will also take more time during evalua-
tion. We evaluate our Diffusion language-conditioned policy
on the BabyAI environment with two timestep settings. In
the BabyAI environment, the performance of LCSD is not
significantly influenced by timestep, as shown in Table 4. 145

We conduct more ablation experiments on the Calvin en-
vironment with 25, 50, 75, and 100 timesteps for six tasks,
as shown in Figure 5. In the complex Calvin dataset, we ob-
serve that a larger timestep does not correspond to better
results. As seen in the table, timesteps of 25 and 50 are the 150

most appropriate in both performance and efficiency, while
timesteps of 75 perform the worst, even though the train-
ing loss decreased more quickly. We believe this is because
a good fitting is not always reflected in the performance in
non-optimal diverse datasets. However, with our diffusion 155

model, we can handle both large and precise as well as small
and diverse datasets with appropriate timesteps.

Skill Analysis
We analyze the effectiveness of our skill learning method in
the context of Decision Transformer (DT) by comparing it160

with the original DT-based skill learning model, LISA. In
Figure 6, we show the skill correlation map for the origi-
nal LISA model, which only trained on two skills during
VQ quantization. However, we can select more skills with
our code reinitialization method, as shown in Figure 6(b).165

This demonstrates the generalizability of our skill-learning
method to other imitation models.

To more specifically describe the meaning of the skill
map, Calvin’s skill map is analyzed in detail in Figure 7.
There are six high-frequency words selected in code 2 that170

combine to form a single skill language: Push the sliding
door to the left. In code 18, we can see a combination of
multiple expressions of a task: pull/open the drawer/handle.
This phenomenon shows that the skill learning of LCSD can
fully understand the potential association of human seman-175

tics and then better generalize to more tasks.
In Figure 8, we compare the performance of the DT model

with and without code reinitialization. We find that the orig-
inal DT model failed to achieve practical training in almost
all task settings because skill learning is limited to index col-180

lapse. On the other hand, the advantage of skill dispersion
with code reinitialization is reflected in the test accuracy.

In summary, our skill-learning method is effective not
only for our LCSD algorithm but also for other imitation
models, such as DT-based models. The results suggest that185

our code reinitialization method can help to generate dis-
crete meaningful skills, leading to better test accuracy and
improved skill learning.

Figure 8: DT model with code reinitialization success rate
on LORel.

Different skill map in Varying codebook Size
To test the robustness of LCSD, we use the skill-language190

correspondence graph to identify whether different code-
book sizes influence skill learning. For comparison, we
also conduct experiments using a basic skill-encoder-
only diffusion model, namely the Diffusion Encoder skill
model(Abbreviated as Diffusion encoder in Figures). Firstly,195

we plot our basic diffusion encoder skill model(Diffusion
with LISA) in Figure 9 on the codebook with sizes of 30 and
40. From the figures, we observe that skill learning stacked
in index collapse, which was more serious when using a
larger codebook.200

Next, we test our LCSD algorithm with the same num-
ber of skills in LORel, as shown in Figure 10. We observe

that LCSD can learn diverse and precise skills regardless of
the codebook size, demonstrating the robustness of our al-
gorithm. 205

Skill Maps in Different Environment
This section presents our skill correlation maps on the
BabyAI and Calvin environments. In the first two tasks
of BabyAI, GoToSeq, and SynthSeq, the skills are diverse
enough as the tasks are relatively simple to handle. We plot 210

the skill maps for the BabyAI BossLevel tasks to demon-
strate the performance of different skill-learning methods
in complex language-conditioned tasks, as shown in Figure
11. In contrast, the skills learned by the diffusion encoder
are still limited to a small portion of the codebook, and in- 215

dex collapse will be alleviated after adding a language de-
coder, as shown in Figure 11(b) and Figure 11(c). It is ev-
ident that LCSD generates better discrete and interpretable
skills among all the methods in Figure 11(a).

In the Calvin environment, we find that at a codebook size 220

of 20, the skills learned by the diffusion encoder are close in
dispersion to the skills generated by LCSD(Comparing two
panels of Figure 12). However, as the number of skills in-
creased, the codebook fell into a small subset of skill vector
during skill learning, as shown in Figure 13(a). In contrast, 225

LCSD is able to maintain skill diversity even with a larger
codebook, which corresponds to our stable performance on
different tasks (Figure 13(b)).

In summary, our skill correlation maps in different envi-
ronments demonstrate the effectiveness of our LCSD algo- 230

rithm in learning diverse and precise skills, even in complex
language-conditioned tasks. The ability of our algorithm to
maintain skill diversity regardless of the codebook size and
number of reconstruction options is a crucial advantage, en-
abling us to handle large and complex datasets with varying 235

hyperparameters.

(a) skill-word correlation map (b) skill-word correlation map with code reinitialization

Figure 6: Skill Map on DT model with LISA or LCSD skill learning method.

Figure 7: Explanation of certain skill codes in CALVIN. Skill maps show how our skills are correlated with words in eval-
uation. As can be seen from the second column, six words are chosen and can be formed into a sentence: Push the Sliding
door to the left. Also, in code 18, this skill corresponds to the task ”open drawer” and can recognize different representations:
open/pull, drawer/handle.

(a) Diffusion LISA skill map on 30 codes (b) Diffusion LISA skill map on 40 codes

Figure 9: Diffusion LISA Skill map in LORel state environment.

(a) LCSD skill map with 30 codes (b) LCSD skill map with 40 codes

Figure 10: LCSD Skill map in LORel state environment.

(a) LCSD skill map

(b) Diffusion LISA skill map (c) Diffusion LISA skill map with reinit

Figure 11: Skill map in BabyAI Bosslevel

(a) Diffusion Encoder skill map with 20 skills (b) LCSD skill map with 20 skills

Figure 12: Skill map in Calvin on codebook length of 20

(a) Diffusion Encoder skill map with 30 skills (b) LCSD skill map with 30 skills

Figure 13: Skill map in Calvin on codebook length of 30

