
1 APPENDIX

1.1 MORE DETAILS OF THE DATASETS

Table 1 shows the characteristics of the four datasets used in experiments.

DatasetDatasetDataset InteractionsInteractionsInteractions UsersUsersUsers ItemsItemsItems SparsitySparsitySparsity
MovieLens-100K 100,000 943 1,682 93.70%
MovieLens-1M 1,000,209 6,040 3,706 95.53%
Lastfm-2K 185,650 1,600 12,454 99.07%
Amazon-Video 63,836 8,072 11,830 99.93%

Table 1: Datasets statistics.

1.2 EVALUATION PROTOCOLS

For dataset split, we adopt prevalent leave-one-out evaluation, following He et al. (2017). For each
user, we take her last interaction as the test data and remain other interactions for training. Addition-
ally, we regard the latest raction in the training set as the validation data to find hyper-parameters.
For the final evaluation, we follow the regular strategy Koren (2008); He et al. (2017) that randomly
samples 99 unobserved items for each user, ranking the test item among the 100 items. We evaluate
the ranked list with Hit Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG) metrics.
In particular, HR measures whether the test data is in the top-K list, while NDCG considers the test
data’s position in the list. The two evaluation metrics could be formulated as follows,

HR =
1

N

N∑
u=1

hits(u) (1)

where N is the number of users and hits(u) = 1 indicates that the test data of user u is in the top-K
recommendation list, otherwise hits(u) = 0.

NDCG =
1

N

N∑
u=1

log 2

log(pu + 1)
(2)

where pu denotes the position of test data of user u in the recommendation list and pu → ∞ when
the test data is not in the top-K recommendation list. Here we set K = 10 for all experiments.

Method MovieLens-100K MovieLens-1M Lastfm-2K Amazon-Video
parameters epochs time (s) parameters epochs time (s) parameters epochs time (s) parameters epochs time (s)

FedNCF 86,753 90 1,800 314,625 98 18,718 452,481 95 4,750 639,617 60 5,820
w/ finetune 86,753 90 1,876 314,625 98 19213 452,481 83 4,680 639,617 32 4,120
FedRecon 53,856 465 9,486 118,624 470 123,892 398,560 98 7,154 378,592 57 3,819
w/ finetune 53,856 444 9,380 118,624 476 125,230 398,560 87 6,740 378,592 91 4,760
FedMF 53,856 72 936 118,624 93 12,927 398,560 82 3,280 378,592 56 3,920
PFedRec 53,857 61 854 118,625 95 13,585 398,561 60 2,340 378,593 75 5,100

Table 2: Efficiency comparison results on four datasets, including model parameter volume, training
epochs and running time.

1.3 EFFICIENCY COMPARISON

In federated learning, space and time efficiency are prominent factors for application. We compare
the model’s efficiency, including parameter volume, training epochs and running time, as shown in
Table 2. According to the results, (1) FedNCF has the largest volumes of parameters. Parameters of
recommendation systems consist of several parts, i.e., user and item embedding and score function.
The embedding size is the same for all methods in each dataset. For score function, FedNCF employs
a three-layers MLP, which leads to much more parameters than one-dimensional embedding in other
methods. (2) FedRecon takes the most training epochs to converge. The reconstruction mechanism
in FedRecon demands retraining the local module from scratch in each round, which results in

1

more training epochs. Taking MovieLens-100K as an example, our method converges in 61 training
epochs, while FedRecon requires 465 training epochs, approaching 8 times ours. FedNCF takes the
second longest training epochs and training time. On MovieLens-100K, the total training time of
FedNCF is about 2 times as long as ours. (3) The space and time efficiency of FedMF is at the
same level as our method. Our method enhances the personalization modeling and achieves the best
performance without extra computational complexity. In our experiments, we found that just one
local gradient descent step to learn personalized item embedding can yield advanced performance.

1.4 CONVERGENCE ANALYSIS

We show the convergence curves of the two evaluation metrics for our method and baselines on four
datasets. As shown in Figure 1, our method achieves the fastest convergence on all datasets and met-
rics almost all the time, followed by FedMF and FedRecon. FedNCF has the slowest convergence
speed because it has the most parameters and requires a longer number of iterations.

0 20 40 60 80 100

Number of Rounds

0

10

20

30

40

50

60

70

80

H
R@

10

(a) MovieLens-100K

FedNCF
FedRecon
FedMF
Ours

0 20 40 60 80 100

Number of Rounds

0

10

20

30

40

50

60

70

80

H
R@

10

(b) MovieLens-1M

FedNCF
FedRecon
FedMF
Ours

0 20 40 60 80 100

Number of Rounds

20

30

40

50

60

70

80

90

H
R@

10

(c) Lastfm-2K

FedNCF
FedRecon
FedMF
Ours

0 20 40 60 80 100

Number of Rounds

10

20

30

40

50

60

70

H
R@

10

(d) Amazon

FedNCF
FedRecon
FedMF
Ours

0 20 40 60 80 100

Number of Rounds

0

10

20

30

40

50

ND
CG

@
10

((e)e) MovieLens-100K

FedNCF
FedRecon
FedMF
Ours

0 20 40 60 80 100

0

10

20

30

40

50

ND
CG

@
10

Number of Rounds

(f)(f) MovieLens-1M

FedNCF
FedRecon
FedMF
Ours

0 20 40 60 80 100

10

20

30

40

50

60

70

80

ND
CG

@
10

Number of Rounds

(g)(g) Lastfm-2K

FedNCF
FedRecon
FedMF
Ours

0 20 40 60 80 100

0

10

20

30

40

50

ND
CG

@
10

Number of Rounds

(h)(h)

FedNCF
FedRecon
FedMF
Ours

 Amazon

Figure 1: Model convergence comparison. The horizontal axis is the number of federated optimiza-
tion rounds, and the vertical axis is the model performance, where (a)-(d) are HR@10 metric and
(e)-(h) are NDCG@10 metric.

1.5 HYPER-PARAMETERS STUDY

Effect of latent embedding size We tune the latent embedding size from {16, 32, 64, 128}. Ac-
cordingly, the architecture of the score function, i.e., one-layer MLP, is 16 → 1, 32 → 1, 64 → 1
and 128 → 1, respectively. Experimental results are shown in Table 3. Almost all four datasets
achieve the best results when the latent embedding size is 32. Due to the limited data of a single
user, increasing the model parameters did not obtain further performance improvement. Generally,
setting the dimension to 16 or 32 can achieve advanced performance. A small volume of parameters
helps to build a lightweight on-device recommendation model.

Effect of negative sample size We set the negative sample size from 1 to 10 and observe the
effect on model performance. Experimental results are shown in Figure 2. For two MovieLens
datasets, model performance improves significantly as the number of negative samples increases.
Since these two datasets have more user data than Lastfm-2K and Amazon, they contain richer user
preference information to learn. Sampling more negative instances help the model to further identify
user preferences. On the other two datasets, 4 negative samples are enough to obtain ideal model
performance.

Effect of client samples participating in each round There is a trade-off between client sam-
pling ratio and communication efficiency in federated optimization. Generally, the more clients are

2

Dataset Metrics 16 32 64 128

Movielens-100K
HR@10 72.81 ± 0.90 71.62 ± 0.83 71.64 ± 0.44 71.75 ± 0.80

NDCG@10 43.32 ± 0.43 43.44 ± 0.89 44.70 ± 1.01 45.42 ± 0.88

Movielens-1M
HR@10 72.70 ± 0.18 73.26 ± 0.20 71.91 ± 0.41 70.67 ± 0.15

NDCG@10 43.04 ± 0.19 44.36 ± 0.16 44.19 ± 0.15 43.74 ± 0.36

Lastfm-2K
HR@10 81.93 ± 0.80 82.38 ± 0.92 81.93 ± 0.41 82.01 ± 0.64

NDCG@10 72.47 ± 0.65 73.19 ± 0.38 72.41 ± 0.88 72.63 ± 0.29

Amazon-Video
HR@10 59.96 ± 0.18 60.08 ± 0.08 59.75 ± 0.15 59.60 ± 0.16

NDCG@10 39.14 ± 0.07 39.12 ± 0.09 39.07 ± 0.14 38.99 ± 0.11

Table 3: Performance of different latent embedding sizes on four datasets. The results are the mean
and standard deviation of the five repeated trials. Each number has an order of magnitude of 1e-2.

1 2 3 4 5 6 7 8 9 10
Number of Negatives

35

45

55

65

75

85

95

Pe
rf

or
m

an
ce

(a) MovieLens-100K

HR@10
NDCG@10

1 2 3 4 5 6 7 8 9 10
Number of Negatives

35

45

55

65

75

85

95
Pe

rf
or

m
an

ce

(b) MovieLens-1M

HR@10
NDCG@10

1 2 3 4 5 6 7 8 9 10
Number of Negatives

65

70

75

80

85

90

Pe
rf

or
m

an
ce

(c) Lastfm-2K

HR@10
NDCG@10

1 2 3 4 5 6 7 8 9 10
Number of Negatives

30

40

50

60

70

80

Pe
rf

or
m

an
ce

(d) Amazon

HR@10
NDCG@10

Figure 2: Performance under different negative sample numbers for each positive sample.

selected to participate in the global aggregation, the faster the model converges in each round. How-
ever, in the physical scenario, it is difficult for the server to collect the complete model information
from all the clients. Particularly, there are a large number of user clients in the recommendation
scenario, which further increases the difficulty. To verify the relationship between the model’s con-
vergence and the clients’ participation in each round, we conduct experiments on four datasets with
various client samples. To create a consistent validation environment for all datasets, we set the
number of users selected in each round as 100, 200, 300, 400 and 500, respectively. Experimental
results are represented in Figure 3.

100 200 300 400 500
(a) MovieLens-100K

0

100

200

300

400

500

Ep
oc

hs

30

40

50

60

70

80

90

100

Pe
rf

or
m

an
ce

HR@10
NDCG@10

100 200 300 400 500
(b) MovieLens-1M

0

200

400

600

800

Ep
oc

hs

30

40

50

60

70

80

90

100

Pe
rf

or
m

an
ce

HR@10
NDCG@10

100 200 300 400 500
(c) Lastfm-2K

0

150

300

450

600

Ep
oc

hs

60

70

80

90

100
HR@10
NDCG@10

100 200 300 400 500
(d) Amazon

0

200

400

600

800

0

20

40

60

80

100

Pe
rf

or
m

an
ce

HR@10
NDCG@10

Pe
rf

or
m

an
ce

Ep

oc
hs

Figure 3: Performance under different client numbers participating in each round.

We run the model until convergence and report the best validation performance with the corre-
sponding epoch. According to the experimental results, we can observe that PFedRec could reach
consistently advanced performance in all settings on all datasets, even only with 100 clients selected
in each round during model training. On the other hand, it is obvious that more clients participating
in each round of training lead to a quicker convergence. PFedRec supports the server to update with
insufficient clients accessible, which is ubiquitous in physical circumstances.

REFERENCES

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural col-
laborative filtering. In Proceedings of the 26th international conference on world wide web, pp.
173–182, 2017.

Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model.
In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and
data mining, pp. 426–434, 2008.

3

	Appendix
	More Details of the Datasets
	Evaluation Protocols
	Efficiency Comparison
	Convergence Analysis
	Hyper-Parameters Study

