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ABSTRACT

Large language models (LLMs) have achieved remarkable performance across
many tasks, yet aligning them with desired behaviors remains challenging. Activa-
tion intervention has emerged as an effective and economical method to modify the
behavior of LLMs. Despite considerable interest in this area, current intervention
methods exclusively employ a fixed steering vector to modify model activations,
lacking adaptability to diverse input semantics. To address this limitation, we
propose Semantics-Adaptive Dynamic Intervention (SADI), a novel method
that constructs a dynamic steering vector to intervene model activations at inference
time. More specifically, SADI utilizes activation differences in contrastive pairs to
precisely identify critical elements of an LLM (i.e., attention heads, hidden states,
and neurons) for targeted intervention. During inference, SADI dynamically steers
model behavior by scaling element-wise activations based on the directions of
input semantics. Experimental results show that SADI outperforms established
baselines by substantial margins, improving task performance without training.
SADI’s cost-effectiveness and generalizability across various LLM backbones and
tasks highlight its potential as a versatile alignment technique.1

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities across many tasks (Ope-
nAI, 2023; Touvron et al., 2023; Anil et al., 2023b;a; Mesnard et al., 2024). Nevertheless, aligning
these models to target behaviors remains challenging (Longpre et al., 2023; Ding et al., 2023). Exist-
ing approaches like supervised fine-tuning (Wei et al., 2022) (SFT), Reinforcement Learning from
Human Feedback (Bai et al., 2022) (RLHF), and prompt engineering (Shin et al., 2020; Wang et al.,
2023) are effective but have limitations. They often require extensive datasets, struggle to prevent
hallucinations, and sometimes fail to produce the desired results.

Recently, advancements in model alignment techniques, known as “activation engineering”, aim to
address these limitations (Subramani et al., 2022; Hernandez et al., 2023; Zou et al., 2023; Li et al.,
2023b; Chen et al., 2024). Activation engineering involves making targeted modifications to the
internal activations of LLMs to guide their outputs more precisely. This technique constructs steering
vectors that, when integrated into the forward pass of a frozen LLM, induce specific desirable changes
in the output text. However, traditional steering vectors are static and may not adapt well to the diverse
semantic contexts encountered during inference (Turner et al., 2023; Rimsky et al., 2023). This
misalignment between the direction of steering vector and the input’s semantic direction can adversely
impact the model’s predictive performance, particularly when the discrepancy is substantial. These
limitations highlight the need for dynamic and adaptive steering mechanisms capable of effectively
handling varied input semantics.

In this work, we introduce the Semantics-Adaptive Dynamic Intervention (SADI), a novel ap-
proach designed to overcome the limitations of fixed steering mechanisms. SADI adjusts model
activations by dynamically generating a steering vector tailored to each input’s semantic context.
Specifically, SADI utilizes activation differences from contrastive pairs to create a binary mask that

1https://github.com/weixuan-wang123/SADI
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Figure 1: Three steps of SADI: (1) Difference Extraction: extract the activation differences between
positive and negative examples from all model layers; (2) Binary Masking: compute the mean
activation difference to locate the key elements and produce an identification mask by binarization;
and (3) Adaptive Steering: intervene the activations during inference by applying the identification
mask to the input activations scaled by a factor of δ.

identifies critical model elements for targeted intervention. During inference, this mask is applied
to user input activations with element-wise scaling, effectively manipulating the LLM’s behavior
to align with the input semantics. This process ensures that modifications preserve the semantic
alignment of the inputs, allowing for more precise and context-sensitive interventions. Furthermore,
we apply SADI to various components of LLMs, including hidden states (SADI-HIDDEN), attention
heads (SADI-HEAD), and neurons in feed-forward networks (FFNs) (SADI-NEURON).

To validate the effectiveness of SADI, we conduct extensive experiments using four diverse model
backbones: LLAMA2-7B-CHAT, BLOOMZ-7B, MISTRAL-7B, FALCON-7B-INSTRUCT across
eleven widely used benchmarks. The experiments involve a comprehensive range of tasks, from
multiple-choice tasks (COPA, StoryCloze, NLI, MMLU, SST2, SST5, BoolQ, Winogrande), to open-
ended generation tasks (TriviaQA, ToxiGen, and TruthfulQA). Our experimental results reveal that
SADI significantly outperforms existing activation intervention methods.

Our contributions are summarized as follows:

• We propose a dynamic activation intervention approach named Semantics-Adaptive Dynamic
Intervention (SADI), which automatically modulates LLM activations at inference time to
adapt to varied input semantics without requiring any additional training (see Section 3).

• SADI is a generic steering method applicable to a wide range of LLMs. Through extensive
experiments with four model backbones over eleven diverse tasks, SADI has proven to sig-
nificantly enhance model performance, surpassing baseline methods by substantial margins,
with accuracy improvements reaching up to +14.69 (see Section 4). Our detailed analysis
demonstrates that interventions targeting attention heads (SADI-HEAD) consistently yields
significant performance improvements across various tasks, validating the effectiveness of
our dynamic steering approach (see Section 4).

• SADI demonstrates excellent generalizability across different model sizes, few-shot settings,
and multilingual scenarios (see Section 5). We further show that SADI is a cost-effective
steering method that necessitates only a small number of additional examples (i.e., 150 items)
in developing a dynamic steering vector and does not require any training (see Section 6).

2 RELATED WORK

Activation engineering has been proposed as a cost-effective method to modify an LLM’s activations
during decoding (Hernandez et al., 2023; Zou et al., 2023; Wang et al., 2024c). By analyzing
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activation differences between contrastive pairs, these methods identify specific directions to adjust
LLM behaviors. For instance, some studies have improved LLM truthfulness by shifting activations
along vectors between true and false output distributions (Li et al., 2023b; Chen et al., 2024).
Moreover, discrepancies in contextual examples have been used to identify crucial modifications
needed to reduce LLM toxicity (Liu et al., 2023). More generally, these differences can be used
to update the residual stream without requiring explicit direction settings for adjustments. Turner
et al. (2023) construct steering vectors by assessing intermediate activation differences between two
prompts, effectively shifting emotions from negative to positive. Similarly, Rimsky et al. (2023) use
contrast pairs to create steering vectors that modify model behaviors by adjusting hidden states.

Our problem formulation aligns with the “linear representation hypothesis” (Park et al., 2024; Turner
et al., 2023) which posits that high-level concepts (i.e., features of the input) are represented linearly
as directions in the representation space. Model behavior intervention can be achieved by adding an
appropriate steering vector to the representation of a concept without altering other concepts. One key
insight is that intervening along the direction of the feature representation of an input is expected to
enhance the probability of producing a desirable output. Intuitively, we need to preserve the semantic
direction of an input when applying a steering vector to update activations.

Existing methods use fixed steering vectors generated from additional contrastive pairs during
intervention without aligning with input semantics (Turner et al., 2023; Rimsky et al., 2023). As
activation patterns can vary significantly across different inputs for the same task (Wang et al.,
2024a;b), model steering with a fixed vector may cause the intervention direction to deviate from the
representation of input contexts. This highlights the need for more adaptive approaches. Developing
a dynamic steering mechanism to adapt to the input semantics is critical for effective intervention.

3 SEMANTICS-ADAPTIVE DYNAMIC INTERVENTION

In this section, we provide a comprehensive description of the proposed SADI. We begin with an
overview of SADI in Section 3.1, and then introduce each step of SADI, including Difference
Extraction (Section 3.2), Binary Masking (Section 3.3), and Adaptive Steering (Section 3.4).

3.1 OVERVIEW OF SADI

Our method, SADI, encompasses three pivotal steps to dynamically steer model behavior, as shown
in Figure 1 and Algorithm 1. First, the activation differences between positive and negative examples
are extracted across all layers of the model. These differences are aggregated to compute the mean
difference, which is used to identify critical elements influencing the model’s behavior. Based on
this computation, we create an identification mask through binarization, keeping the crucial elements
while masking out the insignificant ones. Furthermore, this mask is applied to the activations of user
inputs, scaled by a factor during inference. In this way, we manage to manipulate the behaviors of
LLMs. We present more details in the following sections.

3.2 DIFFERENCE EXTRACTION

In the initial step of SADI, our objective is to extract activation differences from contrastive pairs to
isolate the internal activations most closely associated with the target behavior of the language model.
Specifically, we aim to identify features that distinguish positive outcomes (e.g., correct answers)
from negative ones (e.g., incorrect answers), thereby allowing adjustments to the model’s behavior.

Let P = {P l | 0 ≤ l < L} represents an LLM consisting of L layers, whose behavior we seek to
modify. We build a dataset T = {(xi, y

pos
i , yneg

i )}Ni=1 containing N instances, where each instance
includes the question xi, a positive output ypos

i , and a negative output yneg
i . For each instance i and

layer (l), we obtain activations by forwarding the concatenation of the input and the corresponding
output through the model P . Specifically, we forward xi concatenated with ypos

i to derive the positive
activation Apos,(l)

i,j = P l
(
xi||ypos

i

)
j
, where ·||· denotes concatenation and j represents the j-th token

in the sequence. Similarly, we obtain Aneg,(l)
i,j for the negative activation. Additionally, we focus on

the activation of the last token in each sequence, as it typically encapsulates the complete semantics
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of the input-output pair. For simplicity, we denote the activation of the last token as Apos,(l)
i and

Aneg,(l)
i for the positive and negative outputs, respectively.

To identify the features within the model that differentiate correct from incorrect outputs, we compute
the difference between the positive and negative activations for each instance at each layer as follows:

D
(l)
i = Apos,(l)

i −Aneg,(l)
i . (1)

By examining differences D(l)
i , we can determine which activations are crucial for model’s behavior.

3.3 BINARY MASKING

We now present how we construct a mask to identify and focus interventions on the critical model
elements that affect model’s behavior. As shown in Figure 1 (Step 2), after extracting the activation
differences from contrastive pairs, we compute the mean difference across all instances and layers,
and concatenate them to build the overall mean difference vector D for all model elements:

D = Concat(D(0), D(1), ..., D(L−1)), where D(l) =
1

N

N∑
i=1

D
(l)
i . (2)

Here, D ∈ RL×dm represents the concatenated mean activation differences across all L layers, and
dm denotes the dimensionality of the model components, which may correspond to hidden states,
attention heads, or neurons in FFNs.

We then binarize the mean activation difference D to create an identification mask M ∈ RL×dm .
This is done by setting the entries corresponding to the top-K elements with the largest differences to
1 and the rest to 0:

M [l,m] =

{
1 (l,m) ∈ EK

0 otherwise
, (3)

where l indexes the layers, m indexes the model elements within a layer, and EK is the set of indices
of the top-K elements with the highest mean activation differences. This step ensures that SADI
focuses on the most impactful elements contributing to the desired behavior, reducing unnecessary
alterations to non-essential elements and enhancing the efficiency of the intervention.

3.4 ADAPTIVE STEERING

Previous activation intervention methods modify all activation elements indiscriminately, which can
disrupt the model’s overall behavior (Li et al., 2023b; Rimsky et al., 2023). To mitigate this issue,
we perform a focused intervention on the top-K elements during inference. By leaving irrelevant
activations intact, our intervention becomes less intrusive and preserves the model’s non-target
behaviors. With this design, SADI precisely adjusts activations to minimize disruption to the model’s
residual functionalities. This approach is visualized in Step 3 of Figure 1.

Unlike previous studies using the fixed steering vector to intervene models, and inspired by Park
et al. (2024), we design a steering mechanism that considers the semantic direction of the input. The
steering vector dynamically adapts to the input’s semantic direction (see Equation 5), maintaining the
effectiveness of the intervention without deviating from the intended semantics.

For a given user input q, we first extract the activations of the last token from each layer: A(l)
q for

l = 0, 1, ..., L− 1. We then concatenate these activations to form a single vector:

Aq = Concat(A(0)
q ,A(1)

q , ...,A(L−1)
q ). (4)

Next, we apply the identification mask M to these activations and update them using:
A′

q = Aq + δ(Aq ⊙M). (5)
Here, ⊙ represents the element-wise product, and δ is a hyperparameter controlling the strength
of the intervention along the input’s semantic direction. By calculating the steering vector based
on the activations of input q, the intervention dynamically aligns with the input’s semantics. This
approach maintains the direction of the activation projections, ensuring that the intervention remains
semantically relevant and effective. Subsequently, we complete the altered forward pass with the
updated activations A′

q .
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Hyperparameters K and δ Our method introduces two key hyperparameters: K ∈ N+, specifying
the number of top elements targeted during the intervention, and δ ∈ R+, controlling the strength of
the intervention. We perform a hyperparameter sweep to empirically determine their optimal values.
Detailed analysis of the hyperparameter selection is provided in Section 4.3.

By selectively targeting the most impactful activation elements and adapting our intervention to the
input’s semantic direction, our method effectively steers the model toward the desired behavior.

Algorithm 1: SADI: Semantics-Adaptive Dynamic Intervention
Input :T = {(xpos

i , xneg
i )}Ni=1, a set of contrastive pairs; U = {uj}Kj=1, a test set; P , a pre-trained

LLM; A, a function to extract activations from P;
Output :O, the modified outputs collection;

1 ∆A ← 0 // Initialize the mean difference
2 for i=1 to N do // Collect and compute the mean difference of activations
3 ∆A ← ∆A+ (A(P(xpos

i ))−A(P(xneg
i )))

4 end for
5 ∆A ← 1

N
∆A

6 M ← binarize(∆A) // Create the identification mask
7 O ← [] // Intervene generation
8 for j=1 to K do
9 Aj ← A(P (uj)) // Extract activations for each input

10 Sj ←M ⊙Aj // Apply mask to activations and update
11 A′

j ← Aj + δ × Sj

12 O ← O
⋃
{P (A′

j)} // Complete the modified forward pass
13 end for
14 return O

4 EXPERIMENTS

We present our experimental setup (Section 4.1) , comparative methods (Section 4.2), main results
(Section 4.3), and specific contributions of SADI’s constitutes (Section 4.4) in this section.

4.1 EXPERIMENT SETTINGS

In this subsection, we describe the experimental settings for evaluating SADI. First, we outline the
tasks and the evaluation metrics used to assess model performance. Following that, we detail the
construction of contrastive pairs. Finally, we introduce the selected LLMs.

Tasks and Evaluation Metrics We conduct experiments on the following two types of tasks:
multiple-choice tasks and open-ended generation tasks. For the multiple-choice tasks, we use datasets:
COPA (Gordon et al., 2012), StoryCloze (Mostafazadeh et al., 2016), NLI (Bowman et al., 2015),
MMLU (Hendrycks et al., 2021), SST2 (Socher et al., 2013), SST5 (Socher et al., 2013), BoolQ (Clark
et al., 2019), and Winogrande (Sakaguchi et al., 2020), with response formats ranging from 2-way
to 5-way choices. Detailed descriptions of the datasets are provided in Appendix A.1. We measure
performance across these tasks using accuracy.

For the open-ended generation tasks, we apply SADI on TriviaQA (Joshi et al., 2017),
TruthfulQA (Lin et al., 2022), ToxiGen (Hartvigsen et al., 2022) datasets. The Exact Match (EM)
metric assesses TriviaQA, while TruthfulQA is evaluated using multiple-choice accuracy (MC)
and pre-trained judge models for truthfulness2 and informativeness3. ToxiGen is evaluated with a
HATEBERT classifier4 to measure toxicity. Dataset sizes are detailed in Table 9 (Appendix A.2).

Contrastive Pairs Construction For multiple-choice tasks, we generate positive prompts by
concatenating questions with correct answers and generate negative prompts using a randomly
chosen incorrect answer. For TriviaQA, a unique approach involves using a blank space as the

2https://huggingface.co/allenai/truthfulqa-truth-judge-llama2-7B
3https://huggingface.co/allenai/truthfulqa-info-judge-llama2-7B
4https://huggingface.co/tomh/toxigen_hatebert
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Table 1: The overall results of seven multiple-choice tasks in a zero-shot setting, performed by
LLAMA2-7B-CHAT. “SFT + SADI” indicates that SADI is applied to instruction fine-tuned models.
A dash indicates that the training dataset is unavailable.

Task COPA StoryCloze NLI MMLU SST2 BoolQ Winogrande AVG
BASELINE 70.80 65.06 63.11 44.90 88.63 70.52 50.91 64.85
ITI 77.20 68.50 63.97 46.07 91.38 74.10 52.80 67.72
CAA 75.20 74.65 64.13 46.17 91.16 74.98 52.64 68.42
SADI

SADI-HIDDEN 81.00 55.99 59.28 45.66 92.15 76.25 52.64 66.14
SADI-NEURON 82.20 67.57 62.97 46.91 88.69 70.40 51.93 67.24
SADI-HEAD 78.80 79.75 64.21 48.23 92.20 74.35 53.04 70.08

SFT 93.20 96.49 90.07 - 96.70 88.75 78.37 90.59
SFT + SADI

SADI-HIDDEN 94.90 96.49 90.07 - 96.76 88.91 78.37 90.91
SADI-NEURON 94.80 96.55 90.36 - 96.92 88.45 78.45 90.92
SADI-HEAD 94.60 96.55 90.30 - 96.81 88.94 78.61 90.97

incorrect answer. In TruthfulQA, we utilize data from its multiple-choice format to identify crucial
elements. For the ToxiGen task, we leverage the RealToxicityPrompts dataset (Gehman et al.,
2020), selecting entries with a toxicity score exceeding 0.955 to serve as negative prompts. This
helps us pinpoint elements contributing to toxic outputs.

Target LLMs We evaluate the performance of SADI in enhancing the baseline model (BASELINE)
- an instruction-tuned LLM, LLAMA2-7B-CHAT (Touvron et al., 2023). To verify the generalizability
of SADI across various model backbones, we include three additional LLMs: BLOOMZ-7B (Muen-
nighoff et al., 2023), MISTRAL-7B (Jiang et al., 2023), FALCON-7B-INSTRUCT (Almazrouei et al.,
2023). These models are selected based on their demonstrated efficacy across diverse linguistic
tasks and their widespread use in the research community. Furthermore, we extend our experiments
to other models within the BLOOMZ family, specifically BLOOMZ-560M, BLOOMZ-1B, and
BLOOMZ-3B, exploring how SADI performs across different model sizes.

4.2 EXPERIMENTAL COMPARISONS

In addition to evaluating SADI, we compare it against several approaches:

Supervised fine-tuning (SFT) We finetune all model parameters using the training dataset for each
task, as previous works suggest that this approach serves as an upper bound for supervised finetuning.
Specifically, we employ the AdamW optimizer with a learning rate of 2× 10−6 and a batch size of 4,
conducting the fine-tuning across three epochs on four NVIDIA A-100 GPUs (80G).

Inference-Time Intervention (ITI) We follow Li et al. (2023b) in using contrastive pairs to identify
the top heads for intervention. We sweep the hyperparameters of the heads involved and the strength
of intervention to optimize results.

Contrastive Activation Addition (CAA) Rimsky et al. (2023) use the mean difference in the
model’s activations at the position of the answer letter between all the positive and negative prompts
to construct a fixed steering vector to shift activations.

Our Approach (SADI) We compare three different configurations of the SADI shift. SADI-
HIDDEN applies SADI to the identified key hidden states across all layers. SADI-HEAD modifies
activations from the outputs of all attention heads across all layers. SADI-NEURON is based on the
outputs from each non-linear activation function in the FFN blocks across all layers.

4.3 EXPERIMENTAL RESULTS

SADI Significantly improves multiple-choice task performance. As illustrated in Table 1, SADI
demonstrates superior performance compared to the BASELINE and other intervention methods across
multiple-choice tasks. While SFT consistently outperforms other methods in tasks with available
training data, such as COPA and StoryCloze, its high data resource demands limit its effectiveness
in tasks with scarce data, like MMLU. Both ITI and CAA show notable improvements, highlighting
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Table 3: The overall results of three open-ended generation tasks performed by LLAMA2-7B-CHAT.
The results of TriviaQA are obtained in a zero-shot setting, and we use 5-shot in-context learning in
the ToxiGen and TruthfulQA tasks. † denotes results reproduced from other authors.

Task TriviaQA ToxiGen TruthfulQA

Metric EM toxicity ↓ True Info True×Info MC1 MC2 MC3
BASELINE 41.60 49.71 66.83 99.51 66.50 33.41 51.07 24.76
SFT - - - - - 24.20† - -
ITI 42.80 45.27 - - - 34.64† 51.55† 25.32†

CAA 43.20 49.71 71.60 83.84 60.03 34.03 52.76 25.62
SADI

SADI-HIDDEN 43.80 34.43 35.13 51.73 25.38 67.07 92.90 62.31
SADI-NEURON 43.50 17.14 74.54 93.51 69.71 34.88 52.50 25.79
SADI-HEAD 44.00 34.50 77.72 98.53 76.58 35.90 54.65 26.99

the effectiveness of intervention-based methods. SADI, leveraging dynamic interventions, achieves
optimal performance overall, significantly outperforming the BASELINE. In comparison to fixed
vector-based intervention methods (ITI and CAA), our dynamic intervention SADI yields substantial
gains across all tasks. Specifically, SADI exceeds ITI and CAA by margins of +11.25 and +5.10,
respectively, and surpasses the BASELINE by a large margin of +14.69 in the StoryCloze task.
Furthermore, SADI can enhance the performance of task-specific fine-tuned models (SFT +SADI),
underscoring its practicality for precise and targeted interventions.

Table 2: Average weighted accuracy on all four broad
disciplines for MMLU task with LLAMA2-7B-CHAT.

Domain Humanities STEM Social Other
BASELINE 46.68 34.26 54.62 49.71
SADI

SADI-HIDDEN 48.99 35.03 55.82 48.51
SADI-NEURON 48.83 37.46 55.74 50.65
SADI-HEAD 49.76 39.35 56.21 52.31

Improvement varies across SADI con-
figurations. Performance gains from
the three SADI configurations vary, but
all outperform ITI and CAA across
tasks. Notably, SADI-HEAD achieves
the most significant improvements, en-
hancing average accuracy by up to
+5.23. While SADI-HIDDEN and
SADI-NEURON also demonstrate strong
performance improvements in certain
scenarios, such as 76.25 for BoolQ and
82.20 for COPA, they occasionally show slight decreases in specific tasks, like NLI. Nevertheless,
manipulating attention heads consistently results in improvements across all tasks and achieves the
highest scores in most cases. For a detailed analysis, we present the results covering various domains
of knowledge of MMLU tasks, including humanities, STEM and social sciences and other are shown in
Table 2. SADI consistently enhances performances across these domains compared to the BASELINE,
with SADI-HEAD yielding the highest improvements, up to +5.09 in the STEM domain.

SADI improves open-ended generation task performance. We further evaluate the performance
of SADI on the open-ended generation tasks in Table 3. SADI, in its three configurations, generally
outperforms the BASELINE, except for SADI-HIDDEN in the TruthfulQA generation track. SADI-
HIDDEN underperforms in the generation track, but shows significant improvements in the truthful
multiple-choice track. This suggests that hidden states may be particularly sensitive to multiple-choice
formats. Conversely, SADI-HEAD significantly boosts truthfulness, with improvements reaching up
to +10.08 on the True×Info metric for TruthfulQA. This underscores the generalizability of SADI
’s dynamic intervention, effectively tailoring activations to the semantics required by each task.

Hyperparameters are task-specific. In Figure 2, we sweep two hyperparameters to control the
intervention: the number of identified key attention heads, and the strength of intervention. Results
indicate that optimal settings for these hyperparameters markedly vary across different tasks. This
variability underscores the importance of carefully balancing the number of heads engaged and the
scale of their amplification. For precise task performance optimization, it is recommended to search
optimal hyperparameters using data from the validation sets specific to each task.
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Figure 2: Results with varying intervention strength and numbers of key attention heads based on
COPA, StoryCloze, SST2, TriviaQA tasks with LLAMA2-7B-CHAT.

4.4 SCRUTINIZE EFFECTS OF DYNAMIC INTERVENTION OF SADI

SADI outperforms fixed steering and random intervention. In Table 4, we conduct an ablation
study to examine the contribution of Binary Masking (Step 2 in Section 3.3) and Adaptive Steer-
ing (Step 3 in Section 3.4) in SADI applied to tasks COPA, StoryCloze, Winogrande, SST2, and
TriviaQA. SADI involves constructing an identification mask M , where we randomly assign K ele-
ments to 1 with the values of remainder elements set to 0 (termed “random identify” in Table 4). It can
be observed from Table 4 that random element identification leads to a notable performance decrease,
with reductions as great as -7.88 (dropping from 79.75 to 71.87 on StoryCloze). Subsequently,
the mask M is applied to the activations corresponding to the semantics of user inputs in SADI.

Table 4: Ablation study for randomly iden-
tifying key elements and intervening with a
fixed steering vector for SADI-HEAD with
LLAMA2-7B-CHAT.

SADI random
identify

fixed
steering

COPA 78.80 72.40 71.20
StoryCloze 79.75 71.87 69.42
Winogrande 53.04 52.88 52.56
SST2 92.20 91.48 91.43
TriviaQA 44.00 42.90 41.50

Additionally, we explore the effects of fixed steering,
in which the mask M is directly applied to the mean
difference D, derived from the activations of contrastive
pairs (see Eq. 2). If Step 3 (Eq. 5) employs fixed
steering, it updates activations as:

A′
q = Aq + δ(D ⊙M). (6)

The results in Table 4 show that using a fixed steer-
ing vector leads to significant performance degradation
compared to the semantic-adaptive approach of SADI.
This decline likely stems from a misalignment between
the direction of intervention and that of input semantics.

5 DISCUSSION

In this section, we examine the generalizability across multiple LLMs (Section 5.1), different model
sizes (Section 5.2), few-shot settings (Section 5.3), and multilingual scenarios (Section 5.4).

5.1 GENERALIZABILITY ACROSS MULTIPLE LLMS

Table 5: Generalizability evaluation of SADI given by BLOOMZ-7B, MISTRAL-7B, and FALCON-
7B-INSTRUCT on the COPA, BoolQ and NLI tasks .

Task COPA BoolQ NLI

LLMs BLOOMZ MISTRAL FALCON BLOOMZ MISTRAL FALCON BLOOMZ MISTRAL FALCON
BASELINE 76.40 84.80 62.20 91.28 71.80 71.83 54.81 53.33 52.29
SFT 86.80 86.80 88.20 90.52 86.57 84.22 57.41 89.94 55.45
SADI

SADI-HIDDEN 76.40 93.00 60.60 91.31 49.43 62.73 53.25 35.69 43.67
SADI-NEURON 82.20 84.20 62.40 91.40 74.61 74.48 56.43 54.07 52.48
SADI-HEAD 82.20 92.00 62.20 91.28 67.38 73.23 55.37 53.65 54.83

SADI enhances performance across multiple LLMs in various tasks. An important question is
whether SADI can generalize over various LLMs. We apply SADI to three other well-performing
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LLMs: BLOOMZ-7B, MISTRAL-7B, and FALCON-7B-INSTRUCT in COPA, BoolQ and NLI tasks.
According to the results in Table 5, SADI consistently enhances performance across tasks compared
to the BASELINE, despite varying improvement levels by configuration. It is noteworthy that the
SADI-NEURON configuration with BLOOMZ-7B achieves the most substantial performance gains
in all three tasks, demonstrating that different models may exhibit distinct functional elements.

5.2 GENERALIZABILITY ACROSS MODEL SIZES

Table 6: Generalizability evaluation on
BLOOMZ series in COPA task.

Size 7b 3b 1.1b 560m
BASELINE 70.8 79.2 49.8 50.0
SFT 88.8 85.8 50.6 52.0
SADI

SADI-HIDDEN 76.4 79.2 50.0 50.0
SADI-NEURON 74.0 79.2 50.0 52.6
SADI-HEAD 78.8 79.2 51.8 54.4

SADI outperforms SFT in smaller LLMs. We
further investigate the effectiveness of SADI on the
BLOOMZ series across various model sizes. As shown
in Table 6, SADI maintains its improvement over BASE-
LINE even with smaller LLM sizes, confirming its gen-
eralizability across model sizes. Notably, SADI out-
performs SFT with incremental gains of up to +1.2 for
BLOOMZ-1B and +2.4 for BLOOMZ-560M, high-
lighting its effectiveness, especially in smaller models.

5.3 GENERALIZABILITY IN FEW-SHOT SETTINGS

SADI improves few-shot performance but with less gains. In Table 7, we compare SADI-HEAD
to the BASELINE across zero-shot and few-shot settings on the SST5, Winogrande, and TruthfulQA
tasks. The results highlight the generalizability of SADI in enhancing model performance with
few-shot prompting across various tasks. While manipulating heads improves the performances
in few-shot settings, the gains are less pronounced compared to those in zero-shot settings. This
suggests that few-shot examples already provide a strong learning signal (to both BASELINE and
SADI), somewhat overshadowing the additional benefits derived from head manipulation.

Table 7: Comparisons between few-shot and zero-shot on the SST5, Winogrande, and TruthfulQA.

Task SST5 Winogrande TruthfulQA MC1 TruthfulQA MC2 TruthfulQA MC3

Configuration 0-shot 5-shot 0-shot 5-shot 0-shot 5-shot 0-shot 5-shot 0-shot 5-shot
BASELINE 28.24 53.21 50.91 52.01 27.66 33.41 44.45 51.07 20.59 24.76
SADI-HEAD 35.43 54.07 53.04 53.35 32.19 35.99 50.81 54.65 24.83 26.99

5.4 GENERALIZABILITY IN MULTILINGUAL SCENARIOS

Table 8: Evaluating SADI on multilingual task XCOPA with LLAMA2-7B-CHAT.

Language id it sw ta th tr vi zh AVG
BASELINE 51.40 61.20 50.20 49.40 50.80 49.40 51.80 62.80 53.38
SADI

SADI-HIDDEN 51.40 62.40 50.00 50.00 51.20 48.80 52.20 64.80 53.85
SADI-NEURON 63.60 68.80 50.20 48.80 53.80 50.60 60.40 70.40 58.33
SADI-HEAD 62.60 70.60 50.80 49.60 51.40 51.60 60.20 70.10 58.36

SADI enhances performance in multilingual scenarios. Although our primary experiments
are in English, extending SADI to multilingual scenarios reveals its broader applicability. We
further evaluate SADI on the multilingual XCOPA task (Ponti et al., 2020), covering eight languages:
Indonesian (id), Italian (it), Swahili (sw), Tamil (ta), Thai (th), Turkish (tr), Vietnamese (vi), Chinese
(zh). Table 8 illustrates varying degrees of performance enhancements across different languages.
It can be observed that Indonesian shows the highest improvement, while Swahili gains the least.
Despite these variations, SADI consistently boosts performance across diverse language settings and
configurations. A detailed analysis of the key components effective language-wise is provided in
Appendix A.3. Additional insights from cross-lingual evaluations are discussed in Appendix A.4.
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6 ANALYSIS

In this section, we analyze activation difference distribution patterns for key model elements (Sec-
tion 6.1), and how SADI behaves under varying numbers of contrastive pairs (Section 6.2).

6.1 CHARACTERISTICS OF ACTIVATION DIFFERENCE
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Figure 3: Activation difference of each head across layers and the
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Figure 3(a) reveals activation patterns of attention heads in the middle to latter layers for contrastive
pairs in StoryCloze, indicating primary information processing within these layers. Figure 3(b)
shows that activation differences in neuron activity and hidden states are concentrated in the latter
layers, with the most significant discrepancies observed in the final layer. These consistent patterns
across tasks (see Appendix A.5) lend support to the functional segregation hypothesis, which posits
that latter layers are associated with language generation and middle layers are responsible for
reasoning (Zhao et al., 2024). Given this, our interventions on attention heads likely influence both
reasoning and generation, contributing to the consistent improvements.

6.2 SADI AND SFT WITH VARYING DATA

We assess the impact of varying amounts of contrastive pairs on SADI and SFT in COPA task.
As shown in Figure 4, SFT performance improves with an increasing number of fine-tuning data.
In contrast, SADI achieves optimal results with significantly fewer pairs, e.g., only 150 items
are sufficient to calculate an identification mask for targeting critical heads for intervention. This
highlights SADI’s effectiveness and efficiency in low-resource conditions.

7 CONCLUSION

In this study, we propose Semantics-Adaptive Dynamic Intervention (SADI), a novel approach
designed to dynamically steer model behavior by adapting to the semantic contexts of inputs. SADI
enhances model adaptability by modulating the activations of the identified critical model elements
during inference, taking into account the directions of input semantics. Our extensive experiments
across various tasks, LLMs backbones, and languages settings have demonstrated that SADI signif-
icantly outperforms established baselines, offering generalizable improvements without requiring
additional training. Our study advances the field of “activation engineering” in LLMs, with the
potential to inform the development of more advanced LLM intervention techniques.
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This work presents Semantics-Adaptive Dynamic Intervention (SADI), a method designed to enhance
the performance of large language models (LLMs) by dynamically adjusting their activations without
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SADI’s effectiveness, but we recognize that biases in the underlying models and datasets may still
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experiments were conducted using publicly available models and datasets, adhering to their respective
licenses and use policies.
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We are committed to ensuring the reproducibility of our findings in this work. To facilitate this, we
provide comprehensive details of our proposed Semantics-Adaptive Dynamic Intervention (SADI)
method in Section 3 of the main paper, including the algorithms and mechanisms for dynamic steering
vector generation and application to different model components. The experimental setups, including
model configurations, datasets, and evaluation metrics, are thoroughly described in Section 4. We
utilize publicly available models: LLAMA2-7B-CHAT, BLOOMZ-7B, MISTRAL-7B, and FALCON-
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A APPENDIX

A.1 DESCRIPTION OF TASKS

• COPA Each question consists of a premise and two alternatives, with the task being to choose
the alternative that more plausibly has a causal relationship with the premise.

• StoryCloze Each question requires a model to choose the correct ending to a four-sentence
story for evaluating story understanding and script learning.

• NLI It is a collection of sentence pairs manually labeled for balanced classification with the
labels entailment, contradiction, and neutral.

• MMLU It is a benchmark designed to measure knowledge acquired during pretraining, covering
57 subjects across STEM, the humanities, the social sciences, and more.

• SST2 and SST5 They are datasets used for sentiment analysis with 2 labels (negative, posi-
tive) and 5 labels (negative, somewhat negative, neutral, somewhat positive, or positive),
respectively.

• BoolQ It is a question answering dataset for yes/no questions where questions are naturally
occurring.

• Winogrande It a fill-in-a-blank task with binary options, with the goal of choosing the right
option for a given sentence which requires commonsense reasoning.

• TriviaQA It is a realistic text-based question answering dataset which includes question-
answer pairs from documents collected from Wikipedia and the web.

• TruthfulQA It is a benchmark to measure whether a language model is truthful in generating
answers to questions. The benchmark comprises 817 questions that span 38 categories,
including health, law, finance and politics. TruthfulQA includes both multiple-choice and
generation tracks. The performance of multiple-choice track is gauged using multiple-choice
accuracy (MC). This metric is based on the conditional probabilities of candidate answers
given the question, with a successful result counted when the truthful answer ranks first. In
the generation track, we use two pre-trained judge models to evaluate the truthfulness and
informativeness.

• ToxiGen It is a dataset that contains implicitly toxic and benign sentences mentioning 13
minority groups.

• XCOPA A multilingual dataset, translated from the English COPA, is used to evaluate the
capacity of models to transfer commonsense reasoning across languages.

A.2 DATASET SIZES

The size of datasets for each task are described in the Table 9.

Table 9: The number of data used for identifying key elements and testing for 11 tasks.

Task COPA StoryCloze NLI MMLU SST2 SST5 BoolQ Winogrande TriviaQA ToxiGen TruthfulQA
# identify 500 360 2000 12178 1000 1000 1000 1000 1000 1000 817
# testset 500 1511 5000 12178 1821 2210 3270 1267 1000 1400 817

A.3 ELEMENTS OVERLAP

In our analysis, detailed in Figure 5, we examine the overlap of identified key elements (attention
heads, neurons, and hidden states) across various tasks. We observed minimal overlap across
components between open-ended generation and multiple-choice tasks, particularly in attention heads
and neurons. This indicates a high degree of functional specialization within these components.
Unlike attention heads and neurons, hidden states demonstrate greater overlap, mainly due to their
positioning in the final layer which more directly influences the model’s output (as shown in Figure 4).
The specialization observed among attention heads supports the notion that multi-head attention
mechanisms evolve uniquely according to the task similarities. It is consistent with the finding in Li
et al. (2023a).
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Figure 5: Overlap of identified key elements across various tasks. From 1 to 10 represents the tasks:
COPA, StoryCloze, SST2, BoolQ, MMLU, NLI, Winogrande, TriviaQA, ToxiGen, TruthfulQA.

A.4 CROSS-LINGUAL SADI

Table 10: Cross-lingual results based on the identified heads/neurons from the English contrastive
pairs.

Language id it sw ta th tr vi zh
BASELINE 51.40 61.20 50.20 49.40 50.80 49.40 51.80 62.80
SFT 68.60 79.20 52.00 47.00 49.60 57.80 68.60 77.80
SADI-HEAD 62.80 67.60 50.40 50.20 51.00 51.20 56.60 70.00
SADI-NEURON 60.40 61.80 50.20 49.80 51.00 59.60 58.60 64.00

We have shown the effectiveness of SADI in the multilingual scenarios where contrastive pairs,
constructed in the same language as the test input, are used to identify relevant components. Further,
we explored its impact in a cross-lingual setting by employing English contrastive pairs to identify
key elements and then applying SADI to multilingual test inputs. The results, along with those of
SFT —which involves fine-tuning in English and testing on a multilingual dataset—are presented
in Table 10. We found that SADI displayed enhanced language transfer capabilities, particularly in
Tamil, Thai, and Turkish. These successful interventions suggest that critical elements are shared
across languages, supporting SADI’s utility in cross-lingual applications.

A.5 ACTIVATION DIFFERENCE DISTRIBUTIONS ACROSS TASKS

We demonstrate the distributions of activation difference across layers for heads, neurons and hidden
states in Figure 6 and in Figure 7 in COPA, BoolQ, TriviaQA, and TruthfulQA tasks. They show
consistent patterns across various tasks.
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Figure 6: Activation difference of each head across layer.
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Figure 7: Activation difference of top-100 neurons and hidden states.
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