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Broader Impact

In this paper, we introduce MixFormerV2, a fully transformer tracking approach for efficiently and
effectively estimating the state of an arbitrary target in a video. Generic object tracking is one of the
fundamental computer vision problems with numerous applications. For example, object tracking
(and hence MixFormerV2) could be applied to human-machine interaction, visual surveillance
and unmanned vehicles. Our research could be used to improve the tracking performance while
maintaining a high running speed. Of particular concern is the use of the tracker by those wishing to
position and surveil others illegally. Besides, if the tracker is used in unmanned vehicles, it may be a
challenge when facing the complex real-world scenarios. To mitigate the risks associated with using
MixFormerV2, we encourage researchers to understand the impacts of using the trackers in particular
real-world scenarios.

Limitations

The main limitation lies in the training overhead of MixFormerV2-S, which performs multiple model
pruning based on the dense-to-sparse distillation and deep-to-shallow distillation. In detail, we first
perform distillation from MixViT with 12 layers and plain corner head to MixFormerV2 of 12 layers.
The 12-layers MixFormerV2 is pruned to 8-layers and then to 4-layers MixFormerV2 based on
the deep-to-shallow distillation. Finally, the MLP-ratio-4.0 4-layers MixFormerV2 is pruned to the
MLP-ratio-4.0 4-layers MixFormerV2-S for real-time tracking on CPU. For each step, it requires
training for 500 epochs which is time-consuming.

Details of Training Time

The models are trained on 8 Nvidia RTX8000 GPUs. The dense-to-sparse stage takes about 43 hours.
The deep-to-shallow stage1 (12-to-8 layers) takes about 42 hours, and stage2 (8-to-4 layers) takes
about 35 hours.

S.0 Introduction

In the supplementary material, we first present more results on VOT20 [9] and GOT10k [8]. Then
we perform more ablation studies on our MixFormerV2 framework and the model pruning route
during the distillation-based model reduction. We also provide some visualization results of the
prediction-token-to-search and prediction-token-to-template attention maps.
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KCF SiamFC ATOM LightTrack DiMP STARK TransT CSWinTT MixFormer Ours-S Ours-B
[7] [1] [5] [14] [2] [13] [3] [12] [4]

VOT20EAO 0.154 0.179 0.271 0.242 0.274 0.280 - 0.304 - 0.258 0.322
GOT10kAO 0.203 0.348 0.556 - 0.611 0.688 0.723∗ 0.694 0.726∗ 0.621∗ 0.739∗

Table 1: State-of-the-art comparison on VOT2020 [9] and GOT10k [8]. ∗ denotes training with four
datasets including LaSOT [6], TrackingNet [11], GOT10k [8] and COCO [10]. The best results are
shown in bold font.

token num. MLP num. AUC
1 4 67.1%
4 4 67.3
4 1 67.5%

(a) Different prediction designs.
‘token num.’ indicates the number
of the learnable prediction tokens,
‘MLP num.’ denotes the number of
employed MLP layers for localiza-
tion. Models are without distillation
and score prediction.

blocks num. head AUC
12 Py-Corner. 69.0%
12 T4 68.9%
8 T4 68.5%

(b) Model pruning route of
MixFormerV2-B∗. ‘T4’ denotes
the proposed distribution-based pre-
diction with 4 prediction tokens. We
use the MixViT-B as the distillation
teacher for this analysis. Models are
without score prediction.

blocks num. head MLP-r AUC
12 Cor. 4 68.2%
12 T4 4 67.7%
8 T4 4 66.6%
4 T4 4 61.0%
4 T4 1 59.4%

(c) Model pruning route of
MixFormerV2-S. ‘Cor.’ represents
for the plain corner head, which is
used in the initial teacher model.
‘MLP-r’ denotes the MLP ratio in
backbone. Models are without score
prediction.

Init. method LaSOT LaSOT_ext UAV123
Tea-fir4 62.9% 45.2% 65.7%

Tea-skip4 64.4% 46.1% 66.6%
PMDP 64.8% 47.1% 67.5%

(d) Progressive Model Depth Pruning
(PMDP). ‘Tea-fir4’ denotes using first 4 layers
of the teacher for student initialization. ‘Tea-
skip4’ is using 4 skipped layers of the teacher.

Arch Online Epoch m AUC
MixFormerV2-B no 30 68.3%
MixFormerV2-B no 40 68.5%
MixFormerV2-B no 50 68.5%

(e) Eliminating Epochs. ’Epoch m’ indicates
the number of epochs in eliminating process.
Models are without score prediction.

Table 2: More ablation studies. The default choice for our model is colored in gray .

S.1 More Results on VOT2020 and GOT10k

VOT2020. We evaluate our tracker on VOT2020 [9] benchmark, which consists of 60 videos with
several challenges including fast motion, occlusion, etc. The results is reported in Table 1, with metrics
Expected Average Overlap(EAO) considering both Accuracy(A) and Robustness. Our MixFormerV2-
B obtains an EAO score of 0.322 surpassing CSWinTT by 1.8%. Besides, our MixFormerV2-S
achieves an EAO score of 0.258, which is higher than the efficient tracker LightTrack, with a real-time
running speed on CPU.

GOT10k. GOT10k [8] is a large-scale dataset with over 10000 video segments and has 180
segments for the test set. Apart from generic classes of moving objects and motion patterns, the
object classes in the train and test set are zero-overlapped. We evaluate MixFormerV2 trained with
the four datasets of LaSOT, TrackingNet, COCO and GOT10k-train on GOT10k-test. We compare it
with MixFormer and TransT with the same training datasets for fair comparison. MixFormerV2-B
improves MixFormer and TransT by 0.7% and 1.6% on AO respectively with a high running speed of
165 FPS.

S.2 More Ablation Studies

Design of Prediction Tokens. We practice three different designs of prediction tokens for the
target localization in Tab. 2a. All the three methods use the formulation of estimating the probability
distribution of the four coordinates of the bounding box. The model on the first line denotes using
one prediction token and then predicting coordinates distribution with four independent MLP heads.
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It can be observed that adopting separate prediction tokens for the four coordinates and a same MLP
head retains the best accuracy.

Model Pruning Route. We present the model pruning route from the teacher model to
MixFormerV2-B∗ and MixFormerV2-S in Tab. 2b and Tab. 2c respectively. The models on the
first line are corresponding teacher models. We can see that, through the dense-to-sparse distillation,
our token-based MixFormerV2-B obtains comparable accuracy with the dense-corner-based MixViT-
B with higher running speed. Through the progressive model depth pruning based on the feature
and logits distillation, MixFormerV2-B with 8 layers only decreases little accuracy compared to the
12-layers one.

Detailed Structure of Score Heads The Score Head is a simple MLP composed of two linear
layers with the hidden dimension of 768. Specifically, firstly we average these four prediction tokens
to gather the target information, and then feed the token into the MLP-based Score Head to directly
predict the confidence score s which is a real number. Formally, we can represent it as:

s = MLP (mean (tokenX)) , X ∈ T ,L,B,R

Computation Loads of Different Localization Head We showcase the FLOPs of different heads
as follows. Formally, we denote Cin as input feature dimension, Cout as output feature dimen-
sion, Hin,Win as input feature map shape of convolution layer, Hout,Wout as output feature map
shape, and K as the convolution kernel size. The computational complexity of one linear layer is
O(CinCout), and that of one convolutional layer is O(CinCoutHoutWoutK

2).

In our situation, for T4, the Localization Head contains four MLP to predict four coordinates. Each
MLP contains two linear layer, whose input and output dimensions are all 768. The loads can be
calculated as:

LoadT4 = 4× (768× 768 + 768× 72) = 2580480 ∼ 2.5M

For Py-Corner, totally 24 convolution layers are used. The loads can be calculated as:

LoadPy−Corner = 2 ∗ (768 ∗ 384 ∗ 18 ∗ 18 ∗ 3 ∗ 3+
384 ∗ 192 ∗ 18 ∗ 18 ∗ 3 ∗ 3+
384 ∗ 192 ∗ 18 ∗ 18 ∗ 3 ∗ 3+
192 ∗ 96 ∗ 36 ∗ 36 ∗ 3 ∗ 3+
384 ∗ 96 ∗ 18 ∗ 18 ∗ 3 ∗ 3+
96 ∗ 48 ∗ 72 ∗ 72 ∗ 3 ∗ 3+
48 ∗ 1 ∗ 72 ∗ 72 ∗ 3 ∗ 3+
192 ∗ 96 ∗ 18 ∗ 18 ∗ 3 ∗ 3+
96 ∗ 48 ∗ 18 ∗ 18 ∗ 3 ∗ 3+
48 ∗ 1 ∗ 18 ∗ 18 ∗ 3 ∗ 3+
96 ∗ 48 ∗ 36 ∗ 36 ∗ 3 ∗ 3+
48 ∗ 1 ∗ 36 ∗ 36 ∗ 3 ∗ 3)

=3902587776 ∼ 3.9B

For simplicity, we do not include some operations such as bias terms and Layer/Batch-Normalization,
which does not affect the overall calculation load level. Besides, the Pyramid Corner Head utilize
additional ten interpolation operations. Obviously the calculation load of Py-Corner is still hundreds
of times of T4.

More Exploration of PMDP Tea-skip4 is a special initialization method, which chooses the skiped
four layers (layer-3/6/9/12) of the teacher (MixViT-B) for initialization. In other words, Tea-skip4 is
an extreme case of ours PMDP when the eliminating epoch m equal to 0. So it is reasonable that
Tea-skip4 performs better than the baseline Tea-fir4, which employs the first four layers of the teacher
(MixViT-B) to initialize the student backbone. In Table 2d, we further evaluate the performance on
more benchmarks. It can be seen that ours PMDP surpasses Tea-skip4 by 1.0% on LaSOT_ext, which
demonstrate its effectiveness.
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Search Top Left Bottom Right

Figure 1: Visualization of prediction-token-to-
search attention maps, where the prediction to-
kens are served as query of attention operation.

Template Top Left Bottom Right

Figure 2: Visualization of prediction-token-to-
template attention maps, where the prediction to-
kens are served as query of attention operation.

Determination of Eliminating Epochs As shown in the Table 2e, we find that when the epoch m
greater than 40, the choice of m seems hardly affect the performance. So we determine the epoch to
be 40.

S.3 Visualization Results

Visualization of Attention Map To explore how the introduced learnable prediction tokens work
within the P-MAM, we visualize the attention maps of prediction-token-to-search and prediction-
token-to-template in Fig. 1 and Fig. 2, where the prediction tokens are served as query and the
others as key/val of the attention operation. From the visualization results, we can arrive that the
four prediction tokens are sensitive to corresponding part of the targets and thus yielding a compact
object bounding box. We suspect that the performance gap between the dense corner head based
MixViT-B and our fully transformer MixFormerV2-B without distillation lies in the lack of holistic
target modeling capability. Besides, the prediction tokens tend to extract partial target information in
both the template and the search so as to relate the two ones.

Visualization of Predicted Probability Distribution We show two good cases and bad cases
in Figure 3. In Figure 3.(a) MixFormerV2 deals with occlusion well and locate the bottom edge
correctly. As show in Figure 3.(b), the probability distribution of box representation can effectively
alleviate issue of ambiguous boundaries. There still exist problems like strong occlusion and similar
objects which will lead distribution shift, as demonstrated in Figure 3.(c) and 3.(d).

References
[1] Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea Vedaldi, and Philip HS Torr. Fully-convolutional

siamese networks for object tracking. In Proceedings of the European Conference on Computer Vision,
ECCV Workshops, 2016.

[2] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu Timofte. Learning discriminative model
prediction for tracking. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
ICCV, pages 6182–6191, 2019.

[3] Xin Chen, Bin Yan, Jiawen Zhu, Dong Wang, Xiaoyun Yang, and Huchuan Lu. Transformer tracking. In
IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2021.

[4] Yutao Cui, Cheng Jiang, Limin Wang, and Gangshan Wu. Mixformer: End-to-end tracking with iterative
mixed attention. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2022.

[5] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and Michael Felsberg. ATOM: accurate tracking
by overlap maximization. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2019.

[6] Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia Yu, Hexin Bai, Yong Xu, Chunyuan Liao, and
Haibin Ling. Lasot: A high-quality benchmark for large-scale single object tracking. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR, 2019.

4



[7] João F. Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista. High-speed tracking with kernelized
correlation filters. IEEE Trans. Pattern Anal. Mach. Intell., 37(3):583–596, 2015.

[8] Lianghua Huang, Xin Zhao, and Kaiqi Huang. Got-10k: A large high-diversity benchmark for generic
object tracking in the wild. IEEE Trans. Pattern Anal. Mach. Intell., 43(5):1562–1577, 2021.

[9] Matej Kristan, Ales Leonardis, and et. al. The eighth visual object tracking VOT2020 challenge results. In
Adrien Bartoli and Andrea Fusiello, editors, Proceedings of the European Conference on Computer Vision,
ECCV Workshops, 2020.

[10] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C. Lawrence Zitnick. Microsoft COCO: common objects in context. In Proceedings of the European
Conference on Computer Vision, ECCV, 2014.

[11] Matthias Müller, Adel Bibi, Silvio Giancola, Salman Al-Subaihi, and Bernard Ghanem. Trackingnet:
A large-scale dataset and benchmark for object tracking in the wild. In Proceedings of the European
Conference on Computer Vision, ECCV, 2018.

[12] Zikai Song, Junqing Yu, Yi-Ping Phoebe Chen, and Wei Yang. Transformer tracking with cyclic shifting
window attention. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2022.

[13] Bin Yan, Houwen Peng, Jianlong Fu, Dong Wang, and Huchuan Lu. Learning spatio-temporal transformer
for visual tracking. In Proceedings of the IEEE/CVF International Conference on Computer Vision, ICCV,
2021.

[14] Bin Yan, Houwen Peng, Kan Wu, Dong Wang, Jianlong Fu, and Huchuan Lu. Lighttrack: Finding
lightweight neural networks for object tracking via one-shot architecture search. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15180–15189, 2021.

5



[] [] []

[]

Figure 3: In each figure, the left one is plot of the probability distribution of bounding box, which
demonstrates how our algorithm works. The right one is heatmap visualization of attention weights
in the last layer of backbone. The examples are from LaSOT test subset.
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