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Appendix A Affordance-and-Semantic-Knowledge Gaussian Splatting1

Here, we provide additional details of the distilled knowledge in ASK-Splat.2

A.1 Grounding Language Semantics in 3D Gaussian Splatting3

In this work, we utilize feedforward MLPs in defining the encoder and decoder with l = 3 ≪ C.4

However, we note that larger values of l generally result in more expressive semantic scene represen-5

tations, at the expense of increased memory and rendering costs. We train the autoencoder with the6

loss function Lg , given by:7
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where gdecθ (gencϕ (·)) represents the composition of the encoder and decoder that outputs the recon-8

struction of its inputs, ψ : RU×V×C × RU×V×C 7→ R denotes the cosine-similarity function (where9

we note that ψ applies to inputs of arbitrary height and width), and D denotes the dataset of images10

used in training the Gaussian Splatting scene, with fgt,i denoting the ground-truth semantic features11

of image i. The first term in (1) represents the mean-squared-error (MSE) reconstruction loss with12

κg ∈ R++ denoting the constant associated with this term, while the second term represents the13

cosine-similarity loss between the ground-truth embeddings and the reconstruction.14

Given a trained encoder, we map the ground-truth image embeddings from CLIP to the lower-15

dimensional latent space and distill the lower-dimensional embeddings into the Gaussian Splatting16

representation. We assign a semantic feature fs ∈ Rl to each Gaussian. To render 2D semantic17

feature maps of the scene, we utilize the same tile-based rasterization procedure presented in [1],18

culling 3D Gaussians whose 99% confidence ellipsoid do not intersect the view frustum associated19

with the pose of the camera. We optimize the semantic feature parameters using the loss function:20
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where Îs
i ∈ RH×W×l denotes the 2D semantic feature map rendered from the Gaussian Splats and21

κs ∈ R++ denotes the constant term in the MSE loss, given by thee first component of Ls. Although22

not explicitly stated in (2), we resize the output of gencϕ using bilinear interpolation to obtain a23

ground-truth semantic map of compatible dimensions.24

Given a good initialization of the Gaussians (e.g., when the sparse point cloud from structure-from-25

motion is utilized in initializing the Gaussians), the semantic feature parameters associated with each26

Gaussian can be trained simultaneously with other spatial and visual-related parameters associated27

with the Gaussians, along with the autoencoder’s parameters. Nonetheless, empirical evaluations28

suggest that a sequential training procedure in which the semantic parameters are trained after the29
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non-semantic parameters of the Gaussians have been trained yields better localized semantic feature30

maps. We hypothesize that this observation may result from more consistent grounding of the31

semantic features.32

Now, we present our approach to generating semantic feature maps of the scene given a natural-33

language query. We compute the text embedding of the query using CLIP, which we use in evaluating34

the similarity between the specified query and the objects in scene. We utilize the cosine-similarity35

metric, which is widely used in prior work [2, 3]. Consistent with prior work, we allow for the36

specification of negative queries to help distinguish between dissimilar objects and the object of37

interest described by a positive query. However, we note that, in practice, a positive query suffices38

without negative queries. We compute the embeddings of each item in the set of negative queries39

and positive queries, and subsequently compute the cosine similarity between the predicted semantic40

feature given by the Gaussian Splats and each query in the set of negative and positive queries. Finally,41

the similarity score between a feature point p and the positive query is given by:42

sim(Qs,Q′
s) = min

i∈|Q′
s|
γ(p, νa(Qs), νb(q

′
s,i)), (3)

where Q denotes the set of positive queries, Q′
s = {q′s,i, ∀i ∈ [|Q′

s|]} denotes the set of negative43

queries, νa : S 7→ R computes the average semantic embedding of a set of text prompts s̄ ∈ S,44

νb(q
′
s,i) represents the semantic embedding of the negative query q′s,i, and γ : R3 × RC × RC 7→ R45

represents the pairwise softmax function over the positive query embedding and the ith negative46

query embedding at the 3D feature point, outputting the probability associated with the positive query47

embedding. In general, when rendering the semantic similarity maps, we apply a threshold of 0.548

to the similarity score computed in (3) to distinguish feature points associated with the query from49

dissimilar ones.50

A.2 Grounding Affordance in 3D Gaussian Splatting51

We embed grasp affordances in ASK-Splat. During training, we utilize the same tile-based rasteriza-52

tion procedure discussed in Section A.1 in rendering the 2D visual grasp affordance of the scene and53

optimize the grasp affordance parameter β using the loss function: Lβ = κβ
∑|D|

i=1
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i
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2
,54

which represents the MSE loss between the ground-truth 2D visual grasp affordance Iβ
i ∈ RH×W×155

and the rendered visual grasp affordance Îβ
i ∈ RH×W×1. We optimize the affordance parameters56

concurrently with the non-semantic parameters of each Gaussian. From a trained ASK-Splat scene,57

we can generate dense 2D visual grasp affordance maps, as well as sparser 3D visual grasp affordance58

maps, by directly evaluating the affordance score associated with each Gaussian.59

Appendix B Scene-Editing-Enabled Gaussian Splatting60

We present the components that make up SEE-Splat, our module for Scene-Editing-Enabled Gaussian61

Splatting representations, that enables the identification and localization of relevant objects within a62

scene for insertion, removal, or modification of the object’s visual or spatial properties.63

B.1 Semantic Localization via ASK-Splat64

Given a natural-language query specifying an object of interest, SEE-Splat leverages ASK-Splat to65

identify semantically relevant Gaussians, as discussed in Section A.1. In the main paper (cf. Fig. 3),66

we show the localization of an electric stove, saucepan, and a fruit in a real-world Cooking scene. To67

improve the localization accuracy, the text prompt can include the geometric and visual properties68

of the object, such as its color, in addition to its semantic class. At this stage, SEE-Splat generates69

a semantic similarity map, from which relevant Gaussians are extracted, given a threshold on the70

semantic score.71



B.2 Masking the Gaussians in SEE-Splat72

Given a semantic similarity map of the scene, SEE-Splat generates a mask identifying the Gaussians73

relevant to the specified object. This procedure begins with thresholding the semantic scores of each74

Gaussian to remove dissimilar Gaussians from the set of relevant Gaussians, which creates a sparse75

point cloud of the relevant Gaussians, constructed from the means of these Gaussians. However,76

photo-realistic rendering of Gaussian environments require denser point clouds. Consequently, SEE-77

Splat lifts the features of the point cloud from the 3D Euclidean space to a 7D feature space, by78

augmenting each point in the point cloud with its RGB color and semantic score. Subsequently,79

SEE-Splat identifies all neighboring points in the scene within a specified distance of the point cloud80

in the 7D feature space using an efficient KD-tree query. SEE-Splat incorporates these points into81

the point cloud to create a denser point cloud, comprising of all semantically-relevant Gaussians,82

while removing outliers from the set of points. In the main paper (cf. Fig. 3), we show the Gaussians83

extracted by SEE-Splat, as a point cloud with well-defined geometry, given a natural-language query84

for each object.85

B.3 Editing the Gaussians in SEE-Splat86

Leveraging the Gaussian primitives in ASK-Splat, SEE-Splat enables real-time scene-editing by87

inserting new Gaussians into the scene, removing Gaussians, and modifying the properties of the88

Gaussians, to reflect (or simulate) changes in the real-world. SEE-Splat supports seamless insertion89

and removal of Gaussians by introducing or deleting the relevant Gaussians from the set of Gaussians90

representing the scene, respectively. In addition, SEE-Splat supports both rigid and non-rigid91

transformation of the Gaussians, enabling simulated motion of the Gaussians, as well as changes to92

the shape of the Gaussians via non-isometric scaling. Specifically, given a function specifying the93

transformation ξ : Gs 7→ Gs (where Gs represents the space of the Gaussian primitives), SEE-Splat94

updates the spatial attributes of the relevant Gaussians by applying ξ to these Gaussians. In the case of95

rigid transformations, ξ can be described by an SE(3) transformation matrix, specifying rotation and96

translation of the Gaussians. We can render the edited scene to generate photo-realistic visualizations.97

Although, we do not consider physics-based simulations in this work, we note that physics can be98

incorporated into SEE-Splat to achieve realism. We expound on this point in or discussion on the99

limitations of SEE-Splat.100

Deletion and transformation of the Gaussians introduces artifacts into the scene representation,101

degrading its photo-realistic qualities. To address this challenge, SEE-Splat enables 3D Gaussian102

infilling by introducing new Gaussians with similar attributes in regions with missing geometry,103

which we illustrate in Appendix A. Figure 1 provides an illustration of such artifacts (e.g., the hole in104

the table), when the scene is edited to visualize the effects of moving the saucepan to the electric105

stove. Through 3D Gaussian infilling, SEE-Splat generates a photorealistic rendering of the edited106

scene, eliminating these artifacts.107

Appendix C Grasping and Manipulation with Splat-MOVER108

We present Grasp-Splat and discuss its application to multi-stage robotic manipulation via Splat-109

MOVER.110

C.1 Grasp-Splat for Grasp Proposal111

We note that the grasps generated by GraspNet are not always ideal. For example, the grasps generated112

by GraspNet in Figure 2 are either infeasible or challenging to execute. As a result, Grasp-Splat ranks113

the grasps proposed by GraspNet based on the grasp scores obtained from ASK-Splat. By leveraging114

the affordance score associated with each grasp pose, Grasp-Splat identifies grasp configurations that115

are more likely to succeed, depicted in Figure 2.116



Without 3D Gaussian Infilling  With 3D Gaussian Infilling  

Figure 1: 3D Gaussian Infilling in SEE-Splat: (Left) In general, without 3D Gaussian infilling,
transformation of the Gaussians (e.g., moving the saucepan from the table to the electric stove)
introduces artifacts, such as the hole in the table after moving the saucepan. (Right) Via 3D Gaussian
infilling, SEE-Splat generates photorealistic renderings of the edited scene.

GraspNet Grasp-Splat

Figure 2: The top-two candidate grasps proposed by (left) GraspNet and (right) Grasp-Splat, lever-
aging the grasp affordance of each object. Qualitatively, the grasps generated by Grasp-Splat are
more likely to succeed, compared to the grasps generated solely from Grasp-Net. Further, the grasps
proposed by Grasp-Splat are better localized on the handle of the saucepan.

C.2 Multi-Stage Robotic Manipulation117

For multi-stage robotic manipulation, we begin by decomposing the manipulation task into stages.118

Our approach supports the specification of the stages comprising the task by a human or by a large119

language model (LLM). In the case where the natural-language description of the task does not120

specify the stages involved in the task, we query an LLM for the stages required to complete the121

manipulation task. For each stage in the manipulation task, we utilize ASK-Splat, SEE-Splat, and122

Grasp-Splat to identify the relevant object and generate candidate grasp poses. Likewise, we query123

ASK-Splat for the target location for placing the object. We evaluate the feasibility of each candidate124

grasp using an off-the-shelf motion planner for the robotic manipulator, inputting the point cloud125

of the scene, extracted from ASK-Splat and SEE-Splat, into the motion planner, which the motion126

planner uses for collision detection during motion planning. We execute the top candidate grasps,127

moving on to the next if the robot motion planner fails to compute a solution to execute the selected128

grasp.129



We execute the motion plan returned by the motion planner on the robotic manipulator. We note that130

the end-effector trajectory can be published to SEE-Splat for real-time visualization of the task in the131

virtual scene. In this case, we can apply the relative transformation between consecutive end-effector132

poses to the spatial attributes of the Gaussian associated with the object being manipulated. In133

addition, we note that alternative approaches exist for computing the relative transformations of the134

object between consecutive frames. For example, if object-tracking information is available from135

sensors in the scene, SEE-Splat could leverage this information to update the spatial attributes of136

the Gaussians, rendering a video showing the real-time changes in the scene of the manipulator,137

including the motion of the object, as the manipulation task progresses. We proceed to the next stage138

in the manipulation task at the conclusion of the current stage, repeating the same procedures with139

the updated representation of the scene provided by SEE-Splat.140

Appendix D Evaluations141

We present additional experimental results of ASK-Splat, SEE-Splat, and Splat-MOVER in open-142

vocabulary, multi-stage robotic manipulation problems, including a discussion of the experimental143

setup.144

D.1 Experimental Setup145

D.1.1 ASK-Splat146

We distill grasp affordances from the vision-affordance foundation model VRB [4], which is trained147

on the EPIC-KITCHENS dataset [5], consisting of videos of humans performing kitchen tasks, such148

as cutting fruits and vegetables. We note that the generalization of the affordance knowledge in149

ASK-Splat is limited by that of VRB, the underlying foundation model. VRB utilizes Language150

Segment-Anything (LangSAM) [6], which requires the specification of objects within each image for151

which it predicts the contact locations and motion direction after contact. This requirement is not152

limiting, in practice, as end-to-end object detectors that provide bounding boxes for all objects in the153

scene [7, 8, 9] could be used. We distill the grasp affordance scores from the heatmaps computed by154

VRB and the semantic embeddings from the vision-language foundation model RN50x64, CLIP-155

ResNet model [10]. We implement ASK-Splat in Nerfstudio [11]. To train ASK-Splat, we record a156

video of each scene using a smartphone and utilize the training API available in Nerfstudio, using the157

sparse point cloud computed via structure-from-motion [12] for initialization.158

D.1.2 Scenes159

We consider only real-world scenes in our experiments, including a Kitchen scene (consisting160

of common kitchen cookware such as saucepans, chopping boards, and knives); Cleaning scene161

(consisting of common household cleaners such as disinfectant wipes, dish soaps, and cleaning162

sprays); Meal scene (consisting of cutlery such as plates, spoons, forks, and cups); Random scene163

(consisting of random items such as a pair of scissors, chess pieces, and keyholders); and a Workshop164

scene (consisting of tools such as a power drill, work mat, and scraper). Figure 3 shows these scenes.165

We note that the Workshop and Random scenes contain out-of-distribution objects with respect to the166

EPIC-KITCHENS dataset (i.e., objects not found in a typical kitchen), such as the power drill and the167

chess pieces.168

D.1.3 Splat-MOVER169

We consider the multi-stage robotic manipulation task where the robot must sequentially pick and170

place two different objects and move them to a common goal location. The task is specified by a user171

that provides an open-vocabulary command, e.g., “Pick up the saucepan and move it to the burner,172

then pick up the lid and put it on the saucepan.” For simplicity, we limit the task to two sequential173

pick-and-place maneuvers. However, we note that Splat-MOVER does not impose this limitation174

and is amenable to longer multi-stage manipulation tasks. Furthermore, we consider three adjacency175



goal location primitives (“on”, “next to”, and “inside”) for the second object where each primitive is176

defined based on the geometry of the first object.177

Specifically, we evaluate Splat-MOVER in four multi-stage manipulation tasks across three scenes:178

the Kitchen, Cleaning, and Workshop scenes. In the Kitchen scene, we consider a Cooking task where179

the robot is asked to place a saucepan on an electric burner (Stage 1) and subsequently place a fruit180

inside the saucepan (Stage 2). Further, in the Kitchen scene, we consider a Chopping task where the181

robot is asked to place a knife on a chopping board (Stage 1) and subsequently place a fruit next to182

the knife (Stage 2). We consider a Cleaning task (in the Cleaning scene), where the robot is asked183

to place a cleaning spray in a bin (Stage 1) and subsequently place a sponge next to the cleaning184

spray (Stage 2). Lastly, in the Workshop scene, the robot is asked to place a power drill on a work185

mat (Stage 1) and subsequently place a wooden block next to the drill (Stage 2), which we refer to as186

the Workshop task.187

D.1.4 Hardware Experiments188

We implement Splat-MOVER in grasping and placing tasks on a Kinova Gen3 robot, equipped189

with a Robotiq parallel-jaw gripper. The Kinova robot is a 7-DoF robot with a maximum reach of190

902 mm. We interface with the robot using the Robot Operating System (ROS), through which we191

send waypoints, which are tracked by the default low-level controllers provided by the robot. We192

utilize the MoveIt ROS package [13] for motion planning for the Kinova robot given a specified grasp193

pose. At each stage of the manipulation task, we extract a point cloud and a mesh from ASK-Splat194

and SEE-Splat, reflecting the progress in the task up to that stage, which we use as the environment195

representation within MoveIt for collision avoidance during planning.196

D.2 ASK-Splat Representation197

We train ASK-Splat on a number of different environments and evaluate the grasp affordance and198

semantic segmentation of the resulting Gaussian Splats. In Figure 3, we show the RGB image,199

grasp affordance heatmap computed by VRB, and the grasp affordance heatmap rendered from200

ASK-Splat composited with the rendered RGB image. The heatmap shows the regions in each object201

amenable to grasping. Qualitatively, from Figure 3, ASK-Splat encodes the grasp affordance given202

by VRB, identifying reasonable regions on each object for grasping. Although VRB provides the 2D203

motion direction associated with each grasp affordance region, we do not distill this knowledge into204

ASK-Splat, as we found the 2D motion directions to be quite noisy and relatively uninformative.205

We compute the Structural Similarity Index (SSIM) for each scene to assess the quality of the distilled206

affordance compared to the VRB-generated grasp affordance. The SSIM metric ranges between −1207

(indicating greater dissimilarity) to 1 (indicating greater similarity). As expected, the Workshop scene208

yields the smallest SSIM value of 0.592± 7.20e−2, recalling that the objects in this scene, such as209

the power drill and the scraper, are outside the training distribution of the VRB model. Nevertheless,210

the model shows relatively-good generalization performance, given that the grasp affordance region211

lies around the handle of the drill, shown in Figure 3 (bottom row). Likewise, the Meal scene achieves212

the highest SSIM score of 0.681± 8.91e−2, noting that the objects in the scene can be found in the213

dataset used in training the VRB model. Further, the Cleaning, Kitchen, and Random scenes achieve214

SSIM scores of 0.648± 9.06e−2, 0.647± 1.30e−1, and 0.614± 8.37e−2, respectively.215

Figure 4 shows the semantic masks generated by ASK-Splat across different scenes. Given a natural-216

language query, ASK-Splat localizes the relevant object in the scene based on the cosine-similarity217

of the Gaussians to the query. In Figure 4, ASK-Splat identifies the salt shaker, flower, and pair of218

scissors. However, the success of robotic manipulation tasks depend on the integration of semantic219

scene understanding with grasp affordance. As such, we show the semantic-affordance masks220

generated by ASK-Splat in Figure 4. With the semantic-affordance masks, a robot not only has the221

ability to identify a relevant object to grasp, the robot can also identify where on the relevant object222

to grasp.223
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Figure 3: Grasp affordance for a Kitchen scene, Cleaning scene, Meal scene, Random scene, and
Workshop scene (from top-to-bottom). We show the RGB image, grasp affordance as predicted by
the vision-affordance foundation model (VRB), and the grasp affordance from ASK-Splat from novel
views (from left-to-right).

D.3 Splat-MOVER for Multi-Stage Robotic Manipulation224

We compare Splat-MOVER to prior work LERF-TOGO [10] and F3RM [14] in four tasks: the225

Cooking task, Chopping task, Cleaning task, and Workshop task, described in Section D.1.3. Figure 5226

shows a few candidate grasps proposed by GraspNet, F3RM, LERF-TOGO, and Grasp-Splat for227

each of these objects. GraspNet does not consider the semantic features of the object in generating228

candidate grasps; as a result, the proposed grasps are not localized in regions where a human might229

grasp the object, unlike the candidate grasps proposed by F3RM, LERF-TOGO, and Grasp-Splat,230

which generate grasps closer to the handle of the respective objects. For example, the proposed231

grasps lie relatively close to the handle of the saucepan and the knife. F3RM and LERF-TOGO232

generate candidate grasp conditioned on a text prompt identifying the region to grasp the object233

(such as its handle) provided by a human operator or an LLM (in LERF-TOGO) or from a dataset of234

human demonstrations (in F3RM). In contrast, Grasp-Splat does not require any external guidance to235

generate candidate grasps of similar quality, harnessing the grasp affordances provided by ASK-Splat.236

We summarize the capabilities of each of these methods in Table 1.237

Table 1: Representation Capabilities of LERF-TOGO [10], F3RM [14], and Splat-MOVER
Capabilities Semantic Knowledge Affordance Knowledge Scene-Editing

LERF-TOGO [10] ✓ ✗ ✗
F3RM [14] ✓ ✗ ✗
Splat-MOVER (ours) ✓ ✓ ✓

In addition, we evaluate the pick-and-place success rate of all the methods in the Cooking task,238

Chopping task, Cleaning task, and Workshop task, where the place success rate is conditioned on the239

number of successful trials in picking the object. Table 2 provides the pick-and-place success rates240

in the Chopping task. Splat-MOVER achieves the highest pick success rate (85%) in Stage 1 of the241

task. Although F3RM achieves the highest place success rate, it achieves a much lower pick success242

rate compared to Splat-MOVER. In addition, in the Cleaning and Workshop tasks, Splat-MOVER243

achieves the highest success rates in the first stage of each task, and further achieves relatively high244



salt shaker flower scissors

Figure 4: Affordance and Language Semantics in ASK-Splat: Given natural-language queries, ASK-
Splat renders: (top-row) RGB images, (middle-row) semantic masks of the scene, and (bottom-row)
localized grasp affordance regions, for example, for a salt shaker in the kitchen scene, a flower in the
cleaning scene, and a pair of scissors in the random scene, evaluated at novel views in ASK-Splat.
The natural-language query for each object is noted in italics.

success rates in the second stage of each task, shown in Tables 3 and 4. LERF-TOGO achieves245

a perfect success rate in picking up the power drill in the first stage of the Workshop task. Since246

LERF-TOGO and F3RM are not amenable to multi-stage manipulation tasks, we cannot evaluate the247

success rate of these methods for the entire manipulation task. In contrast, Splat-MOVER enables248

multi-stage robotic manipulation, achieving a task success rate of 40%, 65%, 70%, and 80% in the249

Cooking, Chopping, Cleaning, and Workshop tasks, respectively. We note that the Cooking task is250

the most challenging task, compared to the other tasks, given the little margin of error tolerated in251

placing the saucepan on the electric burner.252

Table 2: Pick and Place Success Rates in a two-stage manipulation Chopping task, where the robot
must move a knife to a chopping board (Stage 1), then move a fruit next to the knife (Stage 2).

Methods Stage 1 Stage 2
Pick Success (%) Place Success (%) Pick Success (%) Place Success (%)

LERF-TOGO [10] 35 N/A N/A N/A
F3RM [14] 60 91.67 N/A N/A
Splat-MOVER (ours) 85 82.35 65 100

Table 3: Pick and Place Success Rates in a two-stage manipulation Cleaning task, where the robot
must move a cleaning spray into a bin (Stage 1), then move a sponge next to the cleaning spray inside
the bin (Stage 2).

Methods Stage 1 Stage 2
Pick Success (%) Place Success (%) Pick Success (%) Place Success (%)

LERF-TOGO [10] 25 N/A N/A N/A
F3RM [14] 75 6.67 N/A N/A
Splat-MOVER (ours) 90 83.33 70 100



GraspNet LERF-TOGO F3RM Grasp-Splat

Figure 5: Candidate grasps for a saucepan, knife in a guard, cleaning spray, and power drill (from
top-to-bottom), generated by GraspNet, LERF-TOGO, F3RM, and Grasp-Splat (from left-to-right).
Although LERF-TOGO and F3RM require the specification of a grasp location from an operator,
an LLM, or via human demonstrations to generate more-promising candidate grasps, Grasp-Splat
generates candidate grasps of similar or better quality without requiring external guidance.

Table 4: Pick and Place Success Rates in a two-stage manipulation in a Workshop task, where the
robot is tasked with moving a power drill onto a work mat (Stage 1), followed by moving a wooden
block next to the drill on the work mat (Stage 2).

Methods Stage 1 Stage 2
Pick Success (%) Place Success (%) Pick Success (%) Place Success (%)

LERF-TOGO [10] 100 N/A N/A N/A
F3RM [14] 70 7.14 N/A N/A
Splat-MOVER (ours) 95 94.74 85 88.24
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