N o o b

21
22
23
24

25
26
27
28
29

Splat-MOVER: Multi-Stage, Open-Vocabulary
Robotic Manipulation via Editable Gaussian Splatting

Anonymous Author(s)
Affiliation
Address

email

Appendix A Affordance-and-Semantic-Knowledge Gaussian Splatting
Here, we provide additional details of the distilled knowledge in ASK-Splat.

A.1 Grounding Language Semantics in 3D Gaussian Splatting

In this work, we utilize feedforward MLPs in defining the encoder and decoder with [ = 3 < C.
However, we note that larger values of [ generally result in more expressive semantic scene represen-
tations, at the expense of increased memory and rendering costs. We train the autoencoder with the
loss function £, given by:

|D| |D|

g =Ky Z ||gdec enC fgt i)) — fgt,i”i |D| Z dec enc(fgt z) fgt z)) ’ (1)

where g§°°(g 3'°(+)) represents the composition of the encoder and decoder that outputs the recon-
struction of its inputs, 1) : RUXV*C x RUXVXC 4 R denotes the cosine-similarity function (where
we note that 1) applies to inputs of arbitrary height and width), and D denotes the dataset of images
used in training the Gaussian Splatting scene, with f4 ; denoting the ground-truth semantic features
of image . The first term in (1) represents the mean-squared-error (MSE) reconstruction loss with
kg € R4 denoting the constant associated with this term, while the second term represents the
cosine-similarity loss between the ground-truth embeddings and the reconstruction.

Given a trained encoder, we map the ground-truth image embeddings from CLIP to the lower-
dimensional latent space and distill the lower-dimensional embeddings into the Gaussian Splatting
representation. We assign a semantic feature f, € R! to each Gaussian. To render 2D semantic
feature maps of the scene, we utilize the same tile-based rasterization procedure presented in [1],
culling 3D Gaussians whose 99% confidence ellipsoid do not intersect the view frustum associated
with the pose of the camera. We optimize the semantic feature parameters using the loss function:

D]

_Kéz‘

where ff € REXWXL denotes the 2D semantic feature map rendered from the Gaussian Splats and
ks € Ry denotes the constant term in the MSE loss, given by thee first component of L. Although
not explicitly stated in (2), we resize the output of gg"° using bilinear interpolation to obtain a
ground-truth semantic map of compatible dimensions.

9o (fat,i) H |D| Z < - 92“(1“&,1))) ) @)

Given a good initialization of the Gaussians (e.g., when the sparse point cloud from structure-from-
motion is utilized in initializing the Gaussians), the semantic feature parameters associated with each
Gaussian can be trained simultaneously with other spatial and visual-related parameters associated
with the Gaussians, along with the autoencoder’s parameters. Nonetheless, empirical evaluations
suggest that a sequential training procedure in which the semantic parameters are trained after the
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non-semantic parameters of the Gaussians have been trained yields better localized semantic feature
maps. We hypothesize that this observation may result from more consistent grounding of the
semantic features.

Now, we present our approach to generating semantic feature maps of the scene given a natural-
language query. We compute the text embedding of the query using CLIP, which we use in evaluating
the similarity between the specified query and the objects in scene. We utilize the cosine-similarity
metric, which is widely used in prior work [2, 3]. Consistent with prior work, we allow for the
specification of negative queries to help distinguish between dissimilar objects and the object of
interest described by a positive query. However, we note that, in practice, a positive query suffices
without negative queries. We compute the embeddings of each item in the set of negative queries
and positive queries, and subsequently compute the cosine similarity between the predicted semantic
feature given by the Gaussian Splats and each query in the set of negative and positive queries. Finally,
the similarity score between a feature point p and the positive query is given by:

sim(Qs, Q5) = in, V(P va(Qs), v(d5.4)), 3)

where Q denotes the set of positive queries, Qy = {q; ;, Vi € [|Q;|]} denotes the set of negative
queries, v, : S — R computes the average semantic embedding of a set of text prompts 5§ € S,
V(¢ ;) represents the semantic embedding of the negative query ¢, ;, and y : R? x RC x R¢ — R
represents the pairwise softmax function over the positive query embedding and the ith negative
query embedding at the 3D feature point, outputting the probability associated with the positive query
embedding. In general, when rendering the semantic similarity maps, we apply a threshold of 0.5
to the similarity score computed in (3) to distinguish feature points associated with the query from
dissimilar ones.

A.2 Grounding Affordance in 3D Gaussian Splatting

We embed grasp affordances in ASK-Splat. During training, we utilize the same tile-based rasteriza-
tion procedure discussed in Section A.1 in rendering the 2D visual grasp affordance of the scene and

optimize the grasp affordance parameter 3 using the loss function: £z = rg Z!Z‘l i'f - Iiﬁ ,

2
2
which represents the MSE loss between the ground-truth 2D visual grasp affordance If € REXWx1
and the rendered visual grasp affordance flﬁ € RHIXWx1 We optimize the affordance parameters
concurrently with the non-semantic parameters of each Gaussian. From a trained ASK-Splat scene,
we can generate dense 2D visual grasp affordance maps, as well as sparser 3D visual grasp affordance

maps, by directly evaluating the affordance score associated with each Gaussian.

Appendix B Scene-Editing-Enabled Gaussian Splatting

We present the components that make up SEE-Splat, our module for Scene-Editing-Enabled Gaussian
Splatting representations, that enables the identification and localization of relevant objects within a
scene for insertion, removal, or modification of the object’s visual or spatial properties.

B.1 Semantic Localization via ASK-Splat

Given a natural-language query specifying an object of interest, SEE-Splat leverages ASK-Splat to
identify semantically relevant Gaussians, as discussed in Section A.1. In the main paper (cf. Fig. 3),
we show the localization of an electric stove, saucepan, and a fruit in a real-world Cooking scene. To
improve the localization accuracy, the text prompt can include the geometric and visual properties
of the object, such as its color, in addition to its semantic class. At this stage, SEE-Splat generates
a semantic similarity map, from which relevant Gaussians are extracted, given a threshold on the
semantic score.
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B.2 Masking the Gaussians in SEE-Splat

Given a semantic similarity map of the scene, SEE-Splat generates a mask identifying the Gaussians
relevant to the specified object. This procedure begins with thresholding the semantic scores of each
Gaussian to remove dissimilar Gaussians from the set of relevant Gaussians, which creates a sparse
point cloud of the relevant Gaussians, constructed from the means of these Gaussians. However,
photo-realistic rendering of Gaussian environments require denser point clouds. Consequently, SEE-
Splat lifts the features of the point cloud from the 3D Euclidean space to a 7D feature space, by
augmenting each point in the point cloud with its RGB color and semantic score. Subsequently,
SEE-Splat identifies all neighboring points in the scene within a specified distance of the point cloud
in the 7D feature space using an efficient KD-tree query. SEE-Splat incorporates these points into
the point cloud to create a denser point cloud, comprising of all semantically-relevant Gaussians,
while removing outliers from the set of points. In the main paper (cf. Fig. 3), we show the Gaussians
extracted by SEE-Splat, as a point cloud with well-defined geometry, given a natural-language query
for each object.

B.3 Editing the Gaussians in SEE-Splat

Leveraging the Gaussian primitives in ASK-Splat, SEE-Splat enables real-time scene-editing by
inserting new Gaussians into the scene, removing Gaussians, and modifying the properties of the
Gaussians, to reflect (or simulate) changes in the real-world. SEE-Splat supports seamless insertion
and removal of Gaussians by introducing or deleting the relevant Gaussians from the set of Gaussians
representing the scene, respectively. In addition, SEE-Splat supports both rigid and non-rigid
transformation of the Gaussians, enabling simulated motion of the Gaussians, as well as changes to
the shape of the Gaussians via non-isometric scaling. Specifically, given a function specifying the
transformation & : G, — G4 (Where G, represents the space of the Gaussian primitives), SEE-Splat
updates the spatial attributes of the relevant Gaussians by applying ¢ to these Gaussians. In the case of
rigid transformations, £ can be described by an SE(3) transformation matrix, specifying rotation and
translation of the Gaussians. We can render the edited scene to generate photo-realistic visualizations.
Although, we do not consider physics-based simulations in this work, we note that physics can be
incorporated into SEE-Splat to achieve realism. We expound on this point in or discussion on the
limitations of SEE-Splat.

Deletion and transformation of the Gaussians introduces artifacts into the scene representation,
degrading its photo-realistic qualities. To address this challenge, SEE-Splat enables 3D Gaussian
infilling by introducing new Gaussians with similar attributes in regions with missing geometry,
which we illustrate in Appendix A. Figure 1 provides an illustration of such artifacts (e.g., the hole in
the table), when the scene is edited to visualize the effects of moving the saucepan to the electric
stove. Through 3D Gaussian infilling, SEE-Splat generates a photorealistic rendering of the edited
scene, eliminating these artifacts.

Appendix C Grasping and Manipulation with Splat-MOVER

We present Grasp-Splat and discuss its application to multi-stage robotic manipulation via Splat-
MOVER.

C.1 Grasp-Splat for Grasp Proposal

We note that the grasps generated by GraspNet are not always ideal. For example, the grasps generated
by GraspNet in Figure 2 are either infeasible or challenging to execute. As a result, Grasp-Splat ranks
the grasps proposed by GraspNet based on the grasp scores obtained from ASK-Splat. By leveraging
the affordance score associated with each grasp pose, Grasp-Splat identifies grasp configurations that
are more likely to succeed, depicted in Figure 2.
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Without 3D Gaussian Infilling With 3D Gaussian Infilling
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Figure 1: 3D Gaussian Infilling in SEE-Splat: (Left) In general, without 3D Gaussian infilling,
transformation of the Gaussians (e.g., moving the saucepan from the table to the electric stove)
introduces artifacts, such as the hole in the table after moving the saucepan. (Right) Via 3D Gaussian
infilling, SEE-Splat generates photorealistic renderings of the edited scene.

GraspNet Grasp-Splat

Figure 2: The top-two candidate grasps proposed by (left) GraspNet and (right) Grasp-Splat, lever-
aging the grasp affordance of each object. Qualitatively, the grasps generated by Grasp-Splat are
more likely to succeed, compared to the grasps generated solely from Grasp-Net. Further, the grasps
proposed by Grasp-Splat are better localized on the handle of the saucepan.

C.2 Multi-Stage Robotic Manipulation

For multi-stage robotic manipulation, we begin by decomposing the manipulation task into stages.
Our approach supports the specification of the stages comprising the task by a human or by a large
language model (LLM). In the case where the natural-language description of the task does not
specify the stages involved in the task, we query an LLM for the stages required to complete the
manipulation task. For each stage in the manipulation task, we utilize ASK-Splat, SEE-Splat, and
Grasp-Splat to identify the relevant object and generate candidate grasp poses. Likewise, we query
ASK-Splat for the target location for placing the object. We evaluate the feasibility of each candidate
grasp using an off-the-shelf motion planner for the robotic manipulator, inputting the point cloud
of the scene, extracted from ASK-Splat and SEE-Splat, into the motion planner, which the motion
planner uses for collision detection during motion planning. We execute the top candidate grasps,
moving on to the next if the robot motion planner fails to compute a solution to execute the selected

grasp.
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We execute the motion plan returned by the motion planner on the robotic manipulator. We note that
the end-effector trajectory can be published to SEE-Splat for real-time visualization of the task in the
virtual scene. In this case, we can apply the relative transformation between consecutive end-effector
poses to the spatial attributes of the Gaussian associated with the object being manipulated. In
addition, we note that alternative approaches exist for computing the relative transformations of the
object between consecutive frames. For example, if object-tracking information is available from
sensors in the scene, SEE-Splat could leverage this information to update the spatial attributes of
the Gaussians, rendering a video showing the real-time changes in the scene of the manipulator,
including the motion of the object, as the manipulation task progresses. We proceed to the next stage
in the manipulation task at the conclusion of the current stage, repeating the same procedures with
the updated representation of the scene provided by SEE-Splat.

Appendix D Evaluations

We present additional experimental results of ASK-Splat, SEE-Splat, and Splat-MOVER in open-
vocabulary, multi-stage robotic manipulation problems, including a discussion of the experimental
setup.

D.1 Experimental Setup
D.1.1 ASK-Splat

We distill grasp affordances from the vision-affordance foundation model VRB [4], which is trained
on the EPIC-KITCHENS dataset [5], consisting of videos of humans performing kitchen tasks, such
as cutting fruits and vegetables. We note that the generalization of the affordance knowledge in
ASK-Splat is limited by that of VRB, the underlying foundation model. VRB utilizes Language
Segment-Anything (LangSAM) [6], which requires the specification of objects within each image for
which it predicts the contact locations and motion direction after contact. This requirement is not
limiting, in practice, as end-to-end object detectors that provide bounding boxes for all objects in the
scene [7, 8, 9] could be used. We distill the grasp affordance scores from the heatmaps computed by
VRB and the semantic embeddings from the vision-language foundation model RN50x 64, CLIP-
ResNet model [10]. We implement ASK-Splat in Nerfstudio [11]. To train ASK-Splat, we record a
video of each scene using a smartphone and utilize the training API available in Nerfstudio, using the
sparse point cloud computed via structure-from-motion [12] for initialization.

D.1.2 Scenes

We consider only real-world scenes in our experiments, including a Kitchen scene (consisting
of common kitchen cookware such as saucepans, chopping boards, and knives); Cleaning scene
(consisting of common household cleaners such as disinfectant wipes, dish soaps, and cleaning
sprays); Meal scene (consisting of cutlery such as plates, spoons, forks, and cups); Random scene
(consisting of random items such as a pair of scissors, chess pieces, and keyholders); and a Workshop
scene (consisting of tools such as a power drill, work mat, and scraper). Figure 3 shows these scenes.
We note that the Workshop and Random scenes contain out-of-distribution objects with respect to the
EPIC-KITCHENS dataset (i.e., objects not found in a typical kitchen), such as the power drill and the
chess pieces.

D.1.3 Splat-MOVER

We consider the multi-stage robotic manipulation task where the robot must sequentially pick and
place two different objects and move them to a common goal location. The task is specified by a user
that provides an open-vocabulary command, e.g., “Pick up the saucepan and move it to the burner,
then pick up the lid and put it on the saucepan.” For simplicity, we limit the task to two sequential
pick-and-place maneuvers. However, we note that Splat-MOVER does not impose this limitation
and is amenable to longer multi-stage manipulation tasks. Furthermore, we consider three adjacency
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goal location primitives (“on”, “next to”, and “inside”) for the second object where each primitive is
defined based on the geometry of the first object.

Specifically, we evaluate Splat-MOVER in four multi-stage manipulation tasks across three scenes:
the Kitchen, Cleaning, and Workshop scenes. In the Kitchen scene, we consider a Cooking task where
the robot is asked to place a saucepan on an electric burner (Stage 1) and subsequently place a fruit
inside the saucepan (Stage 2). Further, in the Kitchen scene, we consider a Chopping task where the
robot is asked to place a knife on a chopping board (Stage 1) and subsequently place a fruit next to
the knife (Stage 2). We consider a Cleaning task (in the Cleaning scene), where the robot is asked
to place a cleaning spray in a bin (Stage 1) and subsequently place a sponge next to the cleaning
spray (Stage 2). Lastly, in the Workshop scene, the robot is asked to place a power drill on a work
mat (Stage 1) and subsequently place a wooden block next to the drill (Stage 2), which we refer to as
the Workshop task.

D.1.4 Hardware Experiments

We implement Splat-MOVER in grasping and placing tasks on a Kinova Gen3 robot, equipped
with a Robotiq parallel-jaw gripper. The Kinova robot is a 7-DoF robot with a maximum reach of
902 mm. We interface with the robot using the Robot Operating System (ROS), through which we
send waypoints, which are tracked by the default low-level controllers provided by the robot. We
utilize the Movelt ROS package [13] for motion planning for the Kinova robot given a specified grasp
pose. At each stage of the manipulation task, we extract a point cloud and a mesh from ASK-Splat
and SEE-Splat, reflecting the progress in the task up to that stage, which we use as the environment
representation within Movelt for collision avoidance during planning.

D.2 ASK-Splat Representation

We train ASK-Splat on a number of different environments and evaluate the grasp affordance and
semantic segmentation of the resulting Gaussian Splats. In Figure 3, we show the RGB image,
grasp affordance heatmap computed by VRB, and the grasp affordance heatmap rendered from
ASK-Splat composited with the rendered RGB image. The heatmap shows the regions in each object
amenable to grasping. Qualitatively, from Figure 3, ASK-Splat encodes the grasp affordance given
by VRB, identifying reasonable regions on each object for grasping. Although VRB provides the 2D
motion direction associated with each grasp affordance region, we do not distill this knowledge into
ASK-Splat, as we found the 2D motion directions to be quite noisy and relatively uninformative.

We compute the Structural Similarity Index (SSIM) for each scene to assess the quality of the distilled
affordance compared to the VRB-generated grasp affordance. The SSIM metric ranges between —1
(indicating greater dissimilarity) to 1 (indicating greater similarity). As expected, the Workshop scene
yields the smallest SSIM value of 0.592 + 7.20e~2, recalling that the objects in this scene, such as
the power drill and the scraper, are outside the training distribution of the VRB model. Nevertheless,
the model shows relatively-good generalization performance, given that the grasp affordance region
lies around the handle of the drill, shown in Figure 3 (bottom row). Likewise, the Meal scene achieves
the highest SSIM score of 0.681 =+ 8.91e~2, noting that the objects in the scene can be found in the
dataset used in training the VRB model. Further, the Cleaning, Kitchen, and Random scenes achieve
SSIM scores of 0.648 + 9.06e=2, 0.647 + 1.30e~ !, and 0.614 + 8.37e~2, respectively.

Figure 4 shows the semantic masks generated by ASK-Splat across different scenes. Given a natural-
language query, ASK-Splat localizes the relevant object in the scene based on the cosine-similarity
of the Gaussians to the query. In Figure 4, ASK-Splat identifies the salt shaker, flower, and pair of
scissors. However, the success of robotic manipulation tasks depend on the integration of semantic
scene understanding with grasp affordance. As such, we show the semantic-affordance masks
generated by ASK-Splat in Figure 4. With the semantic-affordance masks, a robot not only has the
ability to identify a relevant object to grasp, the robot can also identify where on the relevant object
to grasp.
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Figure 3: Grasp affordance for a Kitchen scene, Cleaning scene, Meal scene, Random scene, and
Workshop scene (from top-to-bottom). We show the RGB image, grasp affordance as predicted by
the vision-affordance foundation model (VRB), and the grasp affordance from ASK-Splat from novel
views (from left-to-right).

D.3 Splat-MOVER for Multi-Stage Robotic Manipulation

We compare Splat-MOVER to prior work LERF-TOGO [10] and F3RM [14] in four tasks: the
Cooking task, Chopping task, Cleaning task, and Workshop task, described in Section D.1.3. Figure 5
shows a few candidate grasps proposed by GraspNet, F3RM, LERF-TOGO, and Grasp-Splat for
each of these objects. GraspNet does not consider the semantic features of the object in generating
candidate grasps; as a result, the proposed grasps are not localized in regions where a human might
grasp the object, unlike the candidate grasps proposed by F3RM, LERF-TOGO, and Grasp-Splat,
which generate grasps closer to the handle of the respective objects. For example, the proposed
grasps lie relatively close to the handle of the saucepan and the knife. F3RM and LERF-TOGO
generate candidate grasp conditioned on a text prompt identifying the region to grasp the object
(such as its handle) provided by a human operator or an LLM (in LERF-TOGO) or from a dataset of
human demonstrations (in F3RM). In contrast, Grasp-Splat does not require any external guidance to
generate candidate grasps of similar quality, harnessing the grasp affordances provided by ASK-Splat.
We summarize the capabilities of each of these methods in Table 1.

Table 1: Representation Capabilities of LERF-TOGO [10], F3RM [14], and Splat-MOVER

Capabilities Semantic Knowledge Affordance Knowledge Scene-Editing
LERF-TOGO [10] v X X
F3RM [14] v X X
Splat-MOVER (ours) v v v

In addition, we evaluate the pick-and-place success rate of all the methods in the Cooking task,
Chopping task, Cleaning task, and Workshop task, where the place success rate is conditioned on the
number of successful trials in picking the object. Table 2 provides the pick-and-place success rates
in the Chopping task. Splat-MOVER achieves the highest pick success rate (85%) in Stage 1 of the
task. Although F3RM achieves the highest place success rate, it achieves a much lower pick success
rate compared to Splat-MOVER. In addition, in the Cleaning and Workshop tasks, Splat-MOVER
achieves the highest success rates in the first stage of each task, and further achieves relatively high
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salt shaker

SCissors

Figure 4: Affordance and Language Semantics in ASK-Splat: Given natural-language queries, ASK-
Splat renders: (top-row) RGB images, (middle-row) semantic masks of the scene, and (bottom-row)
localized grasp affordance regions, for example, for a salt shaker in the kitchen scene, a flower in the
cleaning scene, and a pair of scissors in the random scene, evaluated at novel views in ASK-Splat.
The natural-language query for each object is noted in italics.

success rates in the second stage of each task, shown in Tables 3 and 4. LERF-TOGO achieves
a perfect success rate in picking up the power drill in the first stage of the Workshop task. Since
LERF-TOGO and F3RM are not amenable to multi-stage manipulation tasks, we cannot evaluate the
success rate of these methods for the entire manipulation task. In contrast, Splat-MOVER enables
multi-stage robotic manipulation, achieving a task success rate of 40%, 65%, 70%, and 80% in the
Cooking, Chopping, Cleaning, and Workshop tasks, respectively. We note that the Cooking task is
the most challenging task, compared to the other tasks, given the little margin of error tolerated in
placing the saucepan on the electric burner.

Table 2: Pick and Place Success Rates in a two-stage manipulation Chopping task, where the robot
must move a knife to a chopping board (Stage 1), then move a fruit next to the knife (Stage 2).

Methods Stage 1 Stage 2

Pick Success (%) Place Success (%) | Pick Success (%) Place Success (%)
LERF-TOGO [10] 35 N/A N/A N/A
F3RM [14] 60 91.67 N/A N/A
Splat-MOVER (ours) 85 82.35 65 100

Table 3: Pick and Place Success Rates in a two-stage manipulation Cleaning task, where the robot
must move a cleaning spray into a bin (Stage 1), then move a sponge next to the cleaning spray inside
the bin (Stage 2).

Methods Stage 1 Stage 2

Pick Success (%)  Place Success (%) | Pick Success (%) Place Success (%)
LERF-TOGO [10] 25 N/A N/A N/A
F3RM [14] 75 6.67 N/A N/A
Splat-MOVER (ours) 90 83.33 70 100




Figure 5: Candidate grasps for a saucepan, knife in a guard, cleaning spray, and power drill (from
top-to-bottom), generated by GraspNet, LERF-TOGO, F3RM, and Grasp-Splat (from left-to-right).
Although LERF-TOGO and F3RM require the specification of a grasp location from an operator,
an LLM, or via human demonstrations to generate more-promising candidate grasps, Grasp-Splat
generates candidate grasps of similar or better quality without requiring external guidance.

Table 4: Pick and Place Success Rates in a two-stage manipulation in a Workshop task, where the
robot is tasked with moving a power drill onto a work mat (Stage 1), followed by moving a wooden
block next to the drill on the work mat (Stage 2).

Methods Stage 1 Stage 2

Pick Success (%) Place Success (%) | Pick Success (%) Place Success (%)
LERF-TOGO [10] 100 N/A N/A N/A
F3RM [14] 70 7.14 N/A N/A
Splat-MOVER (ours) 95 94.74 85 88.24
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