
Near-Optimal k-Clustering in the Sliding Window
Model

Anonymous Author(s)
Affiliation
Address
email

Abstract

Clustering is an important technique for identifying structural information in large-1

scale data analysis, where the underlying dataset may be too large to store. In2

many applications, recent data can provide more accurate information and thus3

older data past a certain time is expired. The sliding window model captures these4

desired properties and thus there has been substantial interest in clustering in the5

sliding window model. In this paper, we give the first algorithm that achieves6

near-optimal (1 + ε)-approximation to (k, z)-clustering in the sliding window7

model. Our algorithm uses k
min(ε4,ε2+z) polylogn∆

ε words of space when the points8

are from [∆]d, thus significantly improving on works by Braverman et. al. (SODA9

2016), Borassi et. al. (NeurIPS 2021), and Epasto et. al. (SODA 2022).10

Along the way, we develop a data structure for clustering called an online coreset,11

which outputs a coreset not only for the end of a stream, but also for all prefixes12

of the stream. Our online coreset samples k
min(ε4,ε2+z) polylogn∆

ε points from the13

stream. We then show that any online coreset requires Ω
(

k
ε2 log n

)
samples, which14

shows a separation between the problem of constructing an offline coreset, i.e.,15

constructing online coresets is strictly harder. Our results also extend to general16

metrics on [∆]d and are near-optimal in light of a Ω
(

k
ε2+z

)
lower bound for the17

size of an offline coreset.18

1 Introduction19

Clustering is a fundamental procedure frequently used to help extract important structural information20

from large datasets. Informally, the goal of clustering is to partition the data into k clusters so that the21

elements within each cluster have similar properties. Classic formulations of clustering include the22

k-median and k-means problems, which have been studied since the 1950’s [57, 46]. More generally,23

for a set X of n points in Rd, along with a metric dist, a cluster parameter k > 0, and an exponent24

z > 0 that is a positive integer, the clustering objective can be defined by25

min
C⊂Rd,|C|=k

n∑
i=1

min
c∈C

dist(xi, c)
z.

When dist is the Euclidean distance, the problem is known as (k, z)-clustering and more specifically,26

k-median clustering and k-means clustering, when z is additionally set to 1 and 2, respectively.27

As modern datasets have significantly increased in size, attention has shifted to large-scale computa-28

tional models, such as the streaming model of computation, that do not require multiple passes over29

the data. In the (insertion-only) streaming model, the points x1, . . . , xn of X arrive sequentially, and30

the goal is to output the optimal or a near-optimal clustering of X while using space sublinear in31

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

n, ideally space k, polylog(n, d), since outputting the cluster centers uses k words of space, where32

each word of space is assumed to be able to store an entire input point in Rd. There exist slight33

variants of the insertion-only streaming model and a long line of active research has been conducted34

on clustering in these models [38, 20, 40, 39, 22, 16, 33, 35, 1, 10, 56, 42, 13, 24, 9, 23, 58].35

The sliding window model. Unfortunately, an important shortcoming of the streaming model is that36

it ignores the time at which a specific data point arrives and thus it is unable to prioritize recent data37

over older data. Consequently, the streaming model cannot capture applications in which recent data38

is more accurate and therefore considered more important than data that arrived prior to a certain time,39

e.g., Census data or financial markets. Indeed, it has been shown that for a number of applications, the40

streaming model has inferior performance [4, 48, 53, 59] compared to the sliding window model [29],41

where only the most recent W updates in the stream comprise the underlying dataset. Here, W > 0 is42

a parameter that designates the window size of the active data, so that all updates before the W most43

recent updates are considered expired, and the goal is to aggregate statistics about the active data44

using space sublinear in W . In the setting of clustering, where the data stream is x1, . . . , xn ⊂ Rd,45

the active data set is X = {xn−W+1, . . . , xn} for n ≥W and X = {x1, . . . , xn} otherwise. Thus46

the sliding window model is a generalization of the streaming model, depending on the choice of47

W , and is especially relevant for time-sensitive settings, such as data summarization [21, 30], event48

detection in social media [52], and network monitoring [28, 27, 26].49

The sliding window model is especially relevant for applications in which computation must be50

restricted to data that arrived after a certain time. Data privacy laws such as the General Data51

Protection Regulation (GDPR) mandate that companies cannot retain specific user data beyond a52

certain duration. For example, the Facebook data policy [32] states that user search histories are53

retained for 6 months, the Apple differential privacy overview [3] states that collected user information54

is retained for 3 months, and the Google data retention policy states that browser information may be55

stored for up to 9 months [37]. These retention polices can be modeled by the sliding window model56

with the corresponding setting of the window parameter W and thus the sliding window model has57

been subsequently studied in a wide range of applications [44, 45, 17, 18, 11, 12, 8, 19, 60, 2, 43].58

Clustering in the sliding window model. Because the clustering objective is not well-suited to59

popular frameworks such as the exponential histogram or the smooth histogram, there has been60

significant interest in clustering in the sliding window model. We now describe the landscape of61

clustering algorithms in the sliding window model; these results are summarized in Table 1. In 2003,62

[5] first gave a 2O(1/ε)-approximation algorithm for k-median clustering in the sliding window model63

using O
(

k
ε4W

2ε log2 W
)

words of space, where ε ∈
(
0, 1

2

)
is an input parameter. Subsequently, [14]64

gave an O (1)-approximate bicriteria algorithm using 2k centers and k2 polylog(W) space for the65

k-median problem in the sliding window model. The question of whether there exists a poly(k logW)66

space algorithm for k-clustering on sliding windows remained open until [15] gave constant-factor67

approximation sliding window algorithms for k-median and k-means using O
(
k3 log6 W

)
space68

and [25] gave constant-factor approximation algorithms for k-center clustering using O (k log∆)69

space, where ∆ is the aspect ratio, i.e., the ratio of the largest to smallest distances between any70

pair of points. Afterwards, [7] gave a C-approximation algorithm for some constant C > 214,71

though it should be noted that their main contribution was the first constant-factor approximation72

algorithm for k-clustering using space linear in k, i.e., k polylog(W,∆) space, and thus they did not73

attempt to optimize the constant C. Recently, [31] gave the first (1 + ε)-approximation algorithm74

for (k, z)-clustering using (kd+dC)
ε3 polylog

(
W,∆, 1

ε

)
words of space, for some constant C ≥ 7.75

Using known dimensionality reduction techniques, i.e., [47], the algorithm’s dependence on dC can76

be removed in exchange for a 1
ε14 polylog

(
W, 1

ε

)
overhead. However, neither the dC dependency77

nor the 1
ε14 polylog

(
W, 1

ε

)
trade-off is desirable for realistic settings of d and ε for applications of78

k-clustering on sliding windows. In particular, recent results have achieved efficient summarizations,79

i.e., coresets, for k-median and k-means clustering in the offline setting using Õ
(

k
ε4 log n

)
words of80

space [24, 23] when the input is from [∆]d and it is known that this is near-optimal, i.e., Ω
(

k
ε2+z log n

)
81

samples are necessary to form coresets for (k, z)-clustering [41] in that setting. Thus a natural question82

is to ask whether such near-optimal space bounds can be achieved in the sliding window model.83

2

1.1 Our Contributions84

In this paper, we answer the question in the affirmative. That is, we give near-optimal space algorithms85

for k-median and k-means clustering in the sliding window model. In fact, we give more general86

algorithms for (k, z)-clustering in the sliding window that nearly match the space used by the offline87

coreset constructions of [24]:88

Theorem 1.1. There exists an algorithm that samples k
min(ε4,ε2+z) polylog n∆

ε points and with high89

probability, outputs a (1 + ε)-approximation to (k, z)-clustering for the Euclidean distance on [∆]d90

in the sliding window model.91

In particular, our bounds in Theorem 1.1 achieve k
ε2 polylog n∆

ε words of space for k-median92

clustering and k-means clustering, i.e., z = 1 and z = 2, respectively, matching the lower bounds of93

[23] up to polylogarithmic factors.94

Reference Accuracy Space Setting
[5] 2O(1/ε) O

(
k
ε4W

2ε log2 W
)

k-median, ε ∈
(
0, 1

2

)
[15] C > 2 O

(
k3 log6 W

)
k-median and k-means

[30] C > 214 k polylog(W,∆) (k, z)-clustering
[31] (1 + ε) (kd+dCz)

ε3 polylog
(
W,∆, 1

ε

)
, C ≥ 7 (k, z)-clustering

Our work (1 + ε) k
min(ε4,ε2+z) polylogn∆

ε (k, z)-clustering
Table 1: Summary of (k, z)-clustering results in the sliding window model for input points in [∆]d

on a window of size W

Moreover, our algorithm actually produces a coreset, i.e., a data structure that approximately answers95

the clustering cost of the underlying dataset with respect to any set of k centers, not just the optimal96

k centers.97

Theorem 1.2. There exists an algorithm that samples k
min(ε4,ε2+z) polylog n∆

ε points and with high98

probability, outputs a (1 + ε)-coreset to (k, z)-clustering in the sliding window model for general99

metrics on [∆]d.100

We emphasize that the guarantees of Theorem 1.2 are for general metrics on [∆]d, such as Lp metrics.101

Note that in light of Theorem 2.4, the guarantee of Theorem 1.1 follows from taking a coreset for102

(k, z)-clustering on Euclidean distances and then using an offline algorithm for (k, z)-clustering for103

post-processing after the data stream.104

Along the way, we provide a construction for a (1+ ε)-online coreset for (k, z)-clustering for general105

metrics on [∆]d. An online coreset for (k, z)-clustering is a data structure on a data stream that will106

not only approximately answer the clustering cost of the underlying dataset with respect to any set107

of k centers, but also approximately answer the clustering cost of any prefix of the data stream with108

respect to any set of k centers.109

Theorem 1.3. There exists an algorithm that samples k
min(ε4,ε2+z) polylog n∆

ε points and with high110

probability, outputs a (1 + ε)-online coreset for (k, z)-clustering.111

We remark that Theorem 1.3 further has the attractive property that once a point is sampled into the112

online coreset at some point in the stream, then the point irrevocably remains in the online coreset.113

That is, the online coreset essentially satisfies two different definitions of online: 1) the data structure114

is a coreset for any prefix of the stream and 2) points sampled into the data structure will never be115

deleted from the data structure.116

By contrast, the lower bound by [23] states that any offline coreset construction for k-means clustering117

only requires Ω
(

k
ε2

)
points. This lower bound was later strengthened to Ω

(
k

ε2+z

)
points by [41],118

for which matching upper bounds are given by [24, 23]. Thus our online coreset constructions119

are near-optimal in the k and 1
ε dependencies for z > 1 and nearly match the best known offline120

constructions for z = 1.121

It is thus a natural question to ask whether our polylogarithmic overheads in Theorem 1.3 are122

necessary for an (1 + ε)-online coreset. We show that in fact, a logarithmic overhead is indeed123

necessary to maintain a (1 + ε)-online coreset.124

3

Theorem 1.4. Let ε ∈ (0, 1). For sufficiently large n, d, and ∆, there exists a set X ⊂ [∆]d of125

n points x1, . . . , xn such that any (1 + ε)-online coreset for k-means clustering on X requires126

Ω
(

k
ε2 log n

)
points.127

We emphasize that combined with existing offline coreset constructions [23], Theorem 1.4 shows a128

separation between the problems of constructing offline coresets and online coresets. That is, the129

problem of maintaining a data structure that recovers coresets for all prefixes of the stream is provably130

harder than maintaining a coreset for an offline set of points.131

1.2 Technical Overview132

In this section, we give a high-level overview of our techniques. We also describe the limitations of133

many natural approaches.134

Shortcomings of histograms and sensitivity sampling. A first attempt at clustering in the sliding135

window model might be to adapt the popular exponential histogram [29] and smooth histogram136

techniques [17]. These frameworks convert streaming algorithms to sliding window algorithms in137

the case that the objective function is smooth, which informally means that once a suffix of a data138

stream becomes a good approximation of the overall data stream, then it always remains a good139

approximation, regardless of the values of new elements that arrive in the stream. Unfortunately,140

[15] showed that the k-clustering objective function is not smooth and thus these histogram-based141

frameworks cannot work. Nevertheless, they gave the first constant-factor approximation by showing142

that the k-clustering objective function is almost-smooth using a generalized triangle inequality,143

which inherently loses constant factors and thus will not suffice for our goal of achieving a (1 + ε)-144

approximation.145

Another approach might be to adapt the popular sensitivity sampling framework of coreset con-146

struction [33, 35, 9]. The sensitivity sampling framework assigns a value to each point, called the147

sensitivity, which intuitively quantifies the “importance” of that point, and then samples each point148

with probability proportional to its sensitivity. [8] observed that sliding window algorithms can be149

achieved from online sensitivity sampling, where the importance of each point is measured against150

the prefix of the stream, and then running the process in reverse at each time, so that more emphasis151

is placed on the suffix of the sliding window. At a high level, this is the intuition taken by [30, 31],152

which leverage data structures that prioritize more recent elements of the data stream. However, it is153

not known how to achieve optimal bounds simply using sensitivity sampling, and indeed the optimal154

coreset constructions use slightly more nuanced sampling schemes [24, 23].155

Sliding window algorithms from online coresets. Instead, we recall an observation by [8], who156

noted that deterministic constructions for online coresets for linear algebraic problems can be utilized157

to obtain sliding window algorithms for the corresponding linear algebraic problems. We first extend158

this observation to randomized constructions for online coresets for k-clustering problem.159

The intuition is quite simple. Given an (1 + ε)-online coreset algorithm for a k-clustering problem160

on a data stream of length n from Rd that stores S(n, d, k, ε, δ) weights points and succeeds with161

probability 1−δ, we store the S(n, d, k, ε′, δ′) most recent points in the stream, where ε′ = O
(

ε
logn

)
162

and δ′ = δ
poly(n) . We then feed the S(n, d, k, ε′, δ′) points to the online coreset construction in reverse163

order of their arrival. Since the online coreset preserves all costs for all prefixes of its input, then164

the resulting data structure will preserve all costs for all suffixes of the data stream. To extend this165

guarantee to the entire stream, including the sliding window, we can then use a standard merge-and-166

reduce framework. It thus remains to devise a (1 + ε)-online coreset construction for k-clustering167

with near-optimal sampling complexity.168

Online coreset construction. To that end, our options are quite limited, as to the best of our169

knowledge, the only offline coreset constructions using Õ
(

k
ε2 log n

)
words of space when the input170

is from [∆]d are due to [24, 23]. Fortunately, although the analyses of correctness for these sampling171

schemes are quite involved, the constructions themselves are quite accessible. For example, [24] first172

uses an (α, β)-approximation, i.e., a clustering that achieves α-approximation to the optimal cost173

but uses βk centers, to partition the underlying dataset X into disjoint concentric rings around each174

4

of the βk centers. These rings are then gathered into groups and it is shown that by independently175

sampling a fixed number of points with replacement from each of the groups suffices to achieve a176

(1 + ε)-coreset. Their analysis argues that the contribution of each of the groups toward the overall177

k-clustering cost is preserved through an expectation and variance bounding argument, and then178

taking a sophisticated union bound over a net over the set of possible centers. Thus their argument still179

holds when each point of the dataset is independently sampled by the data structure with probability180

proportional to the probability it would have been sampled by the group. Moreover, independently181

sampling each point with a higher probability can only decrease the variance, so that correctness is182

retained, though we must also upper bound the number of sampled points. Crucially, independently183

sampling each point can be implemented in the online setting and the probability of correctness can184

be boosted to union bound over all times in the stream, which facilitates the construction of our185

(1 + ε)-online coreset, given an (α, β)-approximation.186

Consistent (α, β)-approximation. It seemingly remains to find (α, β)-approximations for k-187

clustering at all times in the stream. A natural approach would be to use an algorithm that achieves a188

(α, β)-approximation at a certain time in the stream with constant probability, e.g., [56], boost the189

probability of success to 1− 1
poly(n) , and the union bound to argue correctness over all times in the190

stream. However, a subtle pitfall here is that the rings and groups in the offline coreset construction of191

[24] are with respect to a specific (α, β)-approximation. Hence their analysis would no longer hold if192

a point xt was assigned to cluster i1 at time t when the sampling process occurs but then assigned193

to cluster i2 at the end of the stream. Therefore, we require a consistent (α, β)-approximation, so194

that once the algorithm assigns point xt to cluster i, then the point xt will always remain in cluster i195

even if a newer and closer center is subsequently opened later in the stream. To that end, we invoke196

a result of [30] that analyses the popular Meyerson online facility location algorithm, along with a197

standard guess-and-double approach for estimating the input parameter to the Meyerson subroutine.198

Lower bound. The intuition for our lower bound that any (1+ε)-online coreset for (k, z)-clustering199

requires Ω
(

k
ε2

)
is somewhat straightforward and in a black-box manner. We first observe that [23]200

showed the existence of a set X of Ω
(

k
ε2

)
unit vectors in Rd such that any coreset with o

(
k
ε2

)
201

samples provably cannot accurately estimate the (k, z)-clustering cost for a set C of k unit vectors.202

Since an online (1+ ε)-coreset must answer queries on all prefixes of the stream, we embed Ω(log n)203

instances of X . We first increase the dimension by a log n factor so that each of these instances can204

have disjoint support. We then give each of the instances increasingly exponential weight to force205

the data structure to sample Ω
(

k
ε2

)
points for each instance. Specifically, we insert τ i copies of206

the i-th instance of X , where τ > 1 is some constant. Because the weight of the i-th instance is207

substantially greater than the sum of the weights of all previous instances, then any (1 + ε)-online208

coreset must essentially be a (1 + ε)-offline coreset for the i-th instance, thus requiring Ω
(

k
ε2

)
points209

for the i-th instance. This reasoning extends to all Ω(log n) instances, thus showing that any online210

(1 + ε)-coreset requires Ω
(

k
ε2 log n

)
points.211

2 Algorithm212

In this section, we describe our sliding window algorithm for k-clustering. We first overview the213

construction of an online (1+ ε) coreset for (k, z)-clustering under general discrete metrics. We then214

describe how our online coreset construction for (k, z)-clustering on general discrete metric spaces215

can be used to achieve near-optimal space algorithms for (k, z)-clustering in the sliding window216

model.217

Online (1 + ε)-coreset. We first recall the following properties from the Meyerson sketch, which218

we formally introduce in Appendix A.219

Theorem 2.1. [7] Given an input stream x1, . . . , xn ∈ Rd defining a set X ⊂ [∆]d, there exists an220

online algorithm MULTMEYERSON that with probability at least 1− 1
poly(n) :221

(1) on the arrival of each point xi, assigns xi to a center in C through a mapping π : X → C,222

where C contains at most O
(
22zk log n log∆

)
centers223

(2)
∑

x∈X ∥xi − π(xi)∥z2 ≤ 2z+7 Cost|S|≤k(X,S)224

5

(3) MULTMEYERSON uses O
(
2zk log3(nd∆)

)
words of space225

We also use the following notation, adapted from [24] to the online setting.226

Let A be an (α, β)-approximation for a k-means clustering on an input set X ⊆ [∆]d and let227

C1, . . . , Cβk be the clusters of X induced by A. Suppose the points of X arrive in a data stream S.228

For a fixed ε > 0, define the following notions of rings and groups:229

• The average cost of cluster Ci is denoted by κCi
:= Cost(Ci,A)

|Ci| .230

• For any i, j, the ring Ri,j is the set of points x ∈ Ci such that 2jκCi
≤ Cost(x,A) <231

2j+1κCi . For any j, Rj = ∪Ri,j .232

• The inner ring RI(Ci) = ∪j≤2z log ε
2
Ri,j is the set of points of Ci with cost at most233 (

ε
z

)2z
κCi

. More generally for a solution S, let RS
I denote the union of the inner rings234

induced by S.235

• The outer ring RO(Ci) = ∪j≤2z log ε
2
Ri,j is the set of points of Ci with cost at least236 (

z
ε

)2z
κCi

. More generally for a solution S, let RS
O denote the union of the outer rings237

induced by S.238

• The main ring RM (Ci) is the set of points of Ci that are not in the inner or outer rings, i.e.,239

RM (Ci) = Ci \ (RI(Ci) ∪RO(Ci).240

• For any j, the group Gj,b consists of the (2b−1 + 1)-th to (2b)-th points of each ring Ri,j241

that arrive in S.242

• For any j, we use Gj,min to denote the union of the groups with the smallest costs, i.e.,243

Gj,min =

{
x|∃i, x ∈ Ri,j ,Cost(Ri,j ,A) < 2

(ε

4z

)z Cost(Rj ,A)
βk

}
.

• The outer groups GO
b partition the outer rings RA

O so that244

GO
b =

{
x|∃i, x ∈ Ci,

(ε

4z

)z Cost(RA
O ,A)

βk
· 2b ≤ Cost(RO(Ci),A) <

(ε

4z

)z Cost(RA
O ,A)

βk
· 2b+1

}
.

• We define GO
min = ∪b≤0G

O
b and GO

max = ∪b≥z log 4z
ε
GO

b .245

Algorithm 1 RINGSAMPLE

Input: Points x1, . . . , xn ∈ [∆]d

Output: A set W of weighted points and timestamps
1: Initiate an instance of (α, β)-bicriteria algorithm MULTMEYERSON

2: γ ← C max(α2,αz)β
min(ε2,εz) log2 1

ε

(
k log |C|+ log log 1

ε + log n
)
log2 1

ε

3: W ← ∅
4: for each point xt, t ∈ [n] do
5: Let ci be the center assigned for xt by MULTMEYERSON
6: Let 2j ≤ ∥xt − ci∥z2 < 2j+1 for j ∈ Z
7: Let b ∈ Z so that the number of points in Ri,j is between 2b−1 + 1 and 2b

8: Let rt be the number of points in Gj,b at time t

9: px ← min
(

4
rt
· γ log n, 1

)
10: With probability px, add x to W with timestamp t and weight 1

px

11: return W

We then adapt the offline coreset construction of [24] to an online setting at the cost of logarithmic246

overheads, which suffice for our purpose. The algorithm (Algorithm 1) has the following guarantees:247

Lemma 2.2. Let C be anA-approximate centroid set for G. There exists an algorithm RINGSAMPLE248

that samples249

O

(
max(α2, αz)β

min(ε2, εz)
log2

1

ε

(
k log |C|+ log log

1

ε
+ log n

)
log2 n log2 ∆ log2

1

ε

)
points and with high probability, outputs a (1 + ε)-online coreset for the k-means clustering problem.250

6

Informally, an approximate centroid set is a set of possible points so that taking the centers from this251

set generates an approximately accurate solution (see Appendix B for a formal definition). To bound252

log |C|, we construct and apply a terminal embedding to project each point to a lower dimension and253

then appeal to known bounds for approximate centroid sets in low-dimensional Euclidean, thereby254

giving our online coreset algorithm with the guarantees of Theorem 1.3.255

Sliding window model. We first recall a standard approach for using offline coreset constructions256

for insertion-only streaming algorithms. Suppose there exists a randomized algorithm that produces257

an online coreset algorithm that uses S(n, ε, δ) points for an input stream of length n, accuracy ε,258

and failure probability δ, where for the ease of discussion, we omit additional dependencies. A259

standard approach for using coresets on insertion-only streams is the merge-and-reduce approach,260

which partitions the stream into blocks of size S
(
n, ε

2 logn ,
δ

poly(n)

)
and builds a coreset for each261

block. Each coreset is then viewed as the leaves of a binary tree with height at most log n, since the262

binary tree has at most n leaves. Then at each level of the binary tree, for each node in the level, a263

coreset of size S
(
n, ε

2 logn ,
δ

poly(n)

)
is built from the coresets representing the two children of the264

node. Due to the mergeability property of coresets, the coreset at the root of the tree will be a coreset265

for the entire stream with accuracy
(
1 + ε

2 logn

)logn

≤ (1 + ε) and failure probability δ.266

This approach fails for sliding window algorithms because the elements at the beginning of the267

data stream can expire, and so coresets corresponding to earlier blocks of the stream may no longer268

accurate, which would result in the coreset at the root of the tree also no longer being accurate. On the269

other hand, suppose we partition the stream into blocks consisting of S
(
n, ε

2 logn ,
δ

poly(n)

)
elements270

as before, but instead of creating an offline coreset for each block, we can create an online coreset271

for the elements in reverse. That is, since the elements in each block are explicitly stored, we can272

create offline an artificial stream consisting of the elements in the block in reverse and then give273

the artificial stream as input to the online coreset construction. Note that if we also first consider274

the “latter” coreset when merging two coresets, then this effectively reverses the stream. Moreover,275

by the correctness of the online coreset, our data structure provides correctness over any prefix of276

the reversed stream, or equivalently, any suffix of the stream and specifically, correctness over the277

sliding window. We thus further adapt the merge-and-reduce framework to show that randomized278

online coresets for problems in clustering can also be used to achieve randomized algorithms for the279

corresponding problems in the sliding window model. We formalize this approach in Algorithm 2.280

Algorithm 2 Merge-and-reduce framework for randomized algorithms in the sliding window model,
using randomized constructions of online coresets

Input: A clustering function f , a set of points x1, . . . , xn ⊆ Rd, accuracy parameter ε > 0, failure
probability δ ∈ (0, 1), and window size W > 0

Output: An approximation of f on the W most recent points
1: Let CORESET(X,n, d, k, ε, δ) be an online coreset construction with S(n, d, k, ε, δ) points on a

set X ⊆ Rd

2: m← O
(
S
(
n, d, k, ε

logn ,
δ
n

)
log n

)
3: Initialize blocks B0, B1, . . . , Blogn ← ∅
4: for each point xt with t ∈ [n] do
5: if B0 does not contain m points then
6: Prepend xt to B0, i.e., B0 ← {xt} ∪B0

7: else
8: Let i be the smallest index such that Bi = ∅
9: Bi ← CORESET

(
Y, n, d, k, ε

logn ,
δ
n2

)
for Y = B0 ∪ . . . ∪Bi−1 ▷Y is an ordered set

of weighted points
10: for j = 0 to j = i− 1 do
11: Bj ← ∅
12: B0 ← {xt}
13: return the ordered set Blogn ∪ . . . ∪B0

7

Theorem 2.3. Let x1, . . . , xn be a stream of points in [∆]d, ε > 0, and let X = {xn−W+1, . . . , xn}281

be the W most recent points. Suppose there exists a randomized algorithm that with probability at282

least 1− δ, outputs an online coreset algorithm for a k-clustering problem with S(n, d, k, ε, δ) points.283

Then there exists a randomized algorithm that with probability at least 1− δ, outputs a coreset for284

the k-clustering problem in the sliding window model with O
(
S
(
n, d, k, ε

logn ,
δ
n2

)
log n

)
points.285

By Theorem 1.3 and Theorem 2.3, we have:286

Theorem 2.4. There exists an algorithm that samples k
min(ε4,ε2+z) polylog n∆

ε points and with high287

probability, outputs a (1 + ε)-coreset to (k, z)-clustering in the sliding window model.288

Using an offline algorithm for (k, z)-clustering for post-processing after the data stream, we have289

Theorem 1.1.290

3 Experimental Evaluations291

In this section, we conduct simple empirical demonstrations as proof-of-concepts to illustrate the292

benefits of our algorithm. Our empirical evaluations were conducted using Python 3.10 using a 64-bit293

operating system on an AMD Ryzen 7 5700U CPU, with 8GB RAM and 8 cores with base clock 1.80294

GHz. The general approach to our experiments is to produce a data stream S that defines dataset X ,295

whose generation we describe below, as well as in Appendix F. We then compare the performance of296

a simplified version of our algorithm with various state-of-the-art baselines.297

Baselines. Our first baseline (denoted off for offline) is the simple Lloyd’s algorithm on the entire298

dataset X , with multiple iterations using the k-means++ initialization. This is a standard approach for299

finding a good approximation to the optimal clustering cost, because finding the true optimal centers300

requires exponential time. Because this offline Lloyd’s algorithm has access to the entire dataset, the301

expected behavior is that this algorithm will have the best objective, i.e., smallest clustering cost.302

However, we emphasize that this algorithm requires storing the entire dataset X in memory and thus303

its input size is significantly larger than the sublinear space algorithms.304

To compare with the offline Lloyd’s algorithm, we run a number of sublinear space algorithms. These305

algorithms generally perform some sort of processing on the datastream X to create a coreset C. We306

normalize the space requirement of these algorithms by permitting each algorithm to store m points307

across specific ranges of m. We then run Lloyd’s algorithm on the coreset C, with the same number308

of iterations using the k-means++ initialization.309

Our first sublinear space algorithm is uniform sampling on the dataset X . That is, we form C by310

uniformly sampling m points from X , before running Lloyd’s algorithm. We use uni to denote this311

algorithm whose first step is based on uniformly sampling. Our second sublinear space algorithm312

is the importance sampling approach used by histogram-based algorithms, e.g., [14, 10, 7]. These313

algorithms perform importance sampling, i.e., sample points into the coreset C with probability314

proportional to their distances from existing samples and delete points once the clustering cost of C315

is much higher than the clustering cost of the dataset X . We use hist(ogram) to denote this algorithm316

that is based on the histogram frameworks for sliding windows.317

Our final algorithm is a simplification of our algorithm. As with the histogram-based algorithm,318

we perform importance sampling on the stream S to create the coreset C of size m. Thus we do319

not implement the ring and group sampling subroutines in our full algorithm. However, the crucial320

difference compared to the histogram-based approach is that we forcefully discard points of C that321

have expired. We use imp to denote this algorithm whose first step is based on importance sampling.322

Dataset. We first describe the methodology and experimental setup of our empirical evaluation on323

a real-world dataset with an amount of synthetic noise before detailing the experimental results. The324

first component of our dataset consists of the points of the SKIN (Skin Segmentation) dataset X ′325

from the publicly available UCI repository [6], which was also used in the experiments of [7]. The326

dataset X ′ consists of 245, 057 points with four features, where each point refers to a separate image,327

such that the first three features are constructed over BGR space, and the fourth feature is the label328

for whether or not the image refers to a skin sample. We subsequently pre-process each dataset to329

have zero mean and unit standard deviation in each dimension.330

8

We then form our dataset X by augmenting X ′ with 201 points in four-dimensional space, where 100331

of these points were drawn from a spherical Gaussian with unit standard deviation in each direction332

and centered at (−10, 10, 0, 0) and 100 of these points were drawn from a spherical Gaussian with333

unit standard deviation in each direction and centered at (10,−10, 0, 0). The final point of X was334

drawn from a spherical Gaussian with unit standard deviation centered at (500, 500, 0, 0). Thus our335

dataset X has dimensions n = 245, 258 and d = 4. We then create the data stream S by prepending336

two additional points drawn from spherical Gaussians with standard deviation 2.75 centered at337

(−10, 10, 0, 0) and (−10,−10, 0, 0) respectively, so that the stream has length 245, 260. We set the338

window length to be 245, 258 in accordance with the “true” data set, so that the first two points of the339

stream will be expired by the data stream.340

Experimental setup. For each of the instances of Lloyd’s algorithm, either on the entire dataset341

X or the sampled coreset C, we use 10 iterations using the k-means++ initialization. While the342

offline Lloyd’s algorithm stores the entire dataset X of 245, 258 points in memory, we only allow343

each of the sublinear-space algorithms to store a fixed m points. We compare the algorithms across344

m ∈ {5, 10, 15, 20, 25, 30} and k ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}. Note that in the original dataset, each345

of the points has a label for either skin or non-skin, which would be reasonable for k = 2. However,346

due to the artificial structure possibly induced by the synthetic noise, it also makes sense to other values347

of k. In particular, preliminary experiments from uniform sampling by the elbow method indicated that348

k = 3 would be a reasonable setting. Thus we fix k = 3 while varying m ∈ {5, 10, 15, 20, 25, 30}349

and we arbitrarily fix m = 25 while varying k ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}.350

Experimental results. For each choice of m and k, we ran each algorithm 30 times and tracked the351

resulting clustering cost. Our algorithm demonstrated superior performance than the other sublinear-352

space algorithms across all values of m ∈ {5, 10, 15, 20, 25, 30} and k ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10},353

and was even quite competitive with the offline Lloyd’s algorithm, even though our algorithm only354

used memory size m ≤ 30, while the offline algorithm used memory 245, 258.355

Uniform sampling performed well for k = 2, which in some case captures the structure imposed356

on the data through the skin vs. non-skin label, but for larger k, the optimal solutions start placing357

centers to handle the synthetic noise, which may not be sampled by uniform sampling. Thus uniform358

sampling performed relatively poorly albeit quite stably for larger k. In contrast, the histogram-based359

algorithm performed poorly for small k across all our ranges of m, due to sampling the extra points360

in S \X , so that the resulting Lloyd’s algorithm on C moved the centers far away from the optimal361

centers of X . On the other hand, the histogram-based algorithm performed well for larger k, likely362

due to additional centers that could be afforded to handle the points in S \X . We plot our results in363

Figure 1 and defer additional experiments to Appendix F.364

(a) Comparisons for varying k. (b) Comparisons for varying m.

Fig. 1: Comparison of average clustering costs made by uniform sampling, histogram-based algorithm,
and our coreset-based algorithm across various settings of space allocated to the algorithm, given a
synthetic dataset. For comparison, we also include the offline k-means++ algorithm as a baseline,
though it is inefficient because it stores the entire dataset.

9

References365

[1] Marcel R. Ackermann, Marcus Märtens, Christoph Raupach, Kamil Swierkot, Christiane366

Lammersen, and Christian Sohler. Streamkm++: A clustering algorithm for data streams. ACM367

J. Exp. Algorithmics, 17(1), 2012. 2368

[2] Miklós Ajtai, Vladimir Braverman, T. S. Jayram, Sandeep Silwal, Alec Sun, David P. Woodruff,369

and Samson Zhou. The white-box adversarial data stream model. In PODS ’22: International370

Conference on Management of Data, 2022, pages 15–27, 2022. 2371

[3] Apple. https://images.apple.com/privacy/docs/Differential_Privacy_Overview.pdf. 2372

[4] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom. Models373

and issues in data stream systems. In Proceedings of the Twenty-first ACM SIGACT-SIGMOD-374

SIGART Symposium on Principles of Database Systems, pages 1–16, 2002. 2375

[5] Brian Babcock, Mayur Datar, Rajeev Motwani, and Liadan O’Callaghan. Maintaining variance376

and k-medians over data stream windows. In Proceedings of the Twenty-Second ACM SIGACT-377

SIGMOD-SIGART Symposium on Principles of Database Systems, pages 234–243, 2003. 2,378

3379

[6] Rajen Bhatt and Abhinav Dhall. Skin segmentation dataset. UCI Learning Repository. 8380

[7] Michele Borassi, Alessandro Epasto, Silvio Lattanzi, Sergei Vassilvitskii, and Morteza Zadi-381

moghaddam. Sliding window algorithms for k-clustering problems. In Advances in Neural382

Information Processing Systems 33: Annual Conference on Neural Information Processing383

Systems, NeurIPS, 2020. 2, 5, 8, 15384

[8] Vladimir Braverman, Petros Drineas, Cameron Musco, Christopher Musco, Jalaj Upadhyay,385

David P. Woodruff, and Samson Zhou. Near optimal linear algebra in the online and sliding386

window models. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS,387

pages 517–528, 2020. 2, 4, 19388

[9] Vladimir Braverman, Dan Feldman, Harry Lang, Adiel Statman, and Samson Zhou. Efficient389

coreset constructions via sensitivity sampling. In Asian Conference on Machine Learning,390

ACML, pages 948–963, 2021. 2, 4391

[10] Vladimir Braverman, Gereon Frahling, Harry Lang, Christian Sohler, and Lin F. Yang. Cluster-392

ing high dimensional dynamic data streams. In Proceedings of the 34th International Conference393

on Machine Learning, ICML, pages 576–585, 2017. 2, 8394

[11] Vladimir Braverman, Ran Gelles, and Rafail Ostrovsky. How to catch l2-heavy-hitters on395

sliding windows. Theor. Comput. Sci., 554:82–94, 2014. 2396

[12] Vladimir Braverman, Elena Grigorescu, Harry Lang, David P. Woodruff, and Samson Zhou.397

Nearly optimal distinct elements and heavy hitters on sliding windows. In Approximation, Ran-398

domization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM,399

pages 7:1–7:22, 2018. 2400

[13] Vladimir Braverman, Avinatan Hassidim, Yossi Matias, Mariano Schain, Sandeep Silwal, and401

Samson Zhou. Adversarial robustness of streaming algorithms through importance sampling.402

In Advances in Neural Information Processing Systems 34: Annual Conference on Neural403

Information Processing Systems, NeurIPS, pages 3544–3557, 2021. 2404

[14] Vladimir Braverman, Harry Lang, Keith Levin, and Morteza Monemizadeh. Clustering on405

sliding windows in polylogarithmic space. In 35th IARCS Annual Conference on Foundation of406

Software Technology and Theoretical Computer Science, FSTTCS, pages 350–364, 2015. 2, 8407

[15] Vladimir Braverman, Harry Lang, Keith Levin, and Morteza Monemizadeh. Clustering problems408

on sliding windows. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on409

Discrete Algorithms, SODA, pages 1374–1390, 2016. 2, 3, 4410

[16] Vladimir Braverman, Adam Meyerson, Rafail Ostrovsky, Alan Roytman, Michael Shindler, and411

Brian Tagiku. Streaming k-means on well-clusterable data. In Proceedings of the Twenty-Second412

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 26–40, 2011. 2413

10

[17] Vladimir Braverman and Rafail Ostrovsky. Smooth histograms for sliding windows. In 48th414

Annual IEEE Symposium on Foundations of Computer Science (FOCS), Proceedings, pages415

283–293, 2007. 2, 4416

[18] Vladimir Braverman, Rafail Ostrovsky, and Carlo Zaniolo. Optimal sampling from sliding417

windows. J. Comput. Syst. Sci., 78(1):260–272, 2012. 2418

[19] Vladimir Braverman, Viska Wei, and Samson Zhou. Symmetric norm estimation and regres-419

sion on sliding windows. In Computing and Combinatorics - 27th International Conference,420

COCOON, Proceedings, pages 528–539, 2021. 2421

[20] Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy. Better streaming algorithms for clus-422

tering problems. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing,423

pages 30–39, 2003. 2424

[21] Jiecao Chen, Huy L. Nguyen, and Qin Zhang. Submodular maximization over sliding windows.425

CoRR, abs/1611.00129, 2016. 2426

[22] Ke Chen. On coresets for k-median and k-means clustering in metric and euclidean spaces and427

their applications. SIAM J. Comput., 39(3):923–947, 2009. 2428

[23] Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, and Chris Schwiegelshohn. To-429

wards optimal lower bounds for k-median and k-means coresets. In STOC ’22: 54th Annual430

ACM SIGACT Symposium on Theory of Computing, pages 1038–1051, 2022. 2, 3, 4, 5, 21431

[24] Vincent Cohen-Addad, David Saulpic, and Chris Schwiegelshohn. A new coreset framework for432

clustering. In STOC: 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages433

169–182, 2021. 2, 3, 4, 5, 6, 15, 16, 18, 23, 24434

[25] Vincent Cohen-Addad, Chris Schwiegelshohn, and Christian Sohler. Diameter and k-center in435

sliding windows. In 43rd International Colloquium on Automata, Languages, and Programming,436

ICALP, pages 19:1–19:12, 2016. 2437

[26] Graham Cormode. The continuous distributed monitoring model. SIGMOD Rec., 42(1):5–14,438

2013. 2439

[27] Graham Cormode and Minos N. Garofalakis. Streaming in a connected world: querying and440

tracking distributed data streams. In EDBT 2008, 11th International Conference on Extending441

Database Technology, Proceedings, page 745, 2008. 2442

[28] Graham Cormode and S. Muthukrishnan. What’s new: finding significant differences in network443

data streams. IEEE/ACM Trans. Netw., 13(6):1219–1232, 2005. 2444

[29] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream statistics445

over sliding windows. SIAM J. Comput., 31(6):1794–1813, 2002. 2, 4446

[30] Alessandro Epasto, Silvio Lattanzi, Sergei Vassilvitskii, and Morteza Zadimoghaddam. Submod-447

ular optimization over sliding windows. In Proceedings of the 26th International Conference448

on World Wide Web, WWW, pages 421–430, 2017. 2, 3, 4, 5449

[31] Alessandro Epasto, Mohammad Mahdian, Vahab S. Mirrokni, and Peilin Zhong. Improved450

sliding window algorithms for clustering and coverage via bucketing-based sketches. In451

Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 3005–452

3042, 2022. 2, 3, 4453

[32] Facebook. https://www.facebook.com/policy.php. 2454

[33] Dan Feldman and Michael Langberg. A unified framework for approximating and clustering455

data. In Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC, pages456

569–578, 2011. 2, 4457

[34] Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data: Constant-458

size coresets for k-means, pca, and projective clustering. SIAM J. Comput., 49(3):601–657,459

2020. 18460

11

[35] Dan Feldman and Leonard J. Schulman. Data reduction for weighted and outlier-resistant461

clustering. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete462

Algorithms, SODA, pages 1343–1354, 2012. 2, 4463

[36] Zhili Feng, Praneeth Kacham, and David P. Woodruff. Strong coresets for subspace approxima-464

tion and k-median in nearly linear time. CoRR, abs/1912.12003, 2019. 18465

[37] Google. https://policies.google.com/technologies/retention. 2466

[38] Sudipto Guha, Nina Mishra, Rajeev Motwani, and Liadan O’Callaghan. Clustering data streams.467

In 41st Annual Symposium on Foundations of Computer Science, FOCS, pages 359–366, 2000.468

2469

[39] Sariel Har-Peled and Akash Kushal. Smaller coresets for k-median and k-means clustering.470

Discret. Comput. Geom., 37(1):3–19, 2007. 2471

[40] Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. In472

Proceedings of the 36th Annual ACM Symposium on Theory of Computing, pages 291–300,473

2004. 2474

[41] Lingxiao Huang, Jian Li, and Xuan Wu. Towards optimal coreset construction for (k, z)-475

clustering: Breaking the quadratic dependency on k. CoRR, abs/2211.11923, 2022. 2, 3476

[42] Lingxiao Huang and Nisheeth K. Vishnoi. Coresets for clustering in euclidean spaces: impor-477

tance sampling is nearly optimal. In Proccedings of the 52nd Annual ACM SIGACT Symposium478

on Theory of Computing, STOC, pages 1416–1429, 2020. 2, 18479

[43] Rajesh Jayaram, David P. Woodruff, and Samson Zhou. Truly perfect samplers for data streams480

and sliding windows. In PODS ’22: International Conference on Management of Data, pages481

29–40, 2022. 2482

[44] Lap-Kei Lee and H. F. Ting. Maintaining significant stream statistics over sliding windows. In483

Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA,484

pages 724–732, 2006. 2485

[45] Lap-Kei Lee and H. F. Ting. A simpler and more efficient deterministic scheme for finding486

frequent items over sliding windows. In Proceedings of the Twenty-Fifth ACM SIGACT-487

SIGMOD-SIGART Symposium on Principles of Database Systems, pages 290–297, 2006. 2488

[46] J MacQueen. Classification and analysis of multivariate observations. In 5th Berkeley Symp.489

Math. Statist. Probability, pages 281–297, 1967. 1490

[47] Konstantin Makarychev, Yury Makarychev, and Ilya P. Razenshteyn. Performance of johnson-491

lindenstrauss transform for k-means and k-medians clustering. In Proceedings of the 51st492

Annual ACM SIGACT Symposium on Theory of Computing, STOC, pages 1027–1038, 2019. 2493

[48] Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts over data streams.494

Proc. VLDB Endow., 5(12):1699, 2012. 2495

[49] Jirí Matousek. On approximate geometric k-clustering. Discret. Comput. Geom., 24(1):61–84,496

2000. 16497

[50] Adam Meyerson. Online facility location. In 42nd Annual Symposium on Foundations of498

Computer Science, FOCS, pages 426–431. IEEE Computer Society, 2001. 14499

[51] Shyam Narayanan and Jelani Nelson. Optimal terminal dimensionality reduction in euclidean500

space. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,501

STOC, pages 1064–1069, 2019. 18502

[52] Miles Osborne, Sean Moran, Richard McCreadie, Alexander von Lünen, Martin D. Sykora,503

Amparo Elizabeth Cano, Neil Ireson, Craig Macdonald, Iadh Ounis, Yulan He, Tom Jackson,504

Fabio Ciravegna, and Ann O’Brien. Real-time detection, tracking, and monitoring of automat-505

ically discovered events in social media. In Proceedings of the 52nd Annual Meeting of the506

Association for Computational Linguistics, ACL, pages 37–42, 2014. 2507

12

[53] Odysseas Papapetrou, Minos N. Garofalakis, and Antonios Deligiannakis. Sketching distributed508

sliding-window data streams. VLDB J., 24(3):345–368, 2015. 2509

[54] Omitted reference, 2022. Private communication. 16510

[55] Christian Sohler and David P. Woodruff. Strong coresets for k-median and subspace approxi-511

mation: Goodbye dimension. In 59th IEEE Annual Symposium on Foundations of Computer512

Science, FOCS, pages 802–813, 2018. 18513

[56] Zhao Song, Lin F. Yang, and Peilin Zhong. Sensitivity sampling over dynamic geometric data514

streams with applications to k-clustering. CoRR, abs/1802.00459, 2018. 2, 5515

[57] Hugo Steinhaus et al. Sur la division des corps matériels en parties. Bull. Acad. Polon. Sci,516

1(804):801, 1956. 1517

[58] Murad Tukan, Xuan Wu, Samson Zhou, Vladimir Braverman, and Dan Feldman. New coresets518

for projective clustering and applications. In International Conference on Artificial Intelligence519

and Statistics, AISTATS, pages 5391–5415, 2022. 2520

[59] Zhewei Wei, Xuancheng Liu, Feifei Li, Shuo Shang, Xiaoyong Du, and Ji-Rong Wen. Matrix521

sketching over sliding windows. In Proceedings of the 2016 International Conference on522

Management of Data, SIGMOD Conference, pages 1465–1480. ACM, 2016. 2523

[60] David P. Woodruff and Samson Zhou. Tight bounds for adversarially robust streams and524

sliding windows via difference estimators. In 62nd IEEE Annual Symposium on Foundations of525

Computer Science, FOCS, pages 1183–1196, 2021. 2526

13

A Preliminaries527

For a positive integer n, we use the notation [n] to denote the set {1, . . . , n}. We use poly(n) to528

denote a fixed polynomial in n with degree determined as necessary by setting the appropriate529

constants in corresponding variables. Similarly, we use polylog(n) to denote poly(log n). We530

suppress polylogarithmic dependencies by writing Õ (f(·)) = O (f(·)) polylog f(·).531

Definition A.1 ((α, β)-approximation). We say a set of centers C provides an (α, β)-approximation532

to the optimal k-means clustering on a set X if |C| ≤ βk and533

Cost(X,C) ≤ αOPT.

Definition A.2 (Online Coreset). An online coreset for a function f , an approximation parameter534

ε > 0, and a matrix A ∈ Rn×d = a1 ◦ . . . ◦ an is a subset of weighted rows of A such that for any535

Ai = a1 ◦ . . . ◦ ai with i ∈ [n], we have f(Mi) is a (1 + ε)-approximation of f(Ai), where Mi is536

the matrix that consists of the weighted rows of A in the coreset that appear at time i or before.537

Theorem A.3 (Bernstein’s inequality). Let X1, . . . , Xn be independent random variables such that538

E[X2
i] <∞ and Xi ≥ 0 for all i ∈ [n]. Let X =

∑
i Xi and γ > 0. Then539

Pr [X ≤ E[X]− γ] ≤ exp

(
−γ2

2
∑

i E[X2
i]

)
.

If Xi − E[Xi] ≤ ∆ for all i, then for σ2
i = E[X2

i]− E[Xi]
2,540

Pr [X ≥ E[X] + γ] ≤ exp

(
−γ2

2
∑

i σ
2
i + 2γ∆/3

)
.

Meyerson sketch. We briefly review the Meyerson sketch [50] and the relevant properties that we541

need from the Meyerson sketch. The Meyerson sketch provides an (α, β)-approximation to (k, z)-542

clustering on a data stream of points x1, . . . , xn ∈ [∆]d with α = 2z+7 and β = O
(
22z log n log∆

)
.543

Moreover, for our purposes, it provides the crucial property that on the arrival of each point xi, the544

algorithm irrevocably assigns xi to one of the βk centers. Specifically, the clustering cost at the end545

of the stream is computed with respect to the center that xi is assigned at time i, which may not be546

the closest center to xi because the closer center can be opened at a later time.547

Algorithm 3 High probability MEYERSON(X, ÕPT, α, δ,∆, z, k) sketch

Input: Points X := x1, . . . , xn ∈ Rd with aspect ratio ∆, estimate ÕPT ≥ 0 such that αOPT ≤
ÕPT ≤ OPT for some α ∈ (0, 1), failure probability δ ∈ (0, 1)

Output: A coreset for k-clustering on X
1: γ ← 2 log 1

δ
2: for i ∈ [γ] do
3: for t ∈ [n] do
4: if t = 1 then
5: Mi ← x1, Cµi ← 0, wi(x1) = 1
6: else
7: if |Mi| ≤ 4k(1 + log∆)

(
2z+3

αz + 1
)

then

8: With probability min
(

k(1+log∆) dist(xt,Mi)
z

ÕPT
, 1
)

, add xt to Mi with weight 1,
i.e., wi(xt) = 1

9: Otherwise, let z = argminy∈Mi
dist(xt, y), increment the weight of z, i.e.,

wi(z)← wi(z) + 1, and increase Cµi ← Cµi dist(xt, z)
p

10: Let j = argmin
i:|Mi|≤4k(1+log∆)

(
2z+3

αz +1
) Cµi

be the index of the minimal cost sketch with at

most 4k(1 + log∆)
(

2z+3

αz + 1
)

samples ▷Return FAIL if such j does not exist
11: return ∪i∈[γ]Mi, wj , and Cµj

For the ease of discussion, we describe the Meyerson sketch for z = 1; the intuition generalizes548

naturally to other values of z. The Meyerson sketch performs via a guess-and-double approach,549

14

Algorithm 4 High probability MULTMEYERSON sketch

Input: Points X := x1, . . . , xn ∈ Rd with aspect ratio ∆, estimate ÕPT ≥ 0 such that αOPT ≤
ÕPT ≤ OPT for some α ∈ (0, 1), failure probability δ ∈ (0, 1)

Output: A coreset for k-means clustering on X if ÕPT upper bounds the cost of the optimal
clustering

1: γ ← log nd(∆z)
2: for i ∈ [γ] do
3: Run MEYERSON

(
X, 2i, α = 1

2 , δ,∆, z, k
)

in parallel
4: Let j be the minimal index in [γ] such that MEYERSON with input 2j has size smaller than

8k log 1
δ (1 + log∆)

(
22z+3 + 1

)
and cost smaller than 2z+6+j

5: return the output for MEYERSON
(
X, 2j , α = 1

2 , δ,∆, z, k
)

where it first attempts to guess the cost of the optimal clustering cost. Using the guess of the cost, it550

then turns each point into a center with probability proportional to the distance of that point from the551

existing centers. This subroutine is illustrated in Algorithm 3. If too many centers have been opened,552

then the Meyerson sketch determines that the guess for the optimal clustering cost must have been553

too low and increases the guess. The overall algorithm is given in Algorithm 4.554

We require the following properties from the Meyerson sketch.555

Theorem 2.1. [7] Given an input stream x1, . . . , xn ∈ Rd defining a set X ⊂ [∆]d, there exists an556

online algorithm MULTMEYERSON that with probability at least 1− 1
poly(n) :557

(1) on the arrival of each point xi, assigns xi to a center in C through a mapping π : X → C,558

where C contains at most O
(
22zk log n log∆

)
centers559

(2)
∑

x∈X ∥xi − π(xi)∥z2 ≤ 2z+7 Cost|S|≤k(X,S)560

(3) MULTMEYERSON uses O
(
2zk log3(nd∆)

)
words of space561

B Online (1 + ε)-Coreset562

In this section, we describe how to construct an online (1 + ε) coreset for (k, z)-clustering under563

general discrete metrics. We first describe the offline coreset construction of [24] and then argue564

that the construction can be adapted to an online setting at the cost of logarithmic overheads, which565

suffice for our purpose.566

Let A be an (α, β)-approximation for a k-means clustering on an input set X ⊆ [∆]d and let567

C1, . . . , Cβk be the clusters of X induced by A. Suppose the points of X arrive in a data stream S.568

For a fixed ε > 0, [24] define the following notions of rings and groups:569

• The average cost of cluster Ci is denoted by κCi
:= Cost(Ci,A)

|Ci| .570

• For any i, j, the ring Ri,j is the set of points x ∈ Ci such that571

2jκCi
≤ Cost(x,A) < 2j+1κCi

.

For any j, Rj = ∪Ri,j .572

• The inner ring RI(Ci) = ∪j≤2z log ε
2
Ri,j is the set of points of Ci with cost at most573 (

ε
z

)2z
κCi . More generally for a solution S, let RS

I denote the union of the inner rings574

induced by S.575

• The outer ring RO(Ci) = ∪j≤2z log ε
2
Ri,j is the set of points of Ci with cost at least576 (

z
ε

)2z
κCi . More generally for a solution S, let RS

O denote the union of the outer rings577

induced by S.578

• The main ring RM (Ci) is the set of points of Ci that are not in the inner or outer rings, i.e.,579

RM (Ci) = Ci \ (RI(Ci) ∪RO(Ci).580

15

• For any j, the group Gj,b consists of the (2b−1 + 1)-th to (2b)-th points of each ring Ri,j581

that arrive in S.582

• For any j, we use Gj,min to denote the union of the groups with the smallest costs, i.e.,583

Gj,min =

{
x|∃i, x ∈ Ri,j ,Cost(Ri,j ,A) < 2

(ε

4z

)z Cost(Rj ,A)
βk

}
.

• The outer groups GO
b partition the outer rings RA

O so that584

GO
b =

{
x|∃i, x ∈ Ci,

(ε

4z

)z Cost(RA
O ,A)

βk
· 2b ≤ Cost(RO(Ci),A) <

(ε

4z

)z Cost(RA
O ,A)

βk
· 2b+1

}
.

• We define GO
min = ∪b≤0G

O
b and GO

max = ∪b≥z log 4z
ε
GO

b .585

We require the following slight variation of the definition of A-approximate centroid set from [49]586

due to [24].587

Definition B.1 (A-approximate centroid set). Let X ⊆ Rd be a set of points, let k, z be two positive588

integers, and let ε > 0 be an accuracy parameter. Given a set A of centers, we say a set C is589

an A-approximate centroid set for (k, z)-clustering on X if for every set of k centers S ⊆ Rd,590

there exists S̃ ⊆ Rd of k points such that for all x ∈ X with Cost(x,S) ≤
(
8z
ε

)z
Cost(x,A) or591

Cost(x, S̃) ≤
(
8z
ε

)z
Cost(x,A),592

|Cost(x,S)− Cost(x, S̃)| ≤ ε

z log(z/ε)
(Cost(x,S)− Cost(x,A).

The following statement is implied by the proof of Theorem 1 in [24].593

Theorem B.2. [24, 54] Let z > 0 be a constant. Let x ∈ G for a group induced by an (α, β)-594

bicriteria assignment A. For each cluster Ci with i ∈ [βk], let Di = Ci ∩ G. Let C be an595

A-approximate centroid set for G and let596

γ =
Cmax(α2, αz)β

min(ε2, εz)
log2

1

ε

(
k log |C|+ log log

1

ε
+ log n

)
log2

1

ε
,

for some sufficiently large constant C > 0. Let597

ζx =
Cost(Di,A)
|Di|Cost(G,A)

· γ log n, ηx =
Cost(x,A)
Cost(G,A)

· γ log n.

Suppose each point x ∈ X is sampled and reweighted independently into a set Ω0 with probability598

px, where599

px ≥ min(ζx + ηx, 1).

Let Ω1 = Ω0 \ (RI(Ci) ∪ (Ci ∩ ∪jGj,min) ∪ (RO(Ci) ∩GO
min).600

Suppose Ω2 is the set of centers in A, where each center ci with i ∈ [βk] has weight wi, where wi is601

a (1 + ε)-approximation to |RI(Ci)|+ |Ci ∩ ∪jGj,min|+ |RO(Ci) ∩GO
min|. Then (Ω1 \ Ω2) ∪ Ω2602

is (1 + ε)-coreset for the (k, z)-clustering problem with probability 1− 1
poly(n) .603

We first show that the sampling probabilities for each point in the stream by RINGSAMPLE in604

Algorithm 1 satisfies the conditions of Theorem B.2.605

Lemma B.3. Let x ∈ G for a group induced by an (α, β)-bicriteria assignment A at a time t, with606

t ∈ [n]. For each cluster Ci with i ∈ [βk], let Di = Ci ∩G. Let C be an A-approximate centroid set607

for G and let608

γ =
Cmax(α2, αz)β

min(ε2, εz)
log2

1

ε

(
k log |C|+ log log

1

ε
+ log n

)
log2

1

ε
,

for some sufficiently large constant C > 0 Let609

ζx =
Cost(Di,A)
|Di|Cost(G,A)

· γ log n, ηx =
Cost(x,A)
Cost(G,A)

· γ log n.

Then the probability px that RINGSAMPLE (Algorithm 1) samples each point x satisfies610

px ≥ min(ζx + ηx, 1).

16

Proof. Suppose that x ∈ Ri,j and x ∈ Gj,b at time t, for some i ∈ [βk] in an assignment by A611

from MULTMEYERSON. Let u be the time that x arrived in the stream. By the properties of the612

Meyerson sketch, i.e., MULTMEYERSON in Theorem 2.1, x is irrevocably assigned to a cluster Ci613

with i ∈ [βk] at time u. Hence, x must also be assigned to ring Ri,j at time u. Moreover, since the614

stream is insertion-only, then the number of points in all rings Ri,j for a fixed j across all i ∈ [βk] is615

monotonically non-decreasing. Thus x must also be assigned to group Gj,b at time u.616

Let px be the sampling probability of x by RINGSAMPLE in Algorithm 1 at time u. We have that617

px = min

(
4

ru
· γ log n, 1

)
,

where ru is the number of points in Gj,b at time u. Let G(u)
j,b be the subset of Gj,b that have arrived618

at time u and let G(t)
j,b be the subset of Gj,b that have arrived at time t. Let ci be the center assigned619

to point x, so that Cost(x, ci) = Cost(x,A) and let C(u)
i be the points assigned to ci at time u.620

Similarly, let D(u)
i = C

(u)
i ∩G

(u)
j,b . By the definition of Ri,j and Gj,b,621

∥x− ci∥z2
Cost(G

(u)
j,b ,A)

≤ 2j+1

Cost(G
(u)
j,b ,A)

≤ 2j+1

ru · 2j
=

2

ru
.

Since both the cost of group Gj,b and the number of points in Di is monotonically non-decreasing622

over time, then at time t, we have623

ζx
γ log n

=
Cost(Di,A)

|Di|Cost(Gj,b,A)
≤ 2|Di|∥x− ci∥z2
|Di|Cost(G(t)

j,b,A)
≤ 2∥x− ci∥22

Cost(G
(u)
j,b ,A)

≤ 4

ru
.

Similarly, we have that due to the monotonicity of the cost of group Gj,b over time,624

ηx
γ log n

=
∥x− ci∥z2

Cost(G
(t)
j,b,A)

≤ ∥x− ci∥z2
Cost(G

(u)
j,b ,A)

≤ 2

ru
.

Thus for sufficiently large constant C in the definition of γ in RINGSAMPLE, we have that625

px ≥ min(ζx + ηx, 1),

since px = min
(

4
ru
· γ log n, 1

)
.626

We next justify the space complexity of Algorithm 1, i.e., showing that with high probability, an627

upper bound of the number of samples can be determined.628

Lemma B.4. RINGSAMPLE (Algorithm 1) samples629

O

(
max(α2, αz)β

min(ε2, εz)
log2

1

ε

(
k log |C|+ log log

1

ε
+ log n

)
log2 n log2 ∆ log2

1

ε

)
points with high probability.630

Proof. Recall that by definition, the groups Gj,b partition the points X = x1, . . . , xn ⊆ [∆]d. For a631

fixed j and b, let Yi be an indicator random variable for whether the i-th point of Gj,b is sampled by632

RINGSAMPLE. Then we have E [Yi] ≤ 4
i ·γ log n and similarly E

[
Y 2
i

]
≤ 4

i ·γ log n. By Bernstein’s633

inequality, Theorem A.3, we have that634

Pr
[∑

Yi ≥ 80γ log2 n
]
≤ 1

n4

and more generally, we have that
∑

Yi = O
(
γ log2 n

)
with high probability. Thus by a union bound635

over all j and b, we have that the number of sampled points is at most636

O
(
γ log2 n log2 ∆

)
= O

(
1

min(ε2, εz)
log2

1

ε

(
k log |C|+ log log

1

ε
+ log n

)
log2 n log2 ∆ log2

1

ε

)
for γ = C max(α2,αz)β

min(ε2,εz) log2 1
ε

(
k log |C|+ log log 1

ε + log n
)
log2 1

ε .637

17

Moreover, note that we can for all t ∈ [n], we can explicitly track both |G(t)
j,b| and Cost(G

(t)
j,b,A)638

as the stream is updated, because once the bicriteria algorithm assigns a point to a center in A, the639

assignment will remain the same for the rest of the stream. Thus, we have the following:640

Lemma B.5. For each j and b, there exists an algorithm that maintains both |G(t)
j,b| and Cost(G

(t)
j,b,A)641

for all t ∈ [n] using O (log(nd∆)) space.642

Putting things together, we give the full guarantees of RINGSAMPLE in Algorithm 1.643

Lemma 2.2. Let C be anA-approximate centroid set for G. There exists an algorithm RINGSAMPLE644

that samples645

O

(
max(α2, αz)β

min(ε2, εz)
log2

1

ε

(
k log |C|+ log log

1

ε
+ log n

)
log2 n log2 ∆ log2

1

ε

)
points and with high probability, outputs a (1 + ε)-online coreset for the k-means clustering problem.646

Proof. Consider RINGSAMPLE. Before claiming the algorithm gives an (1 + ε)-online coreset, we647

first consider a fixed time t ∈ [n]. Then correctness at time t follows from applying Theorem B.2,648

given Lemma B.3 and Lemma B.5. We then observe that once a center is formed by RINGSAMPLE,649

i.e., once a point is sampled, then it irrevocably remains a center in the data structure. Therefore,650

conditioned on the correctness at time t, then the data structure will always correctly give an (1 + ε)-651

coreset to the prefix of t points in the stream at any later point t′ in the stream, t′ ∈ [n] with t′ > t. It652

thus suffices to argue correctness over all t ∈ [n], which requires a simple union bound. The space653

complexity follows from Lemma B.4 and Lemma B.5.654

To apply Lemma 2.2, we require upper bounding the term log |C|. To that end, we first require the655

following definition of doubling dimension.656

Definition B.6 (Doubling dimension). The doubling dimension of a metric space X with metric d is657

the smallest integer ℓ such that for any x ∈ X , it is possible to cover the ball of radius 2r around x658

with 2ℓ balls of radius r.659

Observe that general discrete metric spaces with n points have doubling dimension O (log n) since660

all points can be covered by 2logn balls.661

We then recall the following result that upper bounds the size log |C| for metric spaces with doubling662

dimension d.663

Lemma B.7. [24] Given a subset X from a metric space with doubling dimension d, ε > 0, and an664

α-approximate solutionA with at most k polylog(n) centers, there exists anA-approximate centroid665

set for X of size |X| ·
(
α
ε

)O(d)
.666

It is known that the Euclidean space has doubling dimension Θ(d), which would give a d dependency667

on our coreset size. However, [34] showed that the d dependency can be replaced with k
ε2 , which668

was subsequently improved by a line of works, e.g., [55, 36, 42], ultimately down to a dependency of669
1
ε2 log

k
ε using the following notion of terminal embeddings:670

Definition B.8 (Terminal embedding). Let ε ∈ (0, 1) and X ⊆ Rd be a set of n points. Then a671

mapping f : Rd → Rm is a terminal embedding if for all x ∈ X and all y ∈ Rd,672

(1− ε)∥x− y∥2 ≤ ∥f(x)− f(y)∥2 ≤ (1 + ε)∥x− y∥2.

[51] gave a construction of a terminal embedding with m = O
(

1
ε2 log n

)
that can be applied in linear673

space through exhaustive search when polynomial runtime is not required. Thus Lemma 2.2 nows674

give the following:675

Theorem 1.3. There exists an algorithm that samples k
min(ε4,ε2+z) polylog n∆

ε points and with high676

probability, outputs a (1 + ε)-online coreset for (k, z)-clustering.677

For the purpose of clarity, we emphasize that the algorithm does not use sublinear space, even though678

the sample complexity is sublinear. Namely, for each stream update, we construct and apply a679

terminal embedding to project each point to a lower dimension. We then compute the appropriate680

sampling probability of the projected point, but then sample the original point with the computed681

sampling probability.682

18

Stream:

Level 1:

Level 2:

Level 3:

Fig. 2: Merge and reduce framework on a stream of length n. The coresets at level 1 are the entire
blocks. The coresets at level i for i > 1 are each

(
1 +O

(
ε

2 logn

))
-coresets of the coresets at their

children nodes in level i− 1.

C Sliding Window Model683

In this section, we describe how our online coreset construction for (k, z)-clustering on general684

discrete metric spaces can be used to achieve near-optimal space algorithms for (k, z)-clustering in685

the sliding window model.686

We first recall a standard approach for using offline coreset constructions for insertion-only streaming687

algorithms. Suppose there exists a randomized algorithm that produces an online coreset algorithm688

that uses S(n, ε, δ) points for an input stream of length n, accuracy ε, and failure probability δ,689

where for the ease of discussion, we omit additional dependencies, such as on the dimension d, the690

clustering constraint k, the parameter z, or additional parameters for whatever problem the coreset691

construction may approximate. A standard approach for using coresets on insertion-only streams is692

the merge-and-reduce approach, which partitions the stream into blocks of size S
(
n, ε

2 logn ,
δ

poly(n)

)
693

and builds a coreset for each block. Each coreset is then viewed as the leaves of a binary tree with694

height at most log n, since the binary tree has at most n leaves. Then at each level of the binary695

tree, for each node in the level, a coreset of size S
(
n, ε

2 logn ,
δ

poly(n)

)
is built from the coresets696

representing the two children of the node. Due to the mergeability property of coresets, the coreset at697

the root of the tree will be a coreset for the entire stream with accuracy
(
1 + ε

2 logn

)logn

≤ (1 + ε)698

and failure probability δ. We give an illustration of this approach in Figure 2.699

This approach fails for sliding window algorithms because the elements at the beginning of the700

data stream can expire, and so coresets corresponding to earlier blocks of the stream may no longer701

accurate, which would result in the coreset at the root of the tree also no longer being accurate. On the702

other hand, suppose we partition the stream into blocks consisting of S
(
n, ε

2 logn ,
δ

poly(n)

)
elements703

as before, but instead of creating an offline coreset for each block, we can create an online coreset704

for the elements in reverse. That is, since the elements in each block are explicitly stored, we can705

create offline an artificial stream consisting of the elements in the block in reverse and then give the706

artificial stream as input to the online coreset construction. Note that if we also first consider the707

“latter” coreset when merging two coresets, then this effectively reverses the stream. Moreover, by708

the correctness of the online coreset, our data structure provides correctness over any prefix of the709

reversed stream, or equivalently, any suffix of the stream and specifically, correctness over the sliding710

window.711

Indeed, [8] showed that deterministic online coresets for problems in randomized numerical linear712

algebra can be used to achieve deterministic algorithms for the corresponding problems in the sliding713

window model. We thus further adapt the merge-and-reduce framework to show that randomized714

online coresets for problems in clustering can also be used to achieve randomized algorithms for the715

corresponding problems in the sliding window model. We formalize this approach in Algorithm 2,716

duplicated below:717

Theorem 2.3. Let x1, . . . , xn be a stream of points in [∆]d, ε > 0, and let X = {xn−W+1, . . . , xn}718

be the W most recent points. Suppose there exists a randomized algorithm that with probability at719

least 1− δ, outputs an online coreset algorithm for a k-clustering problem with S(n, d, k, ε, δ) points.720

19

Algorithm 5 Merge-and-reduce framework for randomized algorithms in the sliding window model,
using randomized constructions of online coresets

Input: A clustering function f , a set of points x1, . . . , xn ⊆ Rd, accuracy parameter ε > 0, failure
probability δ ∈ (0, 1), and window size W > 0

Output: An approximation of f on the W most recent points
1: Let CORESET(X,n, d, k, ε, δ) be an online coreset construction with S(n, d, k, ε, δ) points on a

set X ⊆ Rd

2: m← O
(
S
(
n, d, k, ε

logn ,
δ
n

)
log n

)
3: Initialize blocks B0, B1, . . . , Blogn ← ∅
4: for each point xt with t ∈ [n] do
5: if B0 does not contain m points then
6: Prepend xt to B0, i.e., B0 ← {xt} ∪B0

7: else
8: Let i be the smallest index such that Bi = ∅
9: Bi ← CORESET

(
Y, n, d, k, ε

logn ,
δ
n2

)
for Y = B0 ∪ . . . ∪Bi−1 ▷Y is an ordered set

of weighted points
10: for j = 0 to j = i− 1 do
11: Bj ← ∅
12: B0 ← {xt}
13: return the ordered set Blogn ∪ . . . ∪B0

Then there exists a randomized algorithm that with probability at least 1− δ, outputs a coreset for721

the k-clustering problem in the sliding window model with O
(
S
(
n, d, k, ε

logn ,
δ
n2

)
log n

)
points.722

Proof. Consider Algorithm 2. Let CORESET(X,n, d, k, ε, δ) be a randomized algorithm that, with723

probability at least 1−δ, computes an online coreset for a k-clustering problem f with S(n, d, k, ε, δ)724

points.725

We first claim that for each Bi is a
(
1 + ε

logn

)i
online coreset for 2i−1m points. To that end,726

observe that Bi can only be non-empty if at some time, B0 contains m points and B1, . . . , Bi−1 are727

all non-empty. By the correctness of the subroutine CORESET, Bi is a
(
1 + ε

logn

)
online coreset728

for the points in B0 ∪ . . . ∪ Bi−1 at some point during the stream. Hence by induction, Bi is a729 (
1 + ε

logn

)(
1 + ε

logn

)i−1

=
(
1 + ε

logn

)i
coreset for m+

∑i−1
j=1 2

j−1m = 2i−1m points.730

Now, because Algorithm 2 inserts the newest points at the beginning of B0, then the stream is fed in731

reverse to the merge-and-reduce procedure. Thus, for any W ∈ [2i−1, 2i), B0 ∪ . . .∪Bi provides an732

online coreset k-clustering for the W most recent points in the stream.733

To analyze the probability of failure, we remark that there are at most n points in the stream. For734

each point, there are at most n coresets constructed by the subroutine CORESET (in fact, the number735

of coreset constructions is upper bounded by O (log n)). Since each subroutine is called with failure736

probability δ
n2 , then by a union bound, the total failure probability is at most δ.737

To analyze the space complexity, note that there are at most O (log n) coreset constructions738

B0, . . . , Blogn maintained by the algorithm. Each coreset construction samples S
(
n, d, k, ε

logn ,
δ
n2

)
739

points. Hence, the total number of sampled points is O
(
S
(
n, d, k, ε

logn ,
δ
n2

)
log n

)
.740

By Theorem 1.3 and Theorem 2.3, we have:741

Theorem 2.4. There exists an algorithm that samples k
min(ε4,ε2+z) polylog n∆

ε points and with high742

probability, outputs a (1 + ε)-coreset to (k, z)-clustering in the sliding window model.743

Using an offline algorithm for (k, z)-clustering for post-processing after the data stream, we have:744

20

Theorem 1.1. There exists an algorithm that samples k
min(ε4,ε2+z) polylog n∆

ε points and with high745

probability, outputs a (1 + ε)-approximation to (k, z)-clustering for the Euclidean distance on [∆]d746

in the sliding window model.747

D Lower Bounds748

In this section, we show that any (1 + ε)-online coreset for (k, z)-clustering requires Ω
(

k
ε2 log n

)
749

points. The intuition is somewhat straightforward and in a black-box manner. [23] showed the750

existence of a set X of Ω
(

k
ε2

)
unit vectors such that any sublinear space data structure would not be751

able to accurately determine Cost(C,X) for a set of k unit vectors C. They thus showed that any752

offline (1 + ε)-coreset construction for (k, z)-clustering required Ω
(

k
ε2

)
points.753

Because an online (1 + ε)-coreset must answer queries on all prefixes of the stream, our goal is754

to essentially embed Ω(log n) instances of the hard instance of [23] into the stream, which would755

require Ω
(

k
ε2 log n

)
points. To enforce the data structure to sample Ω

(
k
ε2

)
points for each of the756

hard instance, we give each of the instances increasingly exponential weight. That is, we give the757

points in the i-th instance τ i weight for some constant τ > 1, by inserting τ i copies of each of the758

points. Because the weight of the i-th instance is substantially greater than the sum of the weights759

of the previous instances, any (1 + ε)-online coreset must essentially be a (1 + ε)-coreset for the760

i-th instance, thus requiring Ω
(

k
ε2

)
points for the i-th instance. This reasoning extends to all of the761

Ω(log n) instances, thereby giving a lower bound of Ω
(

k
ε2 log n

)
points.762

We first recall the following offline coreset lower bound by [23].763

Theorem D.1. [23] For d = Θ
(

k
ε2

)
, let X = e1, . . . , ed ∈ R2d be the set of elementary vectors.764

Let z be a constant and let a1, . . . , am ∈ R2d with corresponding weights w1, . . . , wm ∈ R be a765

weighted set P of points. Then there exists a set of k unit vectors C = c1, . . . , ck ∈ R2d such that for766

m = o
(

k
ε2

)
,767

(1) Cost(C,X) =
∑d

i=1 minj∈[k] ∥ei − cj∥22 ≥ 2z/2d− 2z/2 ·max(1, z/2) ·
√
dk.768

(2) Cost(C,P) =
∑m

i=1 wi minj∈[k] ∥ai− cj∥22 < (1− ε)(2z/2d− 2z/2 ·max(1, z/2) ·
√
dk).769

We remark that the first property is due to Lemma 31 pf [23] and the second property is due to Lemma770

33 and Lemma 34 of [23].771

Let γ = Θ
(
log n

d′

)
. Let d′ = Θ

(
k
ε2

)
be the dimension of the hard instance in Theorem D.1 and set772

d = γd′, so that we can partition the space R2d into γ groups of 2d′ coordinates.773

We define a stream by creating γ weighted instances of the hard instance defined in Theorem D.1.774

Each of the γ hard instances will be embedded into a separate partition of 2d′ coordinates of R2d.775

Namely, the first instance consists of the vectors e1, . . . , ed′ being inserted into the stream. By776

Theorem D.1, any (1 + ε)-coreset must contain Ω
(

k
ε2

)
points. The next instance consists of the777

vectors e1+2d′ , . . . , e3d′ each being inserted τ = 100 times into the stream. That is, after the vector778

ed′ arrives in the stream from the first hard instance, then t copies of e1+2d′ arrive in the stream,779

followed by then t copies of e2+2d′ , and so forth. Due to the weights of these vectors, any (1 + ε)-780

coreset must essentially be a (1 + ε)-coreset for the second hard instance and thus contain Ω
(

k
ε2

)
781

points with support in the second group of 2d′ coordinates.782

More generally, for each i ∈ [γ], the stream inserts ti−1 copies of e1+2(i−1)d′ , followed by τ i−1783

copies of e2+2(i−1)d′ , and so on. The main intuition is that due to the weights of the i-th group of d′784

elementary vectors, an (1+ ε)-online coreset must contain a (1+ ε)-coreset for the i-th hard instance.785

Moreover, since the (1 + ε)-online coreset must be a coreset for any prefix of the stream, then it786

needs to be a (1 + ε)-coreset for each of the hard instances. Hence, the online coreset must contain787

γ · Ω
(

k
ε2

)
= Ω

(
k
ε2 ·

logn
log 1

ε

)
points.788

Lemma D.2. Let τ = 100. For each integer i > 0, let Si be the stream that consists of τ i−1789

consecutive copies of e1+2(i−1)d′ , followed by τ i−1 copies of e2+2(i−1)d′ , and so on. Let S be the790

stream that consists of S1 ◦ S2 ◦ Then for each i, any (1 + ε)-online coreset after the arrival of791

Si must consist of i · Ω
(

k
ε2

)
points.792

21

Proof. We prove the claim by induction on i. The base case of i = 1 follows from Theorem D.1.793

Now suppose the claim holds for a fixed i− 1. Let Xi be the set of points that have arrived after Si,794

i.e., Xi = S1 ◦ . . . ◦ Si. Let Ci−1 be any (1 + ε)-online coreset for S after the arrival of Si−1. Let795

Pi be a set of weighted points sampled during stream Si, so that Ci = Ci−1 ∪ Pi. Since each point796

in Si has weight τ i, then by scaling the first property of Theorem D.1, we have that there exists a set797

of k unit vectors Ui = c1, . . . , ck ∈ R2d such that798

Cost(U,Xi) =

i∑
a=1

d′∑
b=1

τa min
j∈[k]
∥eb+2(a−1)d′ − cj∥z2

≥
d′∑
b=1

τ i min
j∈[k]
∥eb+2(i−1)d′ − cj∥z2

≥ (τ i)(2z/2d− 2z/2 ·max(1, z/2) ·
√
dk). (1)

In particular, the unit vectors Ui = c1, . . . , ck have support entirely in the i-th group of 2d′ coordinates799

in R2d. By the same argument, there exists a set Ui−1 with the same properties in the (i−1)-th group800

of 2d′ coordinates in R2d.801

By the correctness of the online coreset, we have802

Cost(Ui−1, Ci−1) ≤ (1 + ε) Cost(Ui−1, Xi−1) = (1 + ε)

i−1∑
a=1

Cost(Ui−1, Sa).

Since Ui−1 consists of unit vectors and each substream Sa consists of unit vectors, then we have803

Cost(Ui−1, Sa) ≤ 2d′τa.

Thus for ε ∈ (0, 1),804

Cost(Ui−1, Ci−1) ≤ 2

i−1∑
a=1

(2d′τa) ≤ 8d′τ i−1 <
1

10
d′τ i,

since τ = 100. On the other hand, since Ui−1 has support entirely in the (i − 1)-th group of 2d′805

coordinates and Si has support entirely in the i-th group of 2d′ coordinates in R2d, then806

Cost(Ui−1, Xi) ≥ Cost(Ui−1, Si) ≥ 2d′τ i.

Thus for Ci to be a (1 + ε)-online coreset for ε ∈ (0, 1), Ci must sample additional points from Xi807

on top of Ci−1. Hence, Pi ̸= ∅.808

In particular, let Pi consist of vectors y1, . . . , ym with weights w1, . . . , wm. Since Pi ̸= ∅, then809

Cost(Ui, Ci) = Cost(U,Ci−1 ∪ Pi) ≤ Cost(U,Pi).

If |Pi| = o
(

k
ε2

)
, then by the second property of Theorem D.1, we have810

Cost(Ui, Pi) =

m∑
b=1

min
j∈[k]

wb∥yb − cj∥22 < τ i(1− ε)(2z/2d− 2z/2 ·max(1, z/2) ·
√
dk),

which together with Equation 1 contradicts the fact that Ci is an (1 + ε)-online coreset for Xi.811

Therefore, we have |Pi| = Ω
(

k
ε2

)
. Moreover, since Pi has disjoint support from Ci−1, then by812

induction,813

|Ci| = |Ci−1 ∪ Pi| = |Ci−1|+ |Pi| = i · Ω
(

k

ε2

)
.

814

Theorem 1.4. Let ε ∈ (0, 1). For sufficiently large n, d, and ∆, there exists a set X ⊂ [∆]d of815

n points x1, . . . , xn such that any (1 + ε)-online coreset for k-means clustering on X requires816

Ω
(

k
ε2 log n

)
points.817

Proof. Let γ = Θ
(
log n

d′

)
. For each i ∈ [γ], construct the stream Si as in the statement of818

Lemma D.2. Observe that |Si| = d′ · ti for t = 100 and so under the settings of the parameter819

γ with the appropriate constant, the total length of the stream S = S1 ◦ . . . ◦ Sγ is precisely n.820

Moreover, by Lemma D.2, any (1 + ε)-online coreset must store γ · Ω
(

k
ε2

)
= Ω

(
k
ε2 log n

)
points821

for n = poly(d).822

22

E On the Proof of Theorem B.2823

We remark that Theorem 1 of [24] is stated for sampling a fixed number of points with replacement824

from each group, rather than sampling each point independently without replacement. By contrast,825

Theorem B.2 is stated for sampling each point independently without replacement. In this section,826

we briefly outline the proof of Theorem 1 of [24] and how the analysis translates to the statement of827

Theorem B.2.828

At a high level, the coreset construction of [24] first collects rings of an approximate solution A of829

k points into groups, using a similar approach to that described in Appendix B with β = 1. The830

algorithm then computes a coreset for each group first using a procedure GROUPSAMPLE and then831

using a procedure SENSITIVITYSAMPLE for some of the points not considered by the first procedure.832

We briefly describe both procedures, as well as how to adapt them to the setting where each point is833

sampled independently and without replacement.834

E.1 Adaptation of Group Sampling835

The GROUPSAMPLE procedure of [24] samples a fixed Λ1 number of points from each group G with836

probability proportional to the contribution of each corresponding cluster of the point to the group.837

That is, given clusters C̃1, . . . , C̃k induced by A on G, GROUPSAMPLE then performs Λ1 rounds838

of sampling. Each round samples a single point, where a point p ∈ C̃i is sampled proportional to839

Cost(C̃i,A)

|C̃i|·Cost(G,A)
and rescaled appropriately. Then GROUPSAMPLE offers the following guarantees:840

Lemma E.1 (Lemma 2 of [24]). Let (X,dist) be a metric space, k, z be positive integers, G be a841

group of clients and A be an α-approximate solution to (k, z)-clustering on G so that:842

• For every cluster C̃ induced by A on G, all points of C̃ contribute the same cost in A up to843

a factor of 2.844

• For all clusters C̃ induced by A on G, we have that Cost(G,A)
2k ≤ Cost(C̃,A).845

Let C be an A-approximate centroid set for (k, z)-clustering on G.846

Then there exists a procedure GROUPSAMPLE that constructs a set Ω of size847

Λ1 = O

(
max(α2, αz) log2 1

ε

2O(z log z) min(ε2, εz)

(
k log |C|+ log log

1

ε
+ log n

))
,

such that with high probability, it simultaneously holds for all sets S of k centers that848

|Cost(G,S)− Cost(Ω, S)| ≤ O
(ε
α

)
(Cost(G,S) + Cost(G,A).

We outline the high-level approach of the proof of Lemma E.1 and how can it can adjusted for an849

(α, β)-approximate solution A, as well as a process that samples each point independently without850

replacement, rather than using Λ1 rounds as GROUPSAMPLE.851

The proof of Lemma E.1 involves further partitioning the points of G into three subsets, based on the852

cost induced by the point. Namely, given a set S of k centers, a point p in group G is categorized as853

tiny, interesting, or huge, depending on Cost(p, S) (though the interesting and huge points actually854

have a small overlap to allow slack in the proof). [24] applies standard Chernoff bounds to show855

that the number of sampled points is well-concentrated around its expectation and then applies856

Bernstein’s inequality to show that the clustering costs of the tiny points, the interesting points are857

well-concentrated around their expectations. In particular, they show that the expected number of858

sampled points from each cluster C̃i is859

Λ1 Cost(C̃i,A)
Cost(G,A)

≥ Λ1

2k
,

due to the assumption that for all clusters C̃ induced by A on G, we have that Cost(G,A)
2k ≤860

Cost(C̃,A).861

23

We first remark that ifA is an (α, β)-approximate solution rather than an α-approximate solution, i.e.,862

if A has βk centers rather than k centers, then the definition of the rings and groups would instead863

insist that for all clusters C̃ induced by A on G, we have that Cost(G,A)
2βk ≤ Cost(C̃,A). Then by864

oversampling Λ1 by a factor of β, i.e., sampling βΛ1 points would ensure that the expected number865

of sampled points from each cluster C̃i would be866

βΛ1 Cost(C̃i,A)
Cost(G,A)

≥ βΛ1

2βk
=

Λ1

k
.

It then remains to argue the correctness of sampling each point independently without replacement867

rather than a fixed βΛ1 number of points, which simply holds by adjusting the applications of the868

Chernoff bounds and Bernstein’s inequality so that there is a separate random variable for each point869

in the input rather than for each of the Λ1 rounds.870

E.2 Adaptation of Sensitivity Sampling871

The SENSITIVITYSAMPLE procedure of [24] samples a fixed Λ2 number of points from each group G872

with probability proportional to the contribution of the point. Specifically, SENSITIVITYSAMPLE then873

performs Λ2 rounds of sampling, where each round samples a point p in the group G with probability874

proportional to Cost(p,A)
Cost(G,A) and rescales the sampled point appropriately. Then SENSITIVITYSAMPLE875

offers the following guarantee:876

Lemma E.2 (Lemma 3 of [24]). Let (X,dist) be a metric space, k, z be positive integers, and A877

be an α-approximate solution to (k, z)-clustering on G. Let C be an A-approximate centroid set878

for (k, z)-clustering on G. Let G be either a group GO
b or GO

max. Then there exists a procedure879

SENSITIVITYSAMPLE that constructs a set Ω of size880

Λ2 = O

(
2O(z log z)α2 log2 1

ε

ε2

(
k log |C|+ log log

1

ε
+ log n

))
,

such that with high probability, it simultaneously holds for all sets S of k centers that881

|Cost(G,S)− Cost(Ω, S)| ≤ O

(
ε

αz log z
ε

)
(Cost(G,S) + Cost(G,A).

We outline the high-level approach of the proof of Lemma E.2 and how can it can adjusted for an882

(α, β)-approximate solution A, as well as a process that samples each point independently without883

replacement, rather than using Λ2 rounds as SENSITIVITYSAMPLE.884

The proof of Lemma E.2 partitions the points of G into two categories, based on the cost induced by885

the point. Given a set S of k centers, the close points are the points p in G that have Cost(p, S) ≤886

4z ·Cost(p,A). The far points are the remaining points in G, i.e., the points p in G with Cost(p, S) >887

4z · Cost(p,A).888

[24] applies Bernstein’s inequality to show that the clustering cost of the close points is well-889

concentrated around their expectations. We can again adjust the application of Bernstein’s inequality890

so that there is a separate random variable for each point in the input rather than for each of the Λ2891

samples.892

To handle the far points, [24] again uses Bernstein’s inequality to show that with high probability, the893

clustering points of these points with respect to S can be replaced with the distance to the closest894

center c ∈ A plus the distance from c to the closest center in S. Conditioned on this event, the latter895

distance can then be charged to the remaining points of the cluster from the original dataset, i.e., the896

remaining points of the cluster not necessarily restricted to group G, which are significantly more897

numerous and already paying a similar value in S. In particular, Bernstein’s inequality utilizes the898

fact that the second moment of the estimated cost of a cluster C is at most899

Cost(G,A)
Λ2
2

Cost(C ∩G,A) ≤ 2k

Λ2
2

(Cost(C ∩G,A))2,

for β = 1. Thus for general β, we recover the same guarantee by oversampling Λ2 by a factor of β, i.e.,900

sampling βΛ2 points would ensure that the second moment would be at most 2k
Λ2

2
Cost2(C ∩G,A). It901

24

then remains to argue the correctness of sampling each point independently without replacement rather902

than a fixed βΛ2 number of points, which again holds by adjusting the application of Bernstein’s903

inequality so that there is a separate random variable for each point in the input rather than for each904

of the Λ2 rounds.905

F Additional Experiments on Synthetic Data906

We first describe the methodology and experimental setup of our empirical evaluation on a synthetic907

dataset before detailing the experimental results. To emphasize the benefits of our algorithm against908

worst-case input, we generate a synthetic dataset that would fully capture the failure cases of previous909

baselines.910

Dataset. We generated our dataset X consisting of 200, 001 points on two-dimensional space so911

that 100, 000 points were drawn from a spherical Gaussian with standard deviation 2.75 centered at912

(−10, 10) and 100, 000 points were drawn from a spherical Gaussian with standard deviation 2.75913

centered at (10,−10). The final point of X was drawn from a spherical Gaussian with standard914

deviation 2.75 centered at (100000, 100000). Thus by construction of our synthetic dataset for k = 3,915

the optimal centers should be close to (−10, 10), (10,−10), and (100000, 100000). We then create916

the data stream S by prepending two additional points drawn from spherical Gaussians with standard917

deviation 2.75 centered at (−100000, 100000) and (−100000,−100000) respectively. We set the918

window length to be 200, 001 in accordance with the “true” data set, so that the first two points of the919

stream of length 200, 003 will be expired by the data stream.920

Experimental setup. For each of the instances of Lloyd’s algorithm, either on the entire dataset921

X or the sampled coreset C, we use 3 iterations using the k-means++ initialization. In this case,922

the offline Lloyd’s algorithm requires storing the entire dataset X in memory and thus its input923

size is 200, 001 points. By comparison, we normalize the space requirement of the sublinear-space924

algorithms by permitting each algorithm to store m ∈ {3, 4, 5, 6, 7, 8, 9, 10, 11, 12} points. Note that925

since k = 3, it would not be reasonable for C to have fewer than 3 points. We then run Lloyd’s926

algorithm on the coreset C, with 3 iterations using the k-means++ initialization.927

By construction of our dataset, we generally expect the uniform sampling algorithm uni to be stable928

across the various values of m but perform somewhat poorly, as it will sample points from the large929

clusters but it will miss the point generated from the Gaussian centered at (100000, 100000). Since930

in our construction the stream S only contains two more points than the dataset X , the histogram-931

based algorithm hist will not delete any points. Thus, the resulting coreset C generated by hist is932

somewhat likely contain the points generated from the Gaussians centered at (−100000, 100000)933

and (−100000,−100000) and can perform poorly on the synthetic dataset in these cases. Finally,934

since we allow the last point of the stream to be the single point of X far from the two large clusters,935

then the importance sampling based algorithm imp will sample the last point with high probability936

once any points of C have been expired. Hence by the construction of our stream, we expect imp to937

perform well.938

Experimental results. For each choice of m and k, we ran each algorithm 50 times and tracked939

the resulting clustering cost. As expected by our construction, our algorithm performed significantly940

better than the other sublinear-space algorithms. In fact, even though our algorithm was only941

permitted memory size m ∈ {3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, our algorithm was quite competitive with942

the offline Lloyd’s algorithm, which used memory size 200, 001, i.e., the entire dataset. For k ≥ 3,943

uniform sampling performed relatively poorly but quite stably, because although it never managed to944

sample the point generated from the Gaussian centered at (100000, 100000), the two other Gaussian945

distributions were sufficiently close that any sampled point would serve as a relatively good center for946

points generated from the two distributions. Similarly, for fixed k = 3 in Figure 3b, the importance947

sampling approach used by histogram-based algorithms performed the worse, by multiple orders948

of magnitude. We expect this is because we did not delete the points in S \ X from C and thus949

the resulting Lloyd’s algorithm on C moved the centers far away from the centers of the Gaussian950

distributions that induced X . A more optimized fine-tuned histogram-based algorithm would have951

searched for parameters that govern when to delete points from S \ X , which have reduced the952

algorithm down to our main algorithm. We plot our results in Figure 3.953

25

(a) Comparisons for varying k. (b) Comparisons for varying m.

Fig. 3: Comparison of average clustering costs made by uniform sampling, histogram-based algorithm,
and our coreset-based algorithm across various settings of space allocated to the algorithm, given a
synthetic dataset. For comparison, we also include the offline k-means++ algorithm as a baseline,
though it is inefficient because it stores the entire dataset. Ranges are not plotted because they would
not be visible.

26

	Introduction
	Our Contributions
	Technical Overview

	Algorithm
	Experimental Evaluations
	Preliminaries
	Online 1+eps-Coreset
	Sliding Window Model
	Lower Bounds
	On the Proof of Theorem 2.1
	Adaptation of Group Sampling
	Adaptation of Sensitivity Sampling

	Additional Experiments on Synthetic Data

