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A SUPPLEMENTAL MATERIALS

A.1 NUMERICAL EXAMPLES

We provide additional details about the experiments we conducted.

Transfer Learning of Nonlinear Heat Equations on Complete Weighted Graphs In this set of
experiments, we utilize the torchdiffeq library Chen et al. (2018) with an adaptive Dormand-Price
solver Dormand & Prince (1980), and extend the code implementation from Poli et al. (2019). We
consider the graphon function W(x, y) = exp

(
− (x−y)2

2σ2

)
with σ = 0.15 to construct graphs Gn

with n nodes as described in Model 1 in Section 8. For training, we use five graphs with n ∈
{20, 40, 60, 80, 100} nodes and simulate the nonlinear heat equation on Gn given by:

d

dt
ui(t) =

8

n

n∑

j=1

[WGn
]ij sin(uj(t)− ui(t)), i ∈ [n]. (18)

Table 2: Initial Conditions for Nonlinear Heat Equation

Dataset Initial Condition F(u)

Training Data 1

1+exp(−10(u− 1
2 ))

+ 3
10 sin(10u) +

1
10 sin(40u)

Validation Data 2u+ 1
2 tanh(5u) +

1
5 sin(25u)

Testing Data 3 exp
(
−20

(
u− 1

2

)2)
+ exp

(
−30 (u− 0.1)

2
)

+exp
(
−50 (u− 0.9)

2
)
+ 1

2 sin(35u) sin(20u)

We simulate the true dynamics over 50 time points within t ∈ [0, 1] for three distinct initial con-
ditions, forming our training, validation, and testing split (see Table 2). These datasets consist of
pairs of observations one time step apart from the respective dynamics. For each n, we construct a
GNDE parameterized by a GCN with L = 2,K = 2, F = 1 and a hidden dimension of 16. We
train using the ADAM optimizer over 500 epochs with MSE loss between the true training dynamics
and predicted next timestep. We utilize early stopping criteria provided by validation error measure-
ment, which halts training after convergence but before overfitting occurs. Once trained, we transfer
the weights of the GNDEs trained on Gn to a GNDE on the much larger GN graph with N = 500.
These larger GNDEs are evaluated on next-step dynamics prediction on the test set dynamics on
GN . Convergence is then assessed through calculation of the relative error ∥YN (1)−XN,n(1)∥2

∥YN (1)∥2
.

Transferability of GCNDEs on Checkerboard Graphons with Varying Checkerboard Sizes
We evaluate the transferability of Graph Convolutional Neural Differential Equations (GCNDEs)
sampled from checkerboard graphons with varying checkerboard sizes ranging from 2 to 200, whose
box-counting dimension falls in (1,2). Checkerboard graphons are {0, 1}-valued and represent a
structured, piecewise-constant connectivity pattern (see Figure 4). Using Model II, we generate
simple graphs from these graphons and apply fixed GNDE parameters with a two-layer GCN (F =
2,K = 2) to compute model outputs at t = 1 without any additional training. The initial conditions
are random Fourier polynomials of degree D = 10, defined as:

G(u) =

D∑

k=1

ak cos(2πku) + bk sin(2πku),

where ak and bk are independently sampled from a uniform distribution, creating diverse and smooth
signals over graph nodes. We conduct 10 trials for each configuration and report the mean and
standard deviation of the errors. To approximate the graphon solution X, we use a reference graph
with Nlargest = 3000 nodes, ensuring a robust evaluation of model transferability across different
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graph sizes. We presented the log-log convergence plot of ∥Xn(1)−X3000(1)∥2

∥X3000(1)∥2
for number of nodes

n ranging in 100:100:500.

Figure 4: Top: Checkerboard graphons with sizes 2, 50, 100, and 200. Bottom: Piecewise constant
approximations of checkerboard graphons using the adjacency matrix of graphs with 500 nodes
sampled from the respective graphons.

A.2 GRAPH LIMITS

To measure how similar two graphons are, we use something called the cut-norm. For any graphon
W, its cut-norm is given by:

∥W∥□ := sup
S,T⊆I

∣∣∣∣
∫

S×T

W(x, y) dx dy

∣∣∣∣ , (19)

where S and T are any subsets of [0, 1]. The cut-norm measures the maximum discrepancy in the
graphon over any pair of subsets.

The cut-distance between two graphons W and U is defined as:

δ□(U,W) := inf
ϕ

∥U − Wϕ∥□, (20)

where Wϕ(x, y) = W(ϕ(x), ϕ(y)) and ϕ is any measure-preserving mapping of [0, 1]. This ensures
that the cut-distance is not affected by relabeling of the nodes, making it a robust way to compare
graphons.

A graph sequence is convergent if and only if it is Cauchy with respect to the cut-distance. This
means that the graphs in the sequence get closer and closer to each other in terms of structure. We
define a graph limit as the equivalence class of graphons:

[W] := {U ∈ W0 : δ□(U,W) = 0}. (21)

In other words, two graphons are equivalent if they represent the same “limit” behavior.

We typically refer to both a graphon W and its equivalence class [W] simply as a “graphon”. The
set of all graphon equivalence classes, χ = {[W] : W ∈ W0}, forms a compact metric space under
the cut-distance δ□ Lovász (2012). The sequence of graphs we constructed in Models I and II in
Section 3 is convergent to graphon W Ruiz et al. (2020).
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A.3 FUNCTION SPACES

We define function spaces

L∞(I) :=
{
G : I → R : ∥G∥L∞(I) := esssupu∈I |G(u)| < ∞

}
,

L∞(I;R1×F ) :=
{
G : I → R1×F : ∥G∥L∞(I;R1×F ) := esssupu∈I∥G(u)∥2 < ∞

}
,

L2(I) :=

{
G : I → R : ∥G∥L2(I) :=

(∫

I

|G(u)|2du
) 1

2

< ∞
}
,

L2(I;R1×F ) :=

{
G : I → R1×F : ∥G∥L2(I;R1×F ) :=

(∫

I

∥G(u)∥22du
) 1

2

< ∞
}
.

We remark that for G = [Gf : f ∈ [F ]] ∈ L2(I;R1×F ), it is clear that

∥G∥2L2(I;R1×F ) =

∫

I

∥G(u)∥22du =
∑

f∈[F ]

∫

I

|Gf (u)|2du =
∑

f∈[F ]

∥Gf∥2L2(I). (22)

For p ∈ [1,∞], we define

C(Ω;Lp(I;R1×F )) := {X : I × Ω → RF : for X = [Xf : f ∈ [F ]], Xf (u, ·) ∈ C(Ω) for each u ∈ I,

X(·, t) ∈ Lp(I;R1×F ) for each t ∈ Ω,

∥X∥C(Ω;Lp(I;R1×F )) := sup
t∈Ω

∥X(·, t)∥Lp(I;R1×F ) < ∞}

and a subspace of C(Ω;Lp(I;R1×F )) as

C1(Ω;Lp(I;R1×F )) := {X : I × Ω → RF : for X = [Xf : f ∈ [F ]], Xf (u, ·) ∈ C1(Ω) for each u ∈ I,

X(·, t) ∈ Lp(I;R1×F ) for each t ∈ Ω}.

A.4 PROOF OF THEOREM 3.1

In this subsection, we provide the proof of Theorem 3.1. We recall that, for a convolutional filter
h = [hk : k ∈ ZK ], by h we denote the polynomial determined by h, that is, h(x) =

∑
k∈ZK

hkx
k,

x ∈ R. By |h| we denote the polynomial |h|(x) :=∑k∈ZK
|hk|xk, x ∈ R. We proceed to present

a helpful lemma to prove Theorem 3.1.

Lemma A.1. Suppose that AS1 holds. Let T > 0 and X1,X2 ∈ C([0, T ];L∞(I;R1×F )). Then for
all t ∈ [0, T ], it holds that

∥Φ(W;X1(·, t);H(t))− Φ(W;X2(·, t);H(t))∥L∞(I;R1×F ) ≤ (FM1)
L∥X1(·, t)− X2(·, t)∥L∞(I)

where

M1 := max
f,g∈[F ],ℓ∈[L],t∈[0,T ]

∣∣∣hfg
ℓ,t

∣∣∣ (∥W∥L∞(I2)). (23)

Proof. Let t ∈ [0, T ] be arbitrary but fixed. Let X0,t := X1(·, t) and Y0,t := X2(·, t). For each
f ∈ [F ], we denote by Xℓ,t = [Xf

ℓ,t : f ∈ [F ]], Yℓ,t = [Y f
ℓ,t : f ∈ [F ]] the output of ℓ-th layer in

Graphon neural network with input feature functions X0,t and Y0,t, respectively. It is clear that for
each ℓ ∈ [L], we have Xℓ,t,Yℓ,t ∈ L∞(I;R1×F ). According to the updating formula 5 and AS1,
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for each f ∈ [F ], ℓ ∈ [L], we obtain that
∥∥∥Xf

ℓ,t − Y f
ℓ,t

∥∥∥
L∞(I)

=

∥∥∥∥∥ρ
(

F∑

g=1

hfg
ℓ,t(TW)Xg

ℓ−1,t

)
− ρ

(
F∑

g=1

hfg
ℓ,t(TW)Y g

ℓ−1,t

)∥∥∥∥∥
L∞(I)

≤
∥∥∥∥∥

F∑

g=1

hfg
ℓ,t(TW)

(
Xg

ℓ−1,t − Y g
ℓ−1,t

)∥∥∥∥∥
L∞(I)

≤
F∑

g=1

∥∥∥hfg
ℓ,t(TW)

∥∥∥
L∞(I)→L∞(I)

∥∥∥Xg
ℓ−1,t − Y g

ℓ−1,t

∥∥∥
L∞(I)

≤

√√√√
F∑

g=1

∥∥∥hfg
ℓ,t(TW)

∥∥∥
2

L∞(I)→L∞(I)

√√√√
F∑

g=1

∥∥∥Xg
ℓ−1,t − Y g

ℓ−1,t

∥∥∥
2

L∞(I)

=

√√√√
F∑

g=1

∥∥∥hfg
ℓ,t(TW)

∥∥∥
2

L∞(I)→L∞(I)
∥Xℓ−1,t −Yℓ−1,t∥L∞(I;R1×F ) (24)

Since hfg
ℓ,t is a polynomial for each f, g ∈ [F ], ℓ ∈ [L], with noting ∥TW∥L∞(I)→L∞(I) ≤

∥W∥L∞(I2), it is clear that
∥∥∥hfg

ℓ,t(TW)
∥∥∥
L∞(I)→L∞(I)

≤ |hfg
ℓ,t|(∥W∥L∞(I2)).

Substituting the above inequality into 24, with the constant M1 defined by 23, we obtain that∥∥∥Xf
ℓ,t − Y f

ℓ,t

∥∥∥
L∞(I)

≤
√
FM1∥Xℓ−1,t −Yℓ−1,t∥L∞(I;R1×F ),

which further implies

∥Xℓ,t −Yℓ,t∥L∞(I;R1×F ) =

√√√√
F∑

f=1

∥∥∥Xf
ℓ,t − Y f

ℓ,t

∥∥∥
2

L∞(I)
≤ FM1∥Xℓ−1,t −Yℓ−1,t∥L∞(I;R1×F ).

Using induction, we get

∥XL,t −YL,t∥L∞(I;R1×F ) ≤ (FM1)
L∥X0,t −Y0,t∥L∞(I).

The proof is complete by noting that XL,t = Φ(W;X1(·, t);H(t)), YL,t = Φ(W;X2(·, t);H(t)),
X0,t = X1(·, t) and Y0,t = X2(·, t).

Proof of Theorem 3.1. The proof is based on the Banach contraction mapping principles. We in-
clude the details for completeness. Let T > 0 be arbitrary but fixed, and 0 < τ < 1

2(M1F )L
. We

define a subspace SG of C([0, τ ];L∞(I;R1×F )), associated with τ , by

SG :=
{

X : X ∈ C([0, τ ];L∞(I;R1×F )),X(·, 0) = G
}
.

Moreover, we define an integral operator K : SG → SG by

[KX](u, t) := G(u) +

∫ t

0

Φ(W;X(u, s);H(s))ds. (25)

It follows that we can rewrite the IVP for 6 as the fixed point equation X = KX. We show
below that K is a contraction. For any X1,X2 ∈ SG, according to the definition of norm in
C([0, τ ];L∞(I;R1×F )), we have

∥KX1 −KX2∥SG
= max

t∈[0,τ ]
∥KX1(·, t)−KX2(·, t)∥L∞(I;R1×F )

= max
t∈[0,τ ]

∥∥∥∥
∫ t

0

Φ(W;X1(·, s);H(s))− Φ(W;X2(·, s);H(s))ds

∥∥∥∥
L∞(I;R1×F )

≤ τ max
t∈[0,τ ]

∥Φ(W;X1(·, t);H(t))− Φ(W;X2(·, t);H(t))∥L∞(I;R1×F ) . (26)
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It follows from Lemma A.1 that

∥Φ(W;X1(·, t);H(t))− Φ(W;X2(·, t);H(t))∥L∞(I;R1×F ) ≤ (FM1)
L∥X1(·, t)−X2(·, t)∥L∞(I;R1×F )

where the constant M1 is defined in 23. By substituting the above estimate into 26, we obtain that

∥KX1 −KX2∥SG
≤ τ(FM1)

L max
t∈[0,τ ]

∥X1(·, t)− X2(·, t)∥L∞(I;R1×F )

= τ(FM1)
L∥X1 − X2∥SG

≤ 1

2
∥X1 − X2∥SG

where the last inequality follows from the definition of τ . Therefore, the operator K is a contraction.
By the Banach contraction mapping principle, there exists an unique solution X̄ ∈ SG of the IVP
6. Taking X̄(τ) as the initial condition, we repeat the argument to extend the solution to [0, 2τ ].
In such a way, we can keep doing until the solution extends to [0, T ], and get a unique solution
X ∈ C([0, T ];L∞(I;R1×F )). According to AS0 and AS1, it follows that Φ(W;X(u, ·);H(·))
is continuous, that is, the integrand in 25 is continuous. Therefore, by fundamental theorem of
calculus, we see that KX is continuously differentiable about the second variable t. As KX = X,
we conclude that X ∈ C1([0, T ];L∞(I;R1×F )). This completes the proof.

A.5 TRANSFERABILITY OF SOLUTIONS FOR GRAPHON-NDES

In this subsection, we prove that the solution of 15 converges to the solution of 6 as the number of
nodes tends to infinity. Such result serves as the basis for proving our main result Theorems 3.2
and 3.3. We proceed with several helpful lemmas for showing the transferability of graphon neural
networks.

Lemma A.2 (Werner (2006)Satz VII.1.4). Let H be a Hilbert space and A ∈ B(H) be normal. Let
h : R → C be a continuous function, then ∥h(A)∥H→H = ∥χσ(A)h∥L∞(R), where χσ(A) is the
indicator function of σ(A).

Suppose that H is a separable Hilbert space and an operator A : H → H is compact and self-
adjoint. For 1 ≤ p ≤ ∞, the Schatten p-norm ∥ · ∥Sp

of the operator A is defined as the ℓp
norm of the sequence of its eigenvalues. It is known (Theorem 7.3 Weidmann (2012)) that the ℓ∞
norm of the sequence of its eigenvalues equals to the operator norm of A. Therefore, it holds that
∥A∥S∞ = ∥A∥op. The following statement is a direct corollary of the monotonicity of ℓp norm.

Lemma A.3. Suppose that H is a separable Hilbert space and an operator A : H → H is compact
and self-adjoint. Then, for 1 ≤ p ≤ p′ ≤ ∞, ∥A∥S1

≥ ∥A∥Sp
≥ ∥A∥Sp′ ≥ ∥A∥op = ∥A∥S∞ .

Lemma A.4 (Potapov & Sukochev (2011)Theorem 1,Maskey et al. (2023)Lemma A6). Let H be a
Hilbert space and S(H) ⊂ B(H) be the space of bounded self-adjoint operators with the operator
norm topology. Let h : R → C be a continuous function. Then the mapping

S(H) → B(H), A → h(A)

is continuous. In addition, if function h is Lipchitz continuous on R with Lipchistz constant Lip(h),
then for p ∈ (1,∞), there exits a constant Kp > 0 such that ∥h(A)− h(B)∥Sp ≤ Lip(h)Kp∥A−
B∥Sp for any self-adjoint operators A and B satisfying ∥A−B∥Sp < ∞.

Lemma A.5. Let T > 0 and graphon W ∈ L∞(I2). If AS0 holds, then the function JW : [0, T ] → R
defined by

JW(t) := max
ℓ∈[L]

√√√√
∑

f,g∈[F ]

∥∥∥hfg
ℓ,t(·)χσ(TW)(·)

∥∥∥
2

L∞(R)
, t ∈ [0, T ], (27)

is Lipschitz continuous with Lip(JW(·)) = FKA0.

Proof. Since σ(TW) ⊂ [−∥TW∥op, ∥TW∥op] and ∥TW∥op ≤ ∥TW∥S2
= ∥TW∥HS = ∥W∥L2(I2) ≤ 1,

we have σ(TW) ⊂ [−1, 1] and hence function JW is well-defined. Let t1, t2 ∈ [0, T ] be arbitrary but
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fixed. It follows from the reverse triangle inequalities of norms ∥ · ∥∞, ∥ · ∥2 and L∞(R) that

|JW(t2)− JW(t1)| ≤ max
ℓ∈[L]

∣∣∣∣∣∣∣

√√√√
∑

f,g∈[F ]

∥∥∥hfg
ℓ,t2

(·)χσ(TW)(·)
∥∥∥
2

L∞(R)
−
√√√√

∑

f,g∈[F ]

∥∥∥hfg
ℓ,t1

(·)χσ(TW)(·)
∥∥∥
2

L∞(R)

∣∣∣∣∣∣∣

≤ max
ℓ∈[L]

√√√√
∑

f,g∈[F ]

(∥∥∥hfg
ℓ,t2

(·)χσ(TW)(·)
∥∥∥
L∞(R)

−
∥∥∥hfg

ℓ,t1
(·)χσ(TW)(·)

∥∥∥
L∞(R)

)2

≤ max
ℓ∈[L]

√√√√
∑

f,g∈[F ]

∥∥∥
(
hfg
ℓ,t2

(·)− hfg
ℓ,t1

(·)
)
χσ(TW)(·)

∥∥∥
2

L∞(R)

= max
ℓ∈[L]

√√√√√
∑

f,g∈[F ]

∥∥∥∥∥

(
K−1∑

k=0

(
[hfg

ℓ ]k(t2)− [hfg
ℓ ]k(t1)

)
(·)k
)
χσ(TW)(·)

∥∥∥∥∥

2

L∞(R)

≤ max
ℓ∈[L]

√√√√√
∑

f,g∈[F ]

(
K−1∑

k=0

∣∣∣[hfg
ℓ ]k(t2)− [hfg

ℓ ]k(t1)
∣∣∣
∥∥(·)kχσ(TW)(·)

∥∥
L∞(R)

)2

where the equation follows from 7 and the last inequality follows from the triangle inequality of
norm ∥ · ∥L∞(R). According to σ(TW) ⊂ [−1, 1], we have

∥∥(·)kχσ(TW)(·)
∥∥
L∞(R) ≤ 1 for all

k ∈ [K]. Therefore, with assumption AS0, we have

|JW(t2)− JW(t1)| ≤ max
ℓ∈[L]

√√√√√
∑

f,g∈[F ]

(
K−1∑

k=0

∣∣∣[hfg
ℓ ]k(t2)− [hfg

ℓ ]k(t1)
∣∣∣
)2

≤ max
ℓ∈[L]

√√√√√
∑

f,g∈[F ]

(
K−1∑

k=0

A0 |t2 − t1|
)2

= FKA0|t2 − t1|.

Therefore, JW is Lipschitz continuous with Lip(JW) = FKA0.

We remark that the Lipschitz constant in Lemma A.5 is independent of the graphon W. This implies
that JW is equicontinuous for different graphons W.

Lemma A.6. Let T > 0, X ∈ C([0, T ];L∞(I;R1×F )), and graphon W ∈ L∞(I2). Let function
JW be defined by 27. If AS0 and AS1 hold, then

∥Φ(W;X(·, t);H(t))∥L2(I;R1×F ) ≤ ML
W∥X(·, t)∥L2(I;R1×F ),

where

MW := sup
t∈[0,T ]

JW(t). (28)

Proof. With assumption AS0, according to Lemma A.5, the function JW is continuous, and hence
the supremum MW can be obtained over the interval [0, T ]. Let t ∈ [0, T ] be arbitrary but fixed. Let
X0,t := X(·, t). For each f ∈ [F ], we denote by Xℓ,t = [Xf

ℓ,t : f ∈ [F ]] the output function of ℓ-th
layer in Graphon neural network with input feature functions X0,t. It is clear that for each ℓ ∈ [L],
we have Xℓ,t ∈ L∞(I;R1×F ). It follow from AS1 that the activation function ρ satisfies

|ρ(x)| ≤ |x|, x ∈ R. (29)
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For f ∈ [F ], ℓ ∈ [L], according to the updating formula 5 and inequality 29, we have

∥∥∥Xf
ℓ,t

∥∥∥
L2(I)

=

∥∥∥∥∥ρ
(

F∑

g=1

hfg
ℓ,t(TW)Xg

ℓ−1,t

)∥∥∥∥∥
L2(I)

≤
∥∥∥∥∥

F∑

g=1

hfg
ℓ,t(TW)Xg

ℓ−1,t

∥∥∥∥∥
L2(I)

≤
F∑

g=1

∥∥∥hfg
ℓ,t(TW)

∥∥∥
L2(I)→L2(I)

∥∥∥Xg
ℓ−1,t

∥∥∥
L2(I)

≤

√√√√
F∑

g=1

∥∥∥hfg
ℓ,t(TW)

∥∥∥
2

L2(I)→L2(I)
∥Xℓ−1,t∥L2(I;R1×F ) ,

Therefore,

∥Xℓ,t∥2L2(I;R1×F ) ≤
F∑

f=1

F∑

g=1

∥∥∥hfg
ℓ,t(TW)

∥∥∥
2

L2(I)→L2(I)
∥Xℓ−1,t∥2L2(I;R1×F ) (30)

It follows from Lemma A.2 that
∥∥∥hfg

ℓ,t(TW)
∥∥∥
L2(I)→L2(I)

=
∥∥∥hfg

ℓ,t(·)χσ(TW)(·)
∥∥∥
L∞(I)

. Then, with

MW defined by 28, we have

F∑

f=1

F∑

g=1

∥∥∥hfg
ℓ,t(TW)

∥∥∥
2

L2(I)→L2(I)
≤ M2

W. (31)

Substituting 31 into 30, we obtain that

∥Xℓ,t∥2L2(I;R1×F ) ≤ M2
W ∥Xℓ−1,t∥2L2(I;R1×F ) ,

followed by

∥XL,t∥L2(I;R1×F ) ≤ ML
W ∥X0,t∥L2(I;R1×F ) .

The proof is complete by noting that XL,t = Φ(W;X(·, t);H(t)) and X0,t = X(·, t).

Below, we show transferability of graphon neural networks.

Lemma A.7. Let T > 0, X1,X2 ∈ C([0, T ];L∞(I;R1×F )), and graphons W1,W2 ∈ L∞(I2). If
AS1 and AS2 hold, then for any 1 < p < ∞, we have

∥Φ(W1;X1(·, t);H(t))− Φ(W2;X2(·, t);H(t))∥L2(I;R1×F )

≤ (
√
2M)L∥X1(·, t)− X2(·, t)∥L2(I;R1×F ) +

√
2
L+1

LH,pM
L−1∥TW1

− TW2
∥Sp∥X2(·, t)∥L2(I;R1×F )

where

CH := max
t∈[0,T ],ℓ∈[L]

√√√√
∑

f,g∈[F ]

∥∥∥hfg
ℓ,t(·)χ[−1,1](·)

∥∥∥
2

L∞(R)
, (32)

and

LH,p := max
t∈[0,T ],ℓ∈[L]

Kp

√ ∑

f,g∈[F ]

Lip2(hfg
ℓ,t(·)). (33)

Proof. Let t ∈ [0, T ] be arbitrary but fixed. Let X0,t := X1(·, t) and Y0,t := X2(·, t). For each
f ∈ [F ], we denote by Xℓ,t = [Xf

ℓ,t : f ∈ [F ]], Yℓ,t = [Y f
ℓ,t : f ∈ [F ]] the output function of ℓ-th

layer in Graphon neural network with input feature functions X0,t and Y0,t, respectively. It is clear
that for each ℓ ∈ [L], we have Xℓ,t,Yℓ,t ∈ L∞(I;R1×F ). For f ∈ [F ], ℓ ∈ [L], according to the
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updating formula 5 and AS1, we have

∥∥∥Xf
ℓ,t − Y f

ℓ,t

∥∥∥
L2(I)

=

∥∥∥∥∥ρ
(

F∑

g=1

hfg
ℓ,t(TW1

)Xg
ℓ−1,t

)
− ρ

(
F∑

g=1

hfg
ℓ,t(TW2

)Y g
ℓ−1,t

)∥∥∥∥∥
L2(I)

≤
∥∥∥∥∥

F∑

g=1

hfg
ℓ,t(TW1

)Xg
ℓ−1,t −

F∑

g=1

hfg
ℓ,t(TW2

)Y g
ℓ−1,t

∥∥∥∥∥
L2(I)

≤
F∑

g=1

∥∥∥hfg
ℓ,t(TW1

)
∥∥∥
L2(I)→L2(I)

∥∥∥Xg
ℓ−1,t − Y g

ℓ−1,t

∥∥∥
L2(I)

+

F∑

g=1

∥∥∥hfg
ℓ,t(TW1

)− hfg
ℓ,t(TW2

)
∥∥∥
L2(I)→L2(I)

∥∥∥Y g
ℓ−1,t

∥∥∥
L2(I)

≤

√√√√
F∑

g=1

∥∥∥hfg
ℓ,t(TW1

)
∥∥∥
2

L2(I)→L2(I)
∥Xℓ−1,t −Yℓ−1,t∥L2(I;R1×F )

+

√√√√
F∑

g=1

∥∥∥hfg
ℓ,t(TW1

)− hfg
ℓ,t(TW2

)
∥∥∥
2

L2(I)→L2(I)
∥Yℓ−1,t∥L2(I;R1×F )

Therefore,

∥Xℓ,t −Yℓ,t∥2L2(I;R1×F ) ≤ 2

F∑

f=1

F∑

g=1

∥∥∥hfg
ℓ,t(TW1

)
∥∥∥
2

L2(I)→L2(I)
∥Xℓ−1,t −Yℓ−1,t∥2L2(I;R1×F )

(34)

+ 2

F∑

f=1

F∑

g=1

∥∥∥hfg
ℓ,t(TW1

)− hfg
ℓ,t(TW2

)
∥∥∥
2

L2(I)→L2(I)
∥Yℓ−1,t∥2L2(I;R1×F )

(35)

It follows from Lemma A.2 that
∥∥∥hfg

ℓ,t(TW1
)
∥∥∥
L2(I)→L2(I)

=
∥∥∥hfg

ℓ,t(·)χσ(TW1
)(·)
∥∥∥
L∞(I)

. Note that

σ(TW1
) ⊂ [−1, 1]. Then, with CH defined by 32, we have

F∑

f=1

F∑

g=1

∥∥∥hfg
ℓ,t(TW1

)
∥∥∥
2

L2(I)→L2(I)
≤ C2

H (36)

According to Lemma A.6 and again σ(TW2
) ⊂ [−1, 1], we obtain that

∥Yℓ∥2L2(I;R1×F ) ≤ C2ℓ
H ∥Y0,t∥2L2(I;R1×F ). (37)

Additionally, it follows from AS2, Lemmas A.4 and A.3 that there exists Kp > 0 such that
∥∥∥hfg

ℓ,t(TW1
)− hfg

ℓ,t(TW2
)
∥∥∥
L2(I)→L2(I)

≤
∥∥∥hfg

ℓ,t(TW1
)− hfg

ℓ,t(TW2
)
∥∥∥
Sp

≤ KpLip
(
hfg
ℓ,t(·)

)
∥TW1

− TW2
∥Sp

.

Then, with LH,p defined by 33, we have

F∑

f=1

F∑

g=1

∥∥∥hfg
ℓ,t(TW1

)− hfg
ℓ,t(TW2

)
∥∥∥
2

L2(I)→L2(I)
≤ L2

H,p∥TW1
− TW2

∥2Sp
. (38)

Plugging the estimates 36, 37, 38 into 35, with M defined by 32, we obtain that

∥Xℓ,t −Yℓ,t∥2L2(I;R1×F ) ≤ 2C2
H∥Xℓ−1,t −Yℓ−1,t∥2L2(I;R1×F ) + 2LH,p

2∥TW1
− TW2

∥2Sp
C2ℓ−2

H ∥Y0,t∥2L2(I;R1×F ).

Solving the recurrence equation, we obtain that

∥XL,t−YL,t∥2L2(I;R1×F ) ≤ (2C2
H)

L∥X0,t−Y0,t∥2L2(I;R1×F )+2LH,p
2∥TW1

−TW2
∥2Sp

∥Y0,t∥2L2(I;R1×F )C
2(L−1)
H (2L−1).
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yielding

∥XL,t−YL,t∥L2(I;R1×F ) ≤ (
√
2CH)

L∥X0,t−Y0,t∥L2(I;R1×F )+
√
2
L+1

LH,p∥TW1
−TW2

∥Sp
∥Y0,t∥L2(I;R1×F )C

L−1
H .

By noting that XL,t = Φ(W1;X1(·, t);H(t)), YL,t = Φ(W2;X2(·, t);H(t)), X0,t = X1(·, t) and
Y0,t = X2(·, t), we obtain the desired result from the above inequality.

The following lemma is a direct consequence of Arzelà–Ascoli theorem.
Lemma A.8. Let Ω ⊂ R be an interval. Let {fn : Ω → R}n∈N be an equicontinuous sequence of
functions. If limn→∞ fn(x) = f(x), for all x ∈ Ω, then the sequence {fn}n∈N uniformly converges
to f .
Lemma A.9. Suppose that AS0-AS2 hold. Let T > 0, graphon Wn and initial graphon feature
function Gn be defined by 13 and 14, respectively. Let JWn

be defined by 27 with W replaced by
Wn. Let Xn be the solution of 15. Then it holds that

∥Xn∥C([0,T ];L2(I;R1×F )) ≤ ∥Gn∥L2(I;R1×F ) exp(M
L
n T ), (39)

where
Mn := sup

t∈[0,T ]

JWn
(t). (40)

Moreover, if

lim
n→∞

∥Gn −G∥L2(I;R1×F ) = 0, lim
n→∞

∥TWn
− TW∥L2(I)→L2(I) = 0, (41)

then there exists a positive constant B (depending on W, G, F , K, L and T ) such that

∥Xn∥C([0,T ];L2(I;R1×F )) ≤ B. (42)

Proof. Let t ∈ [0, T ] be arbitrary but fixed. It follows from 47 that

1

2

∂

∂t
∥Xn(·, t)∥2L2(I;R1×F ) =

∣∣∣∣
∫

I

∂Xn(u, t)
⊤

∂t
Xn(u, t)du

∣∣∣∣ =
∣∣∣∣
∫

I

Φ(Wn;Xn(u, t);H(t))⊤Xn(u, t)du

∣∣∣∣
≤ ∥Φ(Wn;Xn(·, t);H(t))∥L2(I;R1×F )∥Xn(·, t)∥L2(I;R1×F )

which combining with Lemma A.6 and constant Mn defined by 40 yields

∂

∂t
∥Xn(·, t)∥2L2(I;R1×F ) ≤ 2ML

n ∥Xn(·, t)∥2L2(I;R1×F ).

It follows from Grönwall’s inequality that for all t ∈ [0, T ],

∥Xn(·, t)∥2L2(I;R1×F ) ≤ ∥Xn(·, 0)∥2L2(I;R1×F ) exp(2M
L
n T ),

which combining with the initial condition of 15 yields

∥Xn∥C([0,T ];L2(I;R1×F )) = sup
t∈[0,T ]

∥Xn(·, t)∥2L2(I;R1×F ) ≤ ∥Gn∥2L2(I;R1×F ) exp(2M
L
n T ),

which proves 39. Moreover, if 41 holds, then

lim
n→∞

∥Gn∥L2(I;R1×F ) = ∥G∥L2(I;R1×F ) (43)

and for any f, g ∈ [F ], ℓ ∈ [L] and t ∈ [0, T ], it follows from Lemma A.4 and continuity of the
function hfg

ℓ,t that

lim
n→∞

∥∥∥hfg
ℓ,t(TWn

)− hfg
ℓ,t(TW)

∥∥∥
L2(I)→L2(I)

= 0,

and hence
lim

n→∞

∥∥∥hfg
ℓ,t(TWn

)
∥∥∥
L2(I)→L2(I)

=
∥∥∥hfg

ℓ,t(TW)
∥∥∥
L2(I)→L2(I)

.

According to Lemma A.2, we obtain that

lim
n→∞

∥∥∥hfg
ℓ,t(·)χσ(TWn )(·)

∥∥∥
L∞(R)

=
∥∥∥hfg

ℓ,t(·)χσ(TW)(·)
∥∥∥
L∞(R)

.
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This implies that for each t ∈ [0, T ], limn→∞ JWn
(t) = JW(t). Moreover, we notice from Lemma

A.5 that JW and JWn
, n ∈ N are Lipschitz continuous functions with the same Lipschitz constant

FKA0. And hence the sequence {JWn
}n∈N is equicontinuous. Therefore, according to Lemma

A.8, we obtain that {JWn
}n∈N uniformly converges to JW. That is, for any ϵ > 0, there exists

N > 0, such that when n > N , for all t ∈ [0, T ], it holds that |JWn
(t)− JW(t)| < ϵ, or

sup
t∈[0,T ]

|JWn
(t)− JW(t)| < ϵ.

Therefore, we have

|MWn
−MW| =

∣∣∣∣∣ sup
t∈[0,T ]

JWn
(t)− sup

t∈[0,T ]

JW(t)

∣∣∣∣∣ ≤ sup
t∈[0,T ]

|JWn
(t)− JW(t)| < ϵ.

This implies that
lim
n→∞

MWn
= MW. (44)

Combining 43 and 44, we conclude that there exists a positive constant B (depending on W, G, F ,
K, L and T ) such that for all n ∈ N, there holds

∥Gn∥L2(I;R1×F ) exp(M
L
n T ) ≤ B,

which combining with 39 yields 42.

We remark that condition 41 is satisfied for Models I and II. In fact, we will further present the
specific convergence rates of 41 in next subsection.
Lemma A.10 (Generalized Gronwall’s inequality). Let a, b and c be non-negative constants. Let
u(t) be a non-negative function that satisfies the integral inequality

u(t) ≤ c+

∫ t

0

(
au(s) + bu

1
2 (s)

)
ds,

then we have

u(t) ≤
(
c

1
2 exp(at/2) +

exp(at/2)− 1

a
b

)2

.

Proof. This result is a special case of Perov (1959) (also see Theorem 21 in Dragomir (2003)).

We now show that the solution Xn of IVP 15 converges to the solution X of IVP 6 as the number n
of nodes goes to infinity.
Theorem A.11. Suppose that AS0-AS2 hold. Let X and Xn denote the solutions of 6 and 15, re-
spectively. Suppose that 41 holds, and let B be the constant appearing in 42. Then for any p > 1, it
holds that

∥X − Xn∥C([0,T ];L2(I;R1×F )) ≤ P∥G−Gn∥L2(I;R1×F ) +Q∥TW − TWn
∥Sp , (45)

where

P := exp((
√
2CH)

LT ), Q :=
exp((

√
2CH)

LT )− 1

CL
H

√
2LH,pC

L−1
H B. (46)

Proof. Let t ∈ [0, T ] be arbitrary but fixed. Denote Zn = X − Xn. By subtracting 15 from 6, we
have

∂

∂t
Zn(u, t) = Φ(W;X(u, t);H(t))− Φ(Wn;Xn(u, t);H(t)). (47)

It follows from 47 that
1

2

∂

∂t
∥Zn(·, t)∥2L2(I;R1×F ) =

∣∣∣∣
∫

I

∂Zn(u, t)
⊤

∂t
Zn(u, t)du

∣∣∣∣

=

∣∣∣∣
∫

I

(Φ(W;X(u, t);H(t))− Φ(Wn;Xn(u, t);H(t)))⊤Zn(u, t)du

∣∣∣∣
≤ ∥Φ(W;X(·, t);H(t))− Φ(Wn;Xn(·, t);H(t))∥L2(I;R1×F ) ∥Zn(·, t)∥L2(I;R1×F )

(48)
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It follows from Lemmas A.7 and A.9 that

∥Φ(W;X(·, t);H(t))− Φ(Wn;Xn(·, t);H(t))∥L2(I;R1×F )

≤ (
√
2CH)

L∥Zn(·, t)∥L2(I;R1×F ) +
√
2
L+1

LH,pC
L−1
H ∥TW − TWn

∥Sp
B. (49)

Let u(t) := ∥Z(·, t)∥2L2(I;R1×F ), a := 2(
√
2CH)

L, b := 2
√
2
L+1

LH,pC
L−1
H ∥TW − TWn

∥Sp
B. With

the introduced notation, we combine the estimates 48 and 49, and obtain that

∂

∂t
u(t) ≤ au(t) + bu

1
2 (t).

Let T ′ ∈ [0, T ] be arbtrary but fixed. We integrate above [0, T ′] about the variable t, and get

u(T ′) ≤ u(0) +

∫ T ′

0

(
au(t) + bu

1
2 (t)

)
dt.

We then apply Lemma A.10, and hence

u(T ′) ≤
(
u(0)

1
2 exp(aT ′/2) +

exp(aT ′/2)− 1

a
b

)2

≤
(
u(0)

1
2 exp(aT/2) +

exp(aT/2)− 1

a
b

)2

.

With constants P and Q defined in 46, and recalling the definition of u(t), we have

∥Zn(·, T ′)∥L2(I;R1×F ) ≤ P∥Zn(·, 0)∥L2(I;R1×F ) +Q∥TW − TWn
∥Sp

.

Noting that Zn(·, t) = X(·, t)−Xn(·, t), Zn(·, 0) = G−Gn and the arbitrariness of T ′ ∈ [0, T ], we
further obtain that

sup
t∈[0,T ]

∥X(·, t)− Xn(·, t)∥L2(I;R1×F ) ≤ P∥G − Gn∥L2(I;R1×F ) +Q∥TW − TWn
∥Sp

.

The proof is complete by noting that

∥X − Xn∥C([0,T ];L2(I;R1×F )) = sup
t∈[0,T ]

∥X(·, t)− Xn(·, t)∥L2(I;R1×F ).

A.6 CONVERGENCE RATE

In this section, we establish the convergence rate of the solution Xn of 15 converging to the solution
X of 6. This is done by employing inequality 45 with p = 2. It follows from Conway (1990) that
Schatten 2-norm is Hilbert-Schmidt norm, moreover for integral operator, there holds

∥TWn
− TWn

∥S2
= ∥W − Wn∥L2(I2).

Therefore, inequality 45 with p = 2 gives

∥X − Xn∥C([0,T ];L2(I;R1×F )) ≤ P∥G−Gn∥L2(I;R1×F ) +Q∥W − Wn∥L2(I2). (50)

The above estimate indicates that it suffices to analyze the convergence rates of ∥G−Gn∥L2(I;R1×F )

and ∥W − Wn∥L2(I2) in order to determine that of ∥X − Xn∥C([0,T ];L2(I;R1×F )).

proof of Theorem 3.2. We set ui := (i − 1)/n, Ii := [ui, ui+1], for each i ∈ [n]. According to
definition Wn of 13 with 8, we have

∥W − Wn∥2L2(I2) =

∫

I2

|W(u, v)− Wn(u, v)|2 dudv

=
∑

i,j∈[n]

∫

Ii×Ij

|W(u, v)− Wn(u, v)|2 dudv

=
∑

i,j∈[n]

∫

Ii×Ij

|W(u, v)− W(ui, uj)|2 dudv
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According to AS3, we obtain that

∥W − Wn∥2L2(I2) ≤ A2
1

∑

i,j∈[n]

∫

Ii×Ij

(|x− ui|+ |y − uj |)2 dudv (51)

For each i, j ∈ [n], direct computation gives
∫

Ii×Ij

(|u− ui|+ |v − uj |)2 dudv =

(
2

3
+

1

4

)
1

n4
=

11

12n4

which combining with 51 gives

∥W − Wn∥2L2(I2) ≤ n2 11A
2
1

12n4
=

11A2
1

12n2
. (52)

We recall that G = [Gf : f ∈ [F ]] and Gn = [(Gn)f : f ∈ [F ]], and hence

∥G−Gn∥2L2(I;R1×F ) =
∑

f∈[F ]

∥Gf − (Gn)f∥2L2(I). (53)

For each f ∈ [F ], according to definition Gn of 14 with 9, we have

∥Gf − (Gn)f∥2L2(I) =

∫

I

|Gf (u)− (Gn)f (u)|2du =
∑

j∈[n]

∫

Ij

|Gf (u)− (Gn)f (u)|2du

=
∑

j∈[n]

∫

Ij

|Gf (u)−Gf (uj)|2du. (54)

It follows from AS4 that for each j ∈ [n], there holds
∫

Ij

|Gf (u)−Gf (uj)|2du ≤ A2
2

∫

Ij

(u− uj)
2du =

A2
2

3n3
.

We substitute the above estimate into 54, and obtain that

∥Gf − (Gn)f∥2L2(I) ≤ n
A2

2

3n3
=

A2
2

3n2
.

Therefore, from 53, we have

∥G−Gn∥2L2(I;R1×F ) ≤
A2

2F

3n2
. (55)

We substitute estimates 52 and 55 into 50, and get

∥X − Xn∥C([0,T ];L2(I;R1×F )) ≤ P∥G−Gn∥L2(I;R1×F ) +Q∥W − Wn∥L2(I2)

≤
(√

F

3
A2P +

√
11

12
A1Q

)
1

n

By letting

C :=

√
F

3
A2P +

√
11

12
A1Q

=

√
F

3
A2exp((

√
2CH)

LT ) +

√
11

12
A1

exp((
√
2CH)

LT )− 1

CL
H

√
2LH,2C

L−1
H B (56)

where CH, LH,2 are defined by 32 and 33 with p = 2, respectively, the proof is complete.
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We proceed to examine the convergence rate of graphons for simple graphs. It is important to note
that in this case, assumption AS3 is not met. For a simple graphon W, we recall that the support
of W is denoted by W+. To estimate ∥W − Wn∥L2(I2) appearing in 50, it is necessary to describe
the complexity of the boundary ∂W+ of the support W+. We achieve this by utilizing the upper
box-counting dimension from fractal geometry Falconer (2014). Let F be any non-empty bounded
subset of R2 and let Nδ(F ) be the number of δ-mesh cubes that intersect F . The upper box-counting
dimensions of F is defined as

dimBF := lim
δ→0

logNδ(F )

− log δ
. (57)

It is clear that dimBF ∈ [0, 2] for any non-empty bounded subset F of R2. As a simple example,
the straight line {(x, 0) : x ∈ [0, 1]} has an upper box-counting dimension of 1. More intricate
curves will have a larger upper box-counting dimension. Therefore, it is reasonable to assume that
dimB(∂W+) ∈ [1, 2).
Lemma A.12. Suppose that Ω ⊂ Rd and f ∈ L2(Ω). Let |Ω| be the volume of Ω. Then the constant
function

h(u) :=
1

|Ω|

∫

Ω

f(u)du, u ∈ Ω,

is the best constant approximation of f , that is,

inf{∥f − c∥L2(Ω) : c ∈ R} = ∥f − h∥L2(Ω) . (58)

Proof. For any c ∈ R, we have

∥f − c∥2L2(Ω) =

∫

Ω

|f(u)− c|2du = |Ω|c2 − 2

(∫

Ω

f(u)du

)
c+

∫

Ω

|f(u)|2du (59)

which is a quadratic function about c. Therefore, the minimum is obtained at

c =
1

|Ω|

∫

Ω

f(u)du.

The proof is complete by noting that the minimizers of ∥f − c∥2L2(Ω) and ∥f − c∥L2(Ω) are the
same.

proof of Theorem 3.3. We begin with estimating ∥W − Wn∥L2(I2). Recall that Nδ(∂W+) denotes
the number of δ-mesh cubes that intersect ∂W+. We set δ = 1/n, and it follows from definition of
Wn that

∥W − Wn∥2L2(I2) =

∫

I

|W(u, v)− Wn(u, v)|2dudv ≤ N1/n(∂W+)
1

n2
. (60)

According to definition 57 of upper box-counting dimension, for any ϵ > 0, there exists NW ∈ N
such that when n > NW, logN1/n(∂W+)

− log(1/n) < b+ ϵ. Therefore, N1/n(∂W+) ≤ nb+ϵ which combining
with 60 yields

∥W − Wn∥L2(I2) ≤ n−(1− b+ϵ
2 ). (61)

We proceed to estimate ∥G − Gn∥L2(I;R1×F ). Let G′
n defined by 14 in the way of 9. It has been

shown in the proof of Theorem 3.2 that, with assumption AS4,

∥G−G′
n∥L2(I;R1×F ) ≤ A2

√
F

3

1

n
. (62)

According to Lemma A.12, we obtain that

∥G−Gn∥2L2(I;R1×F ) =
∑

f∈[F ]

∥Gf−(Gn)f∥2L2(I) ≤
∑

f∈[F ]

∥Gf−(G′
n)f∥2L2(I) = ∥G−G′

n∥2L2(I;R1×F )

which combining with 62 implies

∥G−Gn∥L2(I;R1×F ) ≤ A2

√
F

3

1

n
. (63)
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We substitute estimates 61 and 63 into 50, and get

∥X − Xn∥C([0,T ];L2(I;R1×F )) ≤ P∥G−Gn∥L2(I;R1×F ) +Q∥W − Wn∥L2(I2)

≤
(
PA2

√
F

3
+Q

)
n−(1− b+ϵ

2 )

By letting

C̃ := PA2

√
F

3
+Q

= exp((
√
2CH)

LT )A2

√
F

3
+

exp((
√
2CH)

LT )− 1

CL
H

√
2LH,2C

L−1
H B (64)

where CH, LH,2 are defined by 32 and 33 with p = 2, respectively, the proof is complete.
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