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Why do learning systems generalize? The Solomonoff prior is our current
best theoretical answer; it formalizes Occam’s razor into an exponential bias
towards simpler hypotheses. Crucially, its proof requires that both the data
source and the learner be Universal Turing Machines (UTMs), idealized com-
puters with infinite memory and time. And yet, all empirical observations of
generalization—biological neural networks and machine learning algorithms—
occur exclusively in physical, finite systems.

Dispensing with the unphysical requirements of UTMs, we model finite learn-
ers with transformation semigroups, an algebraic framework that immediately
applies to neural networks and all finite computational systems. Within this
framework, we prove finite analogues of the Solomonoff prior and Kolmogorov
invariance:

1. An exponential simplicity prior on ideals (absorbing sets, corresponding
to domain partitions), and

2. Invariance of this prior across different generator sets of the same semi-
group, up to multiplicative slack.

Intuitively: Given a set of computational primitives, certain distinctions in the
input domain are simpler to express and therefore exponentially more probable
to be computed. Furthermore, different computational primitives that can emu-
late each other exhibit an equivalent bias toward simpler computations, within
bounds. This implies that learners capable of emulating their target system
inherently acquire the appropriate simplicity prior.



1 Introduction

Learning systems generalize from finite data, yet our primary theoretical frame-
work for understanding this phenomenon — the Solomonoff Prior — relies criti-
cally on the idealized assumption of infinite computational resources (Universal
Turing Machines). This creates a fundamental disconnect with the empirical
reality of generalization in physical, resource-bounded systems like biological
neural networks or practical machine learning algorithms. We resolve this dis-
connect by modelling finite learners through the algebraic framework of trans-
formation semigroups. Within this framework, we establish finite analogues
of the Solomonoff prior’s core elements: an exponential simplicity prior over
absorbing structures (ideals) and invariance under changes of computational
primitives (generator sets).

We will first introduce the problem of induction and the Solomonoff prior in
appropriate detail (Sec. P). We will then review our tools, semigroups in the
preliminaries, Sec. E, before showing our main results in Sec. {. Afterwards we
discuss the implications for deep learning and the connections to other fields,
including circuit complexity (Sec. f) before turning to future extensions and
refinements (Sec. fj. In the appendix, we attach a running example to ease the
unfamiliar reader into transformation semigroups (Sec. [§), and some references
to related work (Sec. [A]).

2 Background

2.1 Inductive Inference and The Necessity of a Non-Uniform
Prior

Inductive inference, the process of generalizing from past observations to predict
future events, underpins learning and scientific discovery. The crux, as articu-
lated by Hume, is that any finite sequence of observations is logically consistent
with an infinite number of possible continuations and underlying generative
processes [12]. Hume called this 'the problem of induction’. Nowadays it most
commonly appears as the problem of ’generalisation’ in machine learning. This
underdetermination implies that predicting the future from the past inherently
ill-posed.

Yet, empirical reality obviously exhibits significant structure and predictabil-
ity; Everyday cognition and scientific progress show successful generalization
from finite data is not only possible, but common. Thus, effective inductive
systems (biological or artificial) cannot treat all logically possible futures or ex-
planations as equally probable. Instead, they must choose non-uniform priors,
weighting certain hypotheses higher than others a priori.

Historically, the best solution to this was Occam’s Razor: a bias for prefer-
ring the ’simpler’ solution whenever possible [26], but formally defining ’sim-
plicity’ remained a persistent challenge for centuries. B The breakthrough came

L Anthropic reasoning might explain why observers must inhabit a learnable universe, but



in the 1960s when Solomonoff, Kolmogorov, and Chaitin converged on an ob-
jective notion of complexity based on universal Turing machines [29, [16, 2, B1].
This quantity, known as Kolmogorov complexity K, quantifies the simplicity
of an object (like a data sequence or hypothesis) by the length of the shortest
computer program required to generate it.

Solomonoff’s work culminated in a universal simplicity prior, offering a for-
mal instantiation of Occam’s Razor [29, B0]. The following sections explore
Solomonoff’s prior in more detail: its foundational assumptions (Section E),
the core theorems and their proof mechanisms (Section @l)), and its limitations
(Section R.€). This overview is not a comprehensive treatment of Algorith-
mic Probability. Instead, it introduces foundational concepts and mechanisms
relevant to the methods subsequently developed in this work. For exhaustive
treatments, the reader is directed to established literature, e.g., [20, 13].

2.2 Foundational Assumptions of the Solomonoff Prior

The Solomonoff Prior answers the inductive inference question: Assuming our
observations are generated by an unknown computable process, what future ob-
servations should we expect? To derive it, we must first specify two assumptions:

2.2.1 Assumption 1: Computable Processes

A computable process is any procedure that can be implemented as a program
on a Universal Turing Machine (UTM) [B1]. Formally, a UTM takes a binary
program p as input and simulates the execution of p, outputting a (potentially
infinite) sequence of observations. Crucially, by the Church-Turing thesis [3],
any computable function can be represented this way. Thus, the hypothesis
space for Solomonoff induction consists of all possible UTM programs. While
the choice of UTM affects program lengths, the Kolmogorov invariance theorem
(Sec. @) ensures this choice is asymptotically negligible.

2.2.2 Assumption 2: The Principle of Epicurus

The second assumption is the Principle of Epicurus [§]: all hypotheses (in our
case, programs) consistent with the observed data are retained until contra-
dicted. This principle avoids premature elimination of potential explanations,
however improbable. Consequently, the prior assigns non-zero probability to
every computable hypothesis.

2.3 Kolmogorov Complexity K

To construct a simplicity prior, we first require a rigorous measure of “simplic-
ity.” Intuitively, the defined complexity of an object (e.g., a hypothesis, function,
or dataset) will correspond to the shortest program needed to describe it.

not how learning occurs or priors are formed.



Definition 2.1 (Kolmogorov Complexity). Let U be a universal Turing ma-
chine. The Kolmogorov complexity K (x) of a finite binary string  is the length
of the shortest program p for U that outputs x and halts:

K(z) = min{len(p) | U(p) = =},
where len(p) denotes the length of program p in bits.

By convention, K (x) is defined on some canonical choice of Turing machine.
The invariance theorem (Sec. R.2) ensures this definition is machine-independent
up to an additive constant.

Extensions and Subtleties. While Definition @ applies to finite strings,
complexity can be extended to other objects (e.g., functions, hypotheses) by en-
coding them as strings. Since handling this requires some care, but the techni-
calities are ultimately not relevant for our purpose, we defer to ’An introduction
to universal artificial intelligence’ for a rigorous treatment [13].

2.4 Central Results of Algorithmic Probability

Having established the foundational assumptions and the formal notion of com-
plexity, we now present the central results of algorithmic information theory,
both for context and because we will later use similar techniques in our proofs.

2.4.1 Exponential Simplicity Prior

Theorem 2.1 (Solomonoff Prior). Let U be a universal Turing machine and h
be a hypothesis. The universal prior probability of h is bounded by:

Py(h) > 27K 0=00),
where Ky (h) denotes the Kolmogorov complexity of h with respect to U.

This result formalizes Occam’s Razor: the prior probability of a hypothesis
decreases exponentially with its Kolmogorov complexity [29, B0].

2.4.2 Machine Independence

A natural concern arises: the prior appears dependent on the choice of UTM
U. Since we assume only that the generating process is computable, without
specifying the computational model, this dependence might seem problematic
for truly universal inference. The following theorem resolves this issue:

Theorem 2.2 (Kolmogorov Invariance Theorem). For any two universal Turing
machines U and V, there exists a constant ¢(U, V') such that for all finite strings
h:

|Ky(h) — Ky (h)] < (U, V).

The constant ¢(U, V') depends only on the machines U and V, not on h.



Consequently, Kolmogorov complexity is machine-independent up to an ad-
ditive constant [L6]. For the Solomonoff prior, this translates to machine inde-
pendence up to a multiplicative constant: Py (h) and Py (h) differ by at most a
factor of 2¢(U:Y) . This invariance justifies the universality of algorithmic prob-
ability for inductive inference [20].

2.5 Proof Ideas

To understand why these theorems hold, we sketch the central ideas underlying
their proofs. Analysing these proof mechanisms will enable us to apply similar
techniques to alternative models of computation in subsequent sections. For
rigorous treatments, we refer to [20, 13].

2.5.1 Kolmogorov Invariance: Emulation Begets Invariance

Proof Sketch. The key to this proof is that a universal Turing machine can
emulate any other Turing machine, including another UTM. Given two UTMs
U and V, we can find a finite prefix pyy that programs V to behave like U on
subsequent input. This prefix pyy effectively compiles programs from U to V:

U(z) =V(pyy +x), V programs z,

where + denotes concatenation. Thus, the complexity of any string h in U is
upper bounded by the emulation overhead plus the complexity in V:

Ky(h) < len(puv) + Kv (h).

By symmetry, a similar bound holds in the reverse direction with emulation
prefix pyy. Therefore, we can define a constant ¢(U, V') = max{len(pyv ), len(pvy)}
that bounds their difference.

Takeaway: FEmulation between UTMs ensures complexity invari-
ance up to constant overhead.

2.5.2 Solomonoff Prior: Absorption Begets Exponential Decay

Proof Sketch. The Padding Argument

Consider the shortest program generating h on a UTM, having length K (h).
For programs of fixed length L > K (h), we count how many output h.

First, append a halting instruction (e.g. exit) to the shortest program,
requiring K (exit) additional bits. Any bits appended after this instruction are
absorbed: they do not affect the output. Thus, the remaining L—K (h)— K (exit)
bits are irrelevant padding. Since we can set each padding bit either way this
yields 2L~ K(h)—K(exit) {istinct programs of length L that output h.

The probability that a random program of length L outputs h is therefore
at least:

2L—K(h)—K(exit)

_ 9~ K(n)-0(1)
2L



This provides only a lower boundE, as completely unrelated programs on
other branches of the binary tree may also generate h:

PU(h) > 9—Ku(h)—0(1)

Takeaway: Absorption of excess program bits yields exponentially
many equivalent programs, offsetting the exponential growth of the
program space.

2.6 Shortcomings of the Solomonoff Prior
The Solomonoff prior has several fundamental problems:

e Physical implausibility: UTMs require unbounded memory and time,
contradicting physical reality. The framework cannot directly explain
finite-resource learning in neural networks or biological systems.

¢ Uncomputability: Because of the infinite resource requirementsK is
uncomputable [[16, 2]: determining the shortest program for any string
requires solving the halting problem. Thus the Solomonoff prior is un-
computable even in theory.

e Machine dependence: While invariance holds up to a constant, this
constant ¢(U, V) can be arbitrarily large for pathological UTMs, making
the prior unusable in practice [13].

o Explanatory disconnect: Why should string concatenation and prefix
codes reveal deep truths about induction? The mechanism seems divorced
from actual learning processes.

These limitations necessitate a new approach. The following section intro-
duces transformations, and their algebraic structure—semigroups—which will
form the foundation for a physically plausible, finite simplicity prior.

3 Preliminaries

Now that we have isolated and understood the mechanisms behind the invari-
ance theorem and the simplicity prior we propose another more physical system
and show analogous results.

This section lays the groundwork by introducing the core mathematical ob-
jects:

e Transformation semigroups

o Multiplicity: the number of ways an element can be decomposed into some
generating elements

o Probability: normalized multiplicity

o Ideals: absorbing sets of a semigroup

2An upper bound follows from the Kraft-McMillan inequality [17, R2].



3.1 Deep Learning and Physics as Transformations on States

Deep learning and physical systems share a fundamental property: they change
state through sequences of transformations. In physics these primitive trans-
formations are called propagators, time evolution operators or state transition
operators. In deep learning the set of primitive transformations corresponds all
distinct parametrisations of a layer.

Assumption 3.1. We consider a system with a state space X and a set of
transformations G called gemerators. At each time step, a generator g € G
transforms the state, where each g : X — X.

In a constant width neural network e.g., the state space X corresponds to the
activation space, and the generators G represent the different parametrizations
of a single layer.

3.2 Tangent: Relation to Automata

Incidentally this construction is very similar to discrete finite automata [[15, 27],
if we take X as the states, G as the alphabet, and the transition function is
given by applying each g to the current state.

Notably absent are the start state and the set of final states. We also do
not require finite states or alphabet. These are crucial for language recognition
(determining if a specific run on an input string is accepting), but they do not
change the underlying set of possible transformations or the structure of the
transitions : Our interest lies only in the properties of these transformations
and how they compose - their algebraic structure. The central object in our
analysis will therefore not be the automata, but the semigroup associated with
each.

Of course, the results obtained from studying the semigroup nevertheless
directly apply to understanding the dynamics inherent in the corresponding
automaton. The algebraic study of automata, via their semigroups or monoids
is well established, the most notable result of this duality being Krohn-Rhodes
Theory [1§].

3.3 Transformation Semigroups

We will now introduce the semigroup generated by our generator transforma-
tions. For the reader inclined to learn by example, we have supplied an accom-
panying running example in Appendix [B, which illustrates the key concepts.
When considering the evolution of our system over multiple time steps, trans-
formations are naturally chained together. We can express this via function
composition o:
(92 0 91)(@) = g2(91(2))

Note the right to left execution order.

3Readers familiar with automata theory will also recognise this as a semiautomaton [4]. In
the operational semantics literature this is also often called a labelled transition system [[14].



Definition 3.1 (Transformation Semigroup). Let the semigroup T be the set
of all possible transformations that can be generated by composing elements of
G:

T={gno---0g2001|9i € GineN}

In neural networks, T is the set of all functions that can be expressed by
composition of finitely many layers. In physics it is the set of transformations
a system can undergo if G is the set of possible propagators.

Since function composition is necessarily associative, and 7' is by definition
closed under composition these transformations form a semigroup under com-
position (7T, 0) [4]. Semigroups are a well-known algebraic structure, called so
because they generalise Groups, which are closed, associative, have an inverse
and an identity. Semigroups relax these requirements and only retain the first
two axioms.

3.4 Paths, Multiplicity and Probability

Having defined the set of all possible transformations 7', we can study how
each transformation arises from the compositions of generators. For any trans-
formation ¢ € T, there necessarily exists at least one sequence of generators
(91,92, ---,91), where g; € G for i = 1,..., L, such that:

t(r)=(gro...og2061)(z) VxeX

We call such a sequence a path of length L generating ¢t. In deep learning L
corresponds to the number of layers.

In general, there can be many paths that generate the same transformation.
So, given a composition of L generators, how many distinct paths generate a
given transformation t?

Definition 3.2 (Multiplicity). The multiplicity Qr,(¢) of a transformation ¢ is
the number of distinct paths of length L that generate t¢.

Qrt)=H(9r,-92,91) | i € Gt =gro...oga0 g1}

Multiplicity is also sometimes called degeneracy.

In NNs this corresponds to: "How many different ways can I compose func-
tion ¢ in L layers?”

Since there are |G| choices for at each position in a path of length L, the
total number of possible paths grows as |G|”. To make meaningful comparisons
across different systems and path lengths, we normalize the multiplicity by this
total:

Definition 3.3 (Probability). The probability P (t) of a transformation ¢ at
length L is its multiplicity normalized by the total number of possible paths:

Q)
e

Pr(t)



This definition is analogous to algorithmic probability theory, where each
program/code is viewed as equally likely. Here, under the assumption of uni-
formly sampling generators, Pr,(t) gives the probability of randomly generating
transformation ¢ through a composition of L generators.

Equivalently we can also think of this probability as the result of an L step
random walk on the transition semigroup [, 9].

In deep learning this corresponds to the probability of drawing function ¢
from a uniform prior over parameter space of L layers.

An important property of any transformation is how concisely it can be
expressed in terms of our generators. This leads us to define complexity in a
way analogous to algorithmic information theory:

Definition 3.4 (Composition Complexity). The composition complexity C(t)
of a transformation ¢ € T is the minimum composition length , i.e. the smallest
number number of generators required to compose it:

C(t) = min{L | 3(g1,92,...,91) € GF such that t =gy, 0---0 gy}

Or more succinctly: the minimum length L for which there exists at least one

way to generate t:
C(t) = min{L | Q(t) > 0}

In deep learning, this corresponds to the minimum depth of a neural network
required to implement a given function.

Importantly, complexity depends on our choice of generators, analogously
to how in AIT complexity (program length) depends on the choice of universal
Turing machine. We will prove an analogue to the Invariance theorem in Lemma

In summary, we have defined a framework to study the transformations of
systems that is very general and notably not Turing complete. This is precisely
what we set out to do, since physical systems nor neural networks are Turing
complete, due to limited space (state space size |X|) and time (composition
length L).

3.5 Zeros and Ideals

Via the padding argument proof sketch (), we understood that the under-
lying mechanism of the Solomonoff prior was absorption. We will now apply
this idea to semigroups.

We are looking for an absorbing element in a semigroup; whatever transfor-
mation you apply afterwards it does not change the implemented function. In
algebraic terms this is called a left zero:

-
Definition 3.5 (Left Zero). An element 0 is called a left zero iff
— o«
VteT :to0=0.

The arrow on top indicates the direction of action.



After such a left zero adding more elements does not change the result, e.g.:

— —
docoQoboa=0o0boa

(Reminder: the left most transformation is applied first.)
In a NN such a forward zero would correspond to an ’early exit’ or somehow
"locking in’ the activations so that subsequent layers can no longer affect them.
Zero elements are particularly interesting from a multiplicity perspective:

—

Any transformation that ends in a forward zero (e.g. 0 ot ), will have expo-

il
nentially increasing multiplicity beyond C'(0 ot), and constant probability. All
suffixes will simply be absorbed into the left zero.

3.6 Ideals, Domain Partitioning and Information Loss

Such absorbing elements are rare in physical systems, but we can generalise the
notion of a zero, an absorbing element, to an absorbing set. This is called an
Ideal:

+—
Definition 3.6 (Left Ideal). A subset I C T is called a left ideal iff

~—

4

— — <
toi el :MteTandVi € 1

~

Surprisingly left ideals have a very intuitive interpretation, that is partic-
ularly relevant to machine learning: in transformation semigroups left ideals
correspond to partitionings of the domain. Once a transformation maps a set
of values to the same output, applying any subsequent transformation cannot
separate them again. The resulting composition must remain in the ideal, thus
it becomes an absorbing set. We can think of this as irrecoverable loss of infor-
mation!

At this point the relevance to (machine) learning might become more ap-
parent: If we think of e.g. classification tasks, partitioning the input space into
decision regions is the challenge. If we don’t care about the specific labels each
is assigned (like ideals) to we can think of this as clustering,.

All these concepts are illustrated in Fig. [ll , a simple transformation semi-
group, with generators and ideals. For a more detailed explanation please refer
to the running example in Appendix Bl
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Figure 1: This is the semigroup generated by transformations n and r. Each
transformation is represented by a matrix, acting on the state space X =
{(1,0,0)T,(0,1,0)%,(0,0,1)T}. Purple arrows represent application of n, green
arrows of r. The ideals are represented as coloured regions: We notice that
arrows never point out of a coloured region only in. We also observe that each
of the regions corresponds to reduction in the range: identical columns (high-
lighted in grey) mean that two input states are mapped to the same output. The
intersection of all ideals form the minimal ideal: the erasing of all distinction
— all states are mapped to a single output.
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3.7 Extending Definitions to Sets

Since our theory will be one of absorbing sets rather than elements we must
extending our previous definitions of probability and multiplicity from elements
to sets.

Definition 3.7 (Multiplicity of Sets). The multiplicity Q7,(S) of a of a Subset
S C T is the number of distinct paths of length L that end in 5,

QL(S) =D Qu(s)

seS

Definition 3.8 (Probability of Sets). Again, we just normalize by the total
multiplicity:
_ 2 (8) _ ()

PS)=q.m) = Tar

Definition 3.9 (Complexity of Sets). The shortest path that leads to an ele-
ment of the set, the minimum complexity of all element

a(S) := rgrélgC(s) =min{L | 2,(S) > 0}

3.8 Parallels to AIT

For convenience we have listed some of the analogies between our theory and
AIT in Table [I.

Table 1: Analogues to AIT in our framework.

K Kolmogorov Complexity C Composition length
Universal Turing Machine G Generator set
UTMs U and V Generator sets G and H
Set of all possible hypotheses/codes H | Set of all possible transformations T’
(self-)terminating code Absorbing set (left ideal) T
Emulator pyv Emulation overhead Og_, g
4 Results

Having established the algebraic framework of transformation semigroups and
their absorbing sets (ideals) in the previous section, we now present our main
theoretical contributions:

¢ Theorem @ establishes an exponential simplicity prior for semigroup
ideals: P(I) > |G|~¢"). Unlike Solomonoff’s prior which assigns proba-
bilities to individual hypotheses, our result pertains to ideals, equivalence
classes of transformations.

12



¢ Theorem ﬁ proves generator invariance analogous to Kolmogorov in-

variance, demonstrating that complexity ratios remain bounded under

changes of generator sets: OHI - < gg g; < Og_u-

Together, these results establish a simplicity prior for transformation semi-
groups that parallels Solomonoff’s framework while remaining applicable to
physically realizable, resource-bounded systems such as neural networks and
finite automata.

4.1 Probability of Ideals: A Generalised Simplicity Prior

The absorption property of ideals provides the key mechanism for establish-
ing an exponential decay in probability, analogous to the padding argument in
Solomonoff’s framework. We now formalize this intuition.

Theorem 4.1 (Ideal Simplicity Prior). Let I C T be a left ideal of a trans-
formation semigroup with generator set G. For any path length L > C(I), the
probability mass of I satisfies:

P(I) > |G|=“")
where C'(I) = min;ey C(4) is the complexity of the ideal.

Proof. Let i* € I be an element of minimal complexity, so C(I) = C(i*) by
definition. Any extension of i* will remain in I because [ is a left ideal: for any
teT andi eI, we havetoi € I.

Consider paths of length L > C(I). Any path that generates i* in C(I)
steps can be extended with arbitrary generators for the remaining L — C(I)
steps, yielding |G|“~¢() distinct paths that end in I.

Thus the multiplicity of I satisfies:

Q1) > |G|F~W
The probability follows by normalization:

D _ |6

R0 =T61 = e

— |G

Since this bound is independent of L (for all L > C(I)), we obtain the stated
result. O

Remark The theorem establishes that simple ideals—those reachable by short
compositions—dominate the hypothesis space exponentially. As discussed in
Section , ideals represent irreversible domain partitionings where distinct
inputs merge and cannot be separated by subsequent transformations. This
provides a natural explanation for why we commonly observe ’simple’ decision
boundaries and information bottlenecks, and why learning systems are biased
towards these.

13



4.2 Invariance and Emulation

As established in Section @, the machine independence of Kolmogorov complexity—
achieved through emulation between UTMs—is crucial for the universality of
Solomonoff’s prior. We now demonstrate an analogous invariance for trans-
formation semigroups: complexity remains stable (up to multiplicative factors)
under changes of generator sets, provided they can mutually emulate each other.
This ensures our simplicity prior is not an artifact of a particular choice of gen-
erators, but reflects intrinsic properties of the transformation semigroup itself.

Lemma 4.1 (Emulation Overhead). Let G and H be two sets of transforma-
tions where G generates semigroup 7T. If each ¢ € GG can be expressed by a
composition of at most Opg_,¢ elements from H, then for any transformation
teT:

Ca(t) < Onse - Cul(t)

Proof. Let t = hy o --- 0 h; be a minimal representation of ¢t using k = Cp ()
generators from H. Since each h; can be expressed using at most Oy _,g gen-
erators from G, substituting these expressions yields a representation of ¢ using
at most k- Og_g = Cu(t) - Og_¢ generators from G. The minimal length
C¢(t) must be at most this construction. O

Theorem 4.2 (Complexity Invariance). Let G and H be generator sets for the
same semigroup 7" with mutual emulation overheads:

O_g = I}{leaé( Cg(h) and Og_py = Igneaé( Cu(g)

Then for any transformation ¢ € T' with C¢(¢) > 0 and Cg(t) > 0:

Q

1 _Cnlt
Onsa ~— Ce(t)

Proof. Applying Lemma EI directly gives Cg(t) < Op_g - Cu(t). Since
complexities and overheads are positive, rearranging yields: Cgy(t)/Cq(t) >
1 / On —G-

Applying Lemma @ with roles reversed gives Cy (t) < Og— g - Ci(t), yield-
ing: Cy(t)/Cq(t) < Ogp. O

< OgoH

Consequences This invariance extends immediately to ideal complexities,
ensuring our simplicity prior (Theorem W.1)) remains valid across different gen-
erator choices. The relative complexity ordering of transformations—and hence
their prior probabilities—is preserved up to the emulation overhead factors.

Having established a generalized simplicity prior based on ideal complexity
(Theorem WY.1)) and an invariance theorem for transformation complexity (Theo-
rem .9), we now turn to discuss the broader implications of these findings and
their potential applications (Section f).

14



5 Discussion

5.1 Relation to Deep Learning

To illustrate how these results apply to deep learning, consider a biological
neural network (BNN) classifying images into {cat,dog, other}, implementing
the function f through a series of physical transformations on the neurons state.
Suppose we construct an artificial neural network (ANN) where each BNN trans-
formation can be expressed by compositions of at most 3 ANN layers (emulation
overhead O = 3). Our framework yields two key guarantees:

1. Complexity Transfer (Lemma @)

Cann(f) <3 Crnn(f)

The complexity of f in the ANN is bounded by the complexity in the
BNN.

2. Ideal Probability Bound (Theorem @) For ANNs of sufficient depth
(L > 3-CnN([f)), the probability of the smallest ideal containing f, called
I, is bounded from below:

PL(If) > |G|—3~C’131\1N(f)7

where |G| is the number of distinct ANN layer parametrizations. Iy con-
tains f and all functions that collapse at least the same input distinctions
as f (i.e., induce partitions equal to or coarser than f’s). In the usual
terminology of deep neural networks we would not interpret this as a
probability but as a lower bound on the relative volume this ideal must
occupy in parameter space.

In general, this demonstrates that to the ability to emulate the computations
of the physical target system necessarily implies that simple transformation are
associated with exponentially large measures of the models hypothesis space.
When this multiplicity concentrates locally, it explains observed degeneracy
phenomena like flat minima and singularities in the loss landscape.

5.2 Connection to Established Definitions of Complexity
5.2.1 Circuit Complexity

Circuit-depth complexity[36] is straightforwardly a special case of our notion
of compositional complexity: all parallel combinations of the allowed boolean
gates form the generator set of the relevant semigroup. Furthermore, gate-
count complexity[28] as depth complexity weighted by the number of gates the
generator. Theorems from this field may also apply to the more general setting
of semigroups.

15



5.2.2 VC Complexity

Both frameworks analyze domain partitioning, but with complementary per-
spectives: VC dimension measures a hypothesis class’s capacity to shatter ar-
bitrary subsets of the domain (preserved distinguishability) [B3], while ideals
characterize irreversible merging of domain elements under transformation semi-
groups (information loss). This reveals a fundamental duality: VC dimension
bounds the maximum number of distinguishable configurations, whereas ideals
emerge when transformations collapse distinctions. The algebraic structure of
ideals may thus provide a mechanistic foundation for the capacity limitations
observed in VC theory.

6 Future Work

6.1 An Upper Bound

The most notably theory lacks an upper bound on the prior. In the UTM case
this is accomplished by the Kraft-McMillan inequality [L7, 22]. In the case
of ideals this is not possible, because generator compositions do not uniquely
encode ideals: Because ideals are not disjoint an element may be part of multiple
ideals.

The Green’s Relations [§] provide a more subtle instrument for analysing
ideal structure, and it may be possible to formulate a prior over Green’s R-
classes with an upper bound with them, because they are disjoint.

This is motivated from the fact that destroying more information necessitates
a reduction of the transformation range. Therefore, conditioning on the range
would remove all transformation in the ideal that further merge the domain
partitions. This would leave a prior over R-classes, transformations equivalent
up to relabelling of outputs,.

6.2 The Minimal Ideal and Landauer’s Limit

Additionally, we would also expect all the probability mass to flow to the min-
imal ideal in the limit of long compositions, e.g. mapping the whole domain
to a single output, destroying all information. But this is not what we empir-
ically observe. What ’pressure’ drives away from collapse? We can argue via
Landauer’s limit that it takes a minimum of energy to destroy information [[19].
For a system with a limited amount of energy, or in thermal equilibrium, this
could result in a non-trivial distribution over R-classes. (As opposed to total
absorption into the minimal ideal.)

6.3 Applying Krohn-Rhodes

Besides Green’s relations one could also bring many other algebraic tools to
bear. Krohn-Rhodes Theory [[1&] could be used to relate this work to automata
and to understand how the prior of decomposable semigroups behaves. This is
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a natural path to investigate how this prior behaves under coarse-graining or
approximation, and how modularity contributes to degeneracy.

7 Conclusion

This work establishes finite analogues of the Solomonoff Prior and Kolmogorov
Invariance through the algebraic framework of transformation semigroups. By
modelling physical and neural systems as compositions of state transformations,
we demonstrate:

1. an exponential simplicity prior over ideals, and
2. complexity invariance across generator sets.

These results extend the ideas of algorithmic probability to resource-bounded
systems.

Three constraints distinguish our results from classical AIT: priors oper-
ate on ideals (equivalence classes of information loss) rather than individual
hypotheses; only lower probability bounds exist due to non-disjoint ideals; in-
variance holds up to multiplicative rather than additive constants. We point to
algebraic and thermodynamic approaches to remedy these limitations. Unlike
AIT, our complexity, and therefore the prior, as well as the emulation constants
are computable.

For deep learning, this provides a new lens to analyse degeneracy in hypoth-
esis space: Equivalence classes of transformations that discard specific input
distinctions (ideals) dominate the parameter space volume exponentially. Ad-
ditionally, it suggests that the ability of these large networks to emulate the
computations that generated their training data is absolutely essential and in-
herently induces the correct prior and thus their ability to generalise.
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A Related Work

Our approach can be summarized as tackling the biases and degeneracies in the
parameter function map, using proof techniques from AIT, in the framework
of transformation semigroups. In the following we will briefly review the most
relevant results from these three fields.

A.1 Parameter-Function Map

The connection between degeneracy and generalisation was first described in
'Flat Minima’ by Hochreiter and Schmidhuber [§].

The theoretical treatment of singular models dates back to Watanabe’s Sin-
gular Learning Theory [34, B5], which has recently experienced a resurgence and
is being applied to modern deep learning [37, 10]. Murfet and Troiani described
a possible connection to AIT [25)].

Recent work indicates that this map is multi-fractal [[7, 21].

A.2 Simplicity Biases in Deep Learning

Previous work has attempted to directly connect algorithmic information theory
to deep learning. Valle-Pérez et al. argued that the parameter-function map of
DNNs is exponentially biased towards simple functions, applying probability-
complexity bounds from AIT to explain generalization [32].

Mingard et al. demonstrated that DNNs possess an inbuilt Occam’s razor,
showing that the prior over functions induced by network architecture favors
Kolmogorov simple functions [23].

For Boolean functions specifically, Mingard et al. proved that even single-
layer perceptrons exhibit strong a priori bias towards low entropy functions,
with this bias becoming monotonically stronger upon adding ReLU layers [24].

This line of work relies on Kolmogorov Complexity and thus UTMs, which
is a computational model strictly more powerful than NNs.

A.3 Transformation Semigroups

The fundamental connections between finite automata and semigroups was es-
tablished by Krohn-Rhodes decomposition theorem [1§], providing a foundation
for applying algebraic methods to computational systems.

Hryniowski and Wong applied applied finite transformation semigroup the-
ory to analyze convolutional neural networks [L1]. In contrast to their work we
map models to semigroup elements.

Earlier work studied random walks on finite semigroups, examining the struc-
ture of transition matrices and their relationship to the algebraic properties of
the underlying semigroup [1]].

Hognéds and Mukherjea provided a comprehensive treatment of probability
measures on semigroups, establishing connections between probabilistic proper-
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ties of random walks and the algebraic structure of their supporting semigroups

[&-

B Running Example

Here we will demonstrate all the concepts and definitions of Section E us-
ing a ’tipping bucket’ system with three possible states: empty, half-full, and
full. Let’s represent each state as a one-hot vector: empty (1,0,0)7 , half-full
(0,1,0)T and full (0,0, 1)T. So the state spaceis X = {(1,0,0)T,(0,1,0)T, (0,0, 1)T}.

The system evolves through two generators G:

1. Rain 7: Adds half a bucket of water.
o Empty to half-full: (1,0,0)” — (0,1,0)7
o Half-full to full: (0,1,0)” — (0,0,1)T
o Full bucket tips over: (0,0,1)7 — (1,0,0)7

2. Nudge n: If a bucket is full and unstable, a nudge will tip it over.
o Full bucket tips over: (0,0,1)% — (1,0,0)T
o Other states remain: (1,0,0)T — (1,0,0)%, (0,1,0)7 ~ (0,1,0)T

Because we chose one-hot vectors to represent the states, we can now con-
veniently represent the operations as matrices:

<
Il
O = O
= o O
OO =
3
Il
OO =
o = O
O O =

By convention we apply the matrices from the left. We can easily see what state
each input is mapped to, by remembering that the column of a matrix are the
images of each basis vector.

Composing our state transition functions is equivalent to matrix multiplica-
tion. For example, composing nudge n with rain r yields:

1 0 1 0 0 1 0 1 1
nor=10 1 0 1 0 0)J=1(1 0 O
0 0 O 010 0 0 O

And composing rain r with itself three times yields:

3

0 0 1 1 0 0
roror=1|1 0 0 =10 1 0] =1
01 0 0 0 1
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In fact, by chaining together r and n generators, we can generate 24 different
transformations on this three-state system.
The composition n o 7 o n can be visualized as a path:

01 1 010
nS (1 0 0] &1 01
00 0 00 0

In fact we can display all possible paths that can be taken through the
semigroup as a directed graph, Fig. .
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Figure 2: Bucket semigroup directed graph. Purple arrows represent application
of n, green arrows of r.
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Consider the transformation

O~ O
S O =

1
n=10
0

The images of the three states are easy read off: they correspond to the columns.
We can see that n is not a one-to-one, mapping both (0,0,1)7 and (1,0,0)%
to (1,0,0)T. If we apply other transformations afterwards, these two domain
elements can be mapped to other values, but never separated again. We can
think of this as irrecoverable loss of information!

In other words; n does not absorbs into itself, but instead into the set of
all transformations that map (0,0,1)7 and (1,0,0)” to the same value. These
absorbing sets are called ideals. In Fig. B, these are represented by coloured
regions.
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Figure 3: Bucket semigroup ideals. The ideals are represented as coloured
regions: We notice that arrows never point out of a coloured region only in.
We also observe that each of the regions corresponds to reduction in the range:
identical columns (highlighted in grey) mean that two input states are mapped
to the same output. The intersection of all ideals form the minimal ideal: the
erasing of all distinction — all states are mapped to a single output.
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