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Abstract—Seismocardiography is a potent non-invasive car-
diovascular monitoring technique whose widespread adoption is
currently limited in ambulatory settings due to its susceptibility
to corruption from environmental noise. In the absence of a
clean concurrently collected electrocardiogram (ECG) signal as
a heartbeat reference, template matching paired with windowing
methods can serve as a useful method by which to assess
seismocardiogram (SCG) signal quality. However, windowing
methods can introduce a time-shift in the segmentation of the
SCG beats as compared to a template due to persistently
adapting heart rate. In this study, we assess the performance
of a state-of-the-art SCG signal quality assessment algorithm,
dynamic time feature matching (DTFM), in ranking SCG beats
by signal-to-noise ratio when introducing an artificial time-
delay. We compare this performance against that of a novel
methodology based on topological data analysis (TDA) using
persistence diagrams. We found no significant difference (p>0.05)
in ranking performance between topological data analysis (TDA)
and dynamic time feature matching (DTFM) when SCG beats
were segmented by true R-peak locations. However, we found that
TDA significantly outperformed DTFM (p<0.001) when SCG
beats were segmented 100, 200, or 300 ms earlier than the R-peak
locations. These results suggest the potential promise of TDA-
based methods for robust ECG-free SCG signal quality analysis.
These advancements may facilitate the analysis of longitudinal
SCG data taken in out-of-clinic settings in situations where ECG
monitoring is not viable.

Index Terms—Topological Data Analysis, Persistence Diagram,
Dynamic Time Feature Matching, Seismocardiogram, Signal
Quality, Electrocardiogram-Free, Time-Delay Invariance

I. INTRODUCTION

Seismocardiogram (SCG) derived features such as left ven-
tricular ejection time, SCG magnitude, heart rate (HR) and HR
variability (HRV) have demonstrable utility in the assessment
of conditions such as heart failure and hypovolemia [1], [2].
However, despite its unique utility in non-invasive monitoring
of cardiac mechanical function, the SCG is limited in ambu-
latory settings due to its susceptibility to environmental noise
such as that induced by motion artifacts [3]. This can impact
SCG preprocessing and the efficacy of feature extraction. Due
to this susceptibility, a concurrently obtained electrocardio-
gram (ECG) trace is often used to localize the heartbeat and
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Fig. 1. Time-Shifts in Window-Based SQI Metrics: Window-based signal
quality indexing can be performed by identifying a template beat and
comparing to target SCG segments of the same window size. As the sliding
window moves, varying amounts of time-shifts are introduced due to mismatch
with heart rate, offsetting key SCG morphological features.

segment the SCG signal as part of preprocessing [4], [5].
However, reliance on ECG may not be feasible in scenarios
where additional bulk, skin irritation, and sweat or body fluids
limit its usability (e.g. military scenarios, neonatal care and
trauma environments) [6], [7]. Thus, a major challenge is to
reliably assess SCG signal quality without a reference ECG to
enable the robust assessment of abnormal blood volume status
or cardiac function in critical care settings.

Time-domain approaches to assessing signal quality are
advantageous as they may more directly reflect the quality of
fiducial points on the SCG waveform which are used for fea-
ture extraction. Among these, template-matching algorithms
are advantageous as they do not make any assumptions about
the shape of a prototypical SCG beat which is unstandardized
due to intrasubject variability [4]. Cross-correlation between
a template waveform and the SCG trace can help to iden-
tify heartbeat locations [8]. However, direct correlation-based
methods are limited as they do not account for stretching and
compression of the SCG beat with changes in HR. Dynamic
time warping (DTW) is robust to such deformations in time.
However, the DTW algorithm aims to reduce Euclidean dis-
tance between a template and target beat without accounting
for prominent features in the signal [4].

Dynamic Time Feature Matching (DTFM) addresses this
issue by incorporating constraints on the warp path to ac-
count for important SCG fiducial points [4]. However, the
algorithm’s primary use-case is with ECG-segmented SCG
beats. In the absence of an ECG, SCG segmentation may be
performed by identifying repeatable signal features (e.g. the
aortic opening location) [5]. However, this approach relies on
the presence of clean features, defeating the purpose of signal
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Fig. 2. Example seismocardiogram beat traces and corresponding persistence diagrams (PDs): We extracted PDs for the unshifted template beat and beats
containing varying levels of added synthetic noise at multiple shift amounts. Beats of four SNR levels (10000, 5, 0, and -10) which were segmented 100 ms
earlier than the ECG R-peak are shown above with decreasing SNR. Peaks and valleys are colored in accordance with their matching points on the PDs.

quality assessment. Another segmentation method is to utilize
a sliding window across the SCG trace. However, the position
of SCG beats within a window is not known a-priori. Thus, the
beat can be misaligned from the template as shown in Figure
1. Assessing the difference in quality of a time-delayed target
beat and a template may thus pose a challenge to state-of-the-
art SCG SQI detection algorithms reliant on signal alignment.

Topological data analysis (TDA) may serve as a promising
method to capture feature characteristics of the SCG waveform
while overcoming the challenge of template alignment. Persis-
tence diagrams (PD) are a powerful compact representation of
waveform morphology and have been used successfully for
mechanical biosignal analysis [9]. The extraction of PDs is
invariant to smooth deformations in the signal such as skewing,
stretching, rotations, and translations in time [10].

Thus, in this study, we analyze the effect of time-shifted
segmentation of SCG beats on the ability of topological
data analysis using persistence diagrams and DTFM to rank
the signal-to-noise ratio of SCG beats. Such findings may
help to inform the development of future ECG-free signal
quality assessment algorithms. By enabling SCG signal quality
assessment without the reliance on ECG, these algorithms can
help to unlock the SCG’s potential for longitudinal monitoring
of cardiac mechanical function in ambulatory settings and
critical care environments.

II. METHODS

A. Experimental Protocol

This study uses a dataset described in detail in prior work by
Zia et. al [2]. The protocol was approved by the Institutional
Animal Care and Use Committees of the Georgia Institute of
Technology, Translational Testing and Training Labs Inc. and
the Department of the Navy Bureau of Medicine and Surgery.
The data were collected from six anesthetized pigs who under-
went an exsanguination procedure to induce hypovolemia at up
to four different blood volume loss levels (7, 14, 21, and 28%
of total blood volume or until cardiac collapse). Blood was

refilled at the same increments, if possible, after exsanguina-
tion. A pause was taken for 5-10 minutes after reaching each
blood volume loss level to allow the cardiovascular system
to stabilize. In this study, data from one pig was discarded
due to noise corruption. This is to ensure that the ground
truth clean templates were reflective of optimal SCG signal
quality. A BIOPAC MP160 data acquisition system was used
to sample the electrocardiogram and seismocardiogram at 2
kHz throughout the protocol. An ADXL354 accelerometer
(Analog Devices Inc., Norwood, Massachusetts, USA) was
used to collect SCG signals at the mid-sternum.

B. Data Preprocessing

The data was first preprocessed by bandpass filtering
the ECG and SCG signals with finite impulse response
(FIR) band-pass filters with Kaiser windows. The cutoff
frequencies were set to 0.5–30 Hz and 1–40 Hz for
the ECG and SCG respectively. Filtering was performed
in the forward and reverse directions to offset phase
shift. Gaussian noise was added to the SCG signal at
six signal-to-noise ratio (SNR) levels (10000, 10, 5, 0,
-5, and -10 dB). These levels were chosen to match the
SNR of SCG signals corrupted by vehicle vibrations,
and calculated as 10log10(MSP (signal)/MSP (noise)),
MSP (s) =

∑
(s2)/length(s) [11]. For each pig, p, we

used the Pan-Tompkin’s algorithm to detect Np + 1 R-peaks
from the ECG signal corresponding to Np heartbeats.
Four levels of time-delay (shifts), s, in milliseconds were
induced in the SCG beats s = {0, 100, 200, 300}. The
beat was segmented according to the detected ECG R-
peaks resulting in an unshifted beat (s = 0) or the start
and end of beat segmentation was set to be earlier than
the R-peak locations s = 100, 200, 300 resulting in a
time-delayed beat. Every 50th beat was utilized for this
analysis, and thus, for each pig and time-shift experiment,
the processed dataset contained Mp = ⌊Np/50⌋ observations
{O1,s, O2,s...OMp,s} of heartbeats. Each observation
comprised of the original clean unshifted template beat, as

Afra Nawar
Highlight

Afra Nawar
Highlight

Afra Nawar
Highlight

Afra Nawar
Highlight



Fig. 3. Separability of SNR Levels Across Models: We used three models,
Topological Data Analysis using Persistence Diagrams (TDA), Dynamic Time
Feature Matching (DTFM) with Default Max Distance (DTFMD), and DTFM
with Time-Shift Information Included (DTFMS) to quantify the difference
between a reference unshifted clean template and noisy target beats segmented
at varying shift amounts. TDA maintains robust separability in the unshifted
and shifted cases while DTFM can only do so in the unshifted case.

well as its time-shifted noisy correspondent beats (e.g., Ox,s =
{Ox,s,template, Ox,s,SNR10000

, Ox,s,SNR10
, Ox,s,SNR5

,
Ox,s,SNR0

, Ox,s,SNR−5
, Ox,s,SNR−10

}. Figure 2 illustrates
an observation with a subset of the noise levels for clarity.

C. Model Descriptions and Ranking Task

A separate experiment was conducted at each time-shift
condition to understand model ranking performance. For every
shift level, s, three models were used to obtain a vector of
distance values corresponding to beats of different SNR levels
from observation Ox,s|x ∈ [1, ...,Mp] and pig p. The first
model employed topological data analysis using persistence
diagrams. In this model, persistence diagrams were extracted
via a sublevel set filtration procedure described in [9] from
the clean unshifted template beat Ox,s,template and each of the
shifted noisy target beats {Ox,s,SNR[10000,...,−10]

}. The distance
from each of these shifted noisy beats was determined by tak-
ing the Wasserstein distance between their persistence diagram
and that of the template. The second model employed DTFM
with the maximum distance between target and template beat
features set to the default 50 ms (DTFMD). The third model
utilized DTFM with the maximum distance set to the shift
amount added to the default search distance (e.g., 200 ms shift
+ 50 ms default for a total maximum distance of 250 ms).
This reasoning behind this design choice was to test DTFM
performance when provided with a search window which
overlaps with the true feature locations in the shifted noisy
beat. The DTFM distance metric, defined as the minimum

Fig. 4. Distributions of Kendall’s tau values (ranging from 1: perfectly ranked
to -1: oppositely ranked) for all beats per model and shift: Topological Data
Analysis using Persistence Diagrams (TDA) does comparably to DTFMD
and DTFMS when there is no time-delay. TDA ranking performance remains
robust with time-delay while DTFM performance diminishes.

Euclidean distance between warped template and target signals
after feature mapping, is described in detail by Zia et al [4].

D. Quantification of Performance

Kendall’s Tau is a non-parametric correlation coefficient
which measures the agreement in ordering between two sets of
data. In this case, it measures each model’s ability to order the
beats in terms of decreasing SNR. For each possible pair of
ranking values, the pair is concordant if the model’s ranking is
consistent with the ground truth and discordant if not. τ is then
calculated as τ = (Nc−Nd)/(Nc+Nd) where Nc and Nd are
the number of concordant and discordant pairs, respectively.
τ = 1 if the model’s ranking is perfectly consistent with the
ground truth and τ = −1 if the ranking perfectly disagrees.
τ = 0 would result from no association or random ordering.

E. Statistical Testing

We used a generalized estimating equations (GEE) model
to assess if there were significant differences in the perfor-
mance of TDA, DTFMD, and DTFMS. We chose to use this
nonparametric model as the Kendall’s Tau distributions were
nonnormal and the dataset contained repeated measures (beats)
for each pig. After running the GEE model, we ran post-
hoc pairwise comparisons with a Bonferroni correction (for
3 comparisons) to assess which pairs of models performed
significantly differently. α was set to 0.05.

III. RESULTS

Figure 3 illustrates the separability of the three models in
the unshifted and 100 ms shift cases. Figure 4 illustrates the
distribution of Kendall’s Tau values for all models across each
time-delay experiment, reflecting model ranking performance.
The mean, µ, and standard deviation, σ of these distributions
across models are additionally quantified in Table I and the
Cohen’s d effect size is given for each model pair in Table II.

In the case where SCG was not time delayed and segmented
according to R-peak locations, all three models report mean
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TABLE I
KENDALL’S TAU DISTRIBUTION STATISTICS PER MODEL AND SHIFT

TDA DTFMD DTFMS

µ σ µ σ µ σ
No Shift 0.993 0.036 0.998 0.036 0.998 0.036

100 ms Shift 0.981 0.088 -0.456 0.529 0.402 0.528
200 ms Shift 0.967 0.147 -0.570 0.478 0.199 0.576
300 ms Shift 0.942 0.194 -0.360 0.598 0.076 0.579

TABLE II
COHEN’S D EFFECT SIZE BETWEEN MODELS PER SHIFT

No Shift 100 ms 200 ms 300 ms
TDA vs DTFMD -0.139 3.79 4.35 2.93
TDA vs DTFMS -0.139 1.53 1.82 2.01

DTFMD vs DTFMS 0 -1.62 -1.45 -0.741

Kendall’s Tau values above 0.99, with DTFM slightly outper-
forming TDA by 0.005. However, for the unshifted case, we
found a significance level of p=0.075, indicating that this dif-
ference was not significant. For all shifted cases (100, 200, and
300 ms), p<0.001 and post-hoc analyses showed significant
differences between all pairs of models. For the 100 and 200
ms shifts, p<0.001 for all pairwise comparisons and for the
300 ms shift, p<0.001 between TDA and DTFMD and TDA
and DTFMS and p=0.008 between DTFMD and DTFMS. For
all shifted cases, the performance of TDA remains above 0.94
while DTFMD and DTFMS performance sharply diminishes.
DTFMS performance decreases to approximately 0-0.4, while
DTFMD performance becomes negative (µ<0).

IV. DISCUSSION AND CONCLUSION

When an ECG can be concurrently collected with the SCG
signal, SCG beats can be segmented according to the ECG R-
peaks such that the resultant beats are roughly aligned in terms
of cardiac cycle. From the results from the experiment with 0
ms (unshifted) time-delay, we demonstrate that TDA can rank
beats according to SNR level at a comparable quality to state-
of-the-art DTFM. In the case where beats are offset in time
from the cardiac cycle by 100, 200 or 300 ms, TDA remains
robust in its capability to discriminate between SCG beats of
different SNR levels while DTFM performance drops. DTFMS
performance stays positive but diminishes from the unshifted
case likely due incorrect mappings to extra spurious candidate
points introduced by noise. DTFMD ranks inversely to SNR
(negative µ), likely due to the inability of the model to find any
candidate points to match to in clean shifted signals when the
corresponding feature is out of range, but the ability to find
a match, though incorrect, when spurious peaks and valleys
are introduced by noise. This discrepancy demonstrates the
dependency of the DTFM model performance on intelligently
chosen hyperparameters. TDA does not require fine-tuning
thus decreasing the burden on the user.

The study contains limitations. The ranking of beats by
SNR levels was performed with a perfect template, the ground
truth unshifted clean versions of those same beats, to assess
differences in model performance solely based on time-shift.
Future work should assess model performances with global

templates and assess the causes behind failure points. Ad-
ditionally, the models were assessed in data from porcine
subjects but should be evaluated with data from larger datasets
with human subjects as well. Future work should also assess
model performance in different environmental scenarios with
motion artifacts and physiological rather than Gaussian noise.

In this work, we demonstrated the robustness of topological
data analysis using persistence diagrams to time-delays in beat
segmentation when performing SCG signal quality analysis.
Through this validation, the study takes a stride towards
understanding the limitations of current state-of-the-art signal
quality assessment techniques and towards the development of
robust ECG-free SCG signal quality analysis methodologies.
Such an advancement may enable the monitoring of cardiac
mechanical function in out-of-clinic or critical care settings
where noise is prevalent and wearable sensing hardware must
be optimized for lightweight, longitudinal monitoring.

V. DISCLOSURE

O. T. Inan is co-founder of Cardiosense, Inc., and holds
equity interest in the company.
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Dear Program Chairs and Reviewers, 

Thank you for taking the time to carefully review our manuscript and provide us with detailed 

and informative comments. We have responded to each of the comments below in a point-by-

point fashion and have included sections for the new/modified text in the revised manuscript if 

applicable. The revisions are documented below, with responses noted in Blue, cited portions 

listed in Green, and changes highlighted in yellow. These revisions have enabled us to greatly 

strengthen the paper and we believe we have addressed all comments to the best of our ability.  

We look forward to hearing your feedback on our revised manuscript. 

Sincerely, 

Afra Nawar (on behalf all the authors) 

 

Response to the Reviewer’s comments to the authors: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Reviewer 1: 

Summary Of The Paper: 

This study assessed the performance of an algorithm, dynamic time feature matching (DTFM), 

in ranking SCG beats by signal-to-noise ratio when introducing an artificial time-delay. This 

method was compared with a methodology based on topological data analysis (TDA) using 

persistence diagrams. The results showed no significant difference in ranking performance 

between TDA and DTFM when SCG beats were segmented by true R-peak locations. 

However, TDA significantly outperformed DTFM when SCG beats were segmented 100, 200, 

or 300 ms earlier than the R-peak locations. 

We thank the reviewer for thoroughly reading through our paper to find areas of strengths and 

weaknesses. We believe we have addressed each comment on a point-by-point basis which we 

have described below: 

Strengths: 

The main contribution of the this study is to evaluate the quality of SCG signals with different 

delay with respect to the R-peak location. 

We thank the reviewer for assessing the paper’s merits noting the ability of the proposed TDA-

based SCG SQI algorithm to adequately assess the quality of the beats even with different delay 

amounts. 

Weaknesses: 

1. Novelty is limited. Both algorithms (DTFM and TDA) have been published in previous 

studies. 

 

We thank the reviewers for their comment. We agree that DTFM and TDA are both well 

documented algorithms which have use cases in many domains. However, we believe 

that this does not preclude the novelty of the paper. SCG-derived features have shown 

demonstrable utility towards the assessment of conditions such as heart failure and 

hypovolemia [1, 2]. However, the SCG can be heavily affected by motion artifacts and 

noise which can affect the efficacy of feature extraction [3]. Because such noise is 

ubiquitous in real-world scenarios, there is a critical need for the application of novel 

algorithms for SCG signal quality detection to ensure the validity of the extracted 

feature set. Thus, rather than taking away from the impact of the paper, we believe that 

the validated usage of these algorithms in prior work with time-series signals adds 

credence to the work as it enables us to be more confident in their application to SCG 

signal quality analysis. 

 

To improve the clarity of the novelty of the paper, we have reframed part of the 

introduction to better describe the impact of SCG signal quality assessment such that 



the importance of SQI assessment to enable robust SCG preprocessing and feature 

extraction is understood: 

 

 “Seismocardiogram (SCG) derived features such as left ventricular ejection time, SCG 

magnitude, heart rate (HR) and HR variability (HRV) have demonstrable utility in the 

assessment of conditions such as heart failure and hypovolemia [~], [~]. Despite its 

unique utility in non-invasive monitoring of cardiac mechanical function, the SCG is 

susceptible to environmental noise such as that induced by motion artifacts, especially 

in ambulatory settings [~]. This can impact SCG preprocessing and the efficacy of feature 

extraction. Due to this susceptibility, a concurrently obtained electrocardiogram (ECG) 

trace is often used to localize the heartbeat and segment the SCG signal as part of 

preprocessing [~], [~]. However, reliance on ECG may not be feasible in scenarios where 

additional bulk, skin irritation, and sweat or body fluids limit its usability (e.g. military 

scenarios, neonatal care and trauma environments) [~], [~]. Thus, a major challenge is to 

reliably assess SCG signal quality without a reference ECG to enable the robust 

assessment of abnormal blood volume status or cardiac function in critical care 

settings.” – Section I 

 

2. Working principles of DTFM and TDA are missing. Although they have been previous 

published, some detailed description rather than a reference can help the readers for 

better understanding. 

 

We thank the reviewers for their request for additional description about the 

methodology for DTFM and TDA. We agree that an expanded explanation of the 

algorithms could aid in understanding their application in this domain. Because of this 

request we have clarified some of the methodological details for each algorithm as 

shown below in Section II: Methodology, Part C Model Descriptions and Ranking Task.  

 

To the TDA description, we add in information about the filtration methodology that is 

used to convert the time-series signal to the persistence diagram. 

 

“The first model employed topological data analysis using persistence diagrams. In this 

model, persistence diagrams were extracted via a sublevel set filtration procedure 

described in [~] from the clean unshifted template beat Ox,s,template and each of the 

shifted noisy target beats {Ox,s,SN R[10000,...,−10] }. The distance from each of these 

shifted noisy beats was determined by taking the Wasserstein distance between their 

persistence diagram and that of the template.” – Section II, Part C 

 

We also add additional information describing the DTFM distance metric: 

 



“This reasoning behind this design choice was to test DTFM performance when provided 

with a search window which overlaps with the true feature locations in the shifted noisy 

beat. The DTFM distance metric, defined as the minimum Euclidean distance between 

warped template and target signals after feature mapping, is described in detail by Zia 

et al [~].” – Section II, Part C 

 

3. In Fig. 2, it is weird that there is no significant difference between the signals with SNR 

of 10000 and -10 dB. 

 

We thank the reviewer for their curiosity on the differences between the visual 

characteristics of beats with 10000 dB and -10 dB SNR.  The SNR of the signal was 

calculated using taking the log of the mean squared power of the signal to noise. The 

formula is given below: 

 

𝑑𝐵 =  10 log10(
∑

𝑠𝑖𝑔𝑛𝑎𝑙2

𝑙𝑒𝑛(𝑠𝑖𝑔𝑛𝑎𝑙)

∑ (
𝑛𝑜𝑖𝑠𝑒2

𝑙𝑒𝑛(𝑛𝑜𝑖𝑠𝑒)
)

)  

 

Additional examples of beats are provided here for reference to show how the -10 dB 

and 10000 dB cases can appear quite different from the initial signal: 

 

  



We also add in the following verbiage to make the calculation of the SNR levels more 

clear: 

 

“Filtering was performed in the forward and reverse directions to offset phase 

shift. Gaussian noise was added to the SCG signal at six signal-to-noise ratio (SNR) levels 

(10000, 10, 5, 0, -5, and -10 dB). These levels were chosen to match the SNR of SCG 

signals corrupted by vehicle vibrations, and calculated as 10log10(MSP (signal)/MSP 

(noise)), MSP(s) = P(s2)/length(s) [11]. For each pig, p, we used the Pan-Tompkin’s 

algorithm to detect Np + 1 R-peaks from the ECG signal corresponding to Np heartbeats. 

Four levels of time-delay (shifts), s, in milliseconds were 

induced in the SCG beats s = {0, 100, 200, 300}.” – Section II, Part B  

 

 

4. The choice of SNR levels, i.e., 10000, 10, 5, 0, -5, and -10 dB, is also a bit weird. Why 

these levels and how are they agree with realistic? 

 

We appreciate the reviewer’s curiosity about the choice of the noise levels in the study. 

We based the choice of these levels on prior work in SCG signal quality analysis with the 

application of artificial noise [4]. The lower SNR limit was chosen to match the SNR of 

aortic opening and closing complexes when corrupted by real world subway vibrations 

[4]. We thus utilize these levels as they are validated in prior work and likely 

representative of the level of noise in real-world conditions in which the algorithm 

should be deployed. 

 

To make this reasoning clearer, we have added additional description on the SNR levels 

in Section II Methodology, Part B Data Preprocessing: 

 

“Filtering was performed in the forward and reverse directions to offset phase 

shift. Gaussian noise was added to the SCG signal at six signal-to-noise ratio (SNR) levels 

(10000, 10, 5, 0, -5, and -10 dB). These levels were chosen to match the SNR of SCG 

signals corrupted by vehicle vibrations, and calculated as 10log10(MSP (signal)/MSP 

(noise)), MSP (s) = P(s2)/length(s) [~]. For each pig, p, we used the Pan-Tompkin’s 

algorithm to detect Np + 1 R-peaks from the ECG signal corresponding to Np heartbeats. 

Four levels of time-delay (shifts), s, in milliseconds were 

induced in the SCG beats s = {0, 100, 200, 300}.” – Section II, Part B  

 

5. Abbreviations should and only be explained in the first appearance. 

We thank the reviewer for their feedback regarding the explanation of abbreviations in 

the paper. Based on this comment, we have changed the following sections to ensure 

that abbreviated concepts are explained on first appearance (however, as a note - 



because abstracts are generally expected to be self-contained, any abbreviations noted 

in this section are not counted as first appearance). 

“Seismocardiogram (SCG) derived features such as left ventricular ejection time, SCG 

magnitude, heart rate (HR) and HR variability (HRV) have demonstrable utility in the 

assessment of conditions such as heart failure and hypovolemia [1], [2]. However, 

despite its unique utility in non-invasive monitoring of cardiac mechanical function, the 

SCG is limited in ambulatory settings due to its susceptibility to environmental noise 

such as that induced by motion artifacts [3]. This can impact SCG preprocessing and the 

efficacy of feature extraction. Due to this susceptibility, a concurrently obtained 

electrocardiogram (ECG) trace is often used to localize the heartbeat.” – Section I, 

Paragraph 1 

 

“Topological data analysis (TDA) may serve as a promising method to capture feature 

characteristics of the SCG waveform while overcoming the challenge of template 

alignment. Persistence diagrams (PD) are particularly powerful as a compact 

representation of waveform morphology and have been used successfully in prior work 

for mechanical biosignal analysis [~]. The extraction of PDs is invariant to smooth 

deformations in the signal including scaling differences (such as amplitude variations) 

and translations (such as time-shift delays) [~].” – Section I, Paragraph 4 

  

 

Reviewer 2: 

Summary Of The Paper: 

This manuscript presents a comparative study of a TDA-based approach versus DTFM for signal 

quality assessment of SCG signals under time-delay perturbations. The authors evaluated beat 

ranking performance across noise levels using PDs and quantified it with Kendall's Tau 

correlation, to argue that the TDA method is robust to temporal misalignment in SCG 

segmentation as compared to previous methods. The study is very relevant for ECG-free SCG 

assessment in ambulatory scenarios. 

We thank the reviewer for thoroughly reading through the manuscript and for noting its 

potential utility for SCG signal quality assessment especially in ambulatory scenarios and 

scenarios ECG may not be feasible to use. We believe that we have addressed all of the 

comments and give our responses below in a point-by-point manner. 

Strengths: 

The introduction is particularly well-written: it clearly lays out the problem of ECG-dependent 

SCG quality assessment and motivates the need for ECG-free methods in settings like 

ambulatory monitoring or critical care. 



We thank the reviewer for this comment and appreciate the recognition of the importance of 

the problem of ECG-dependent SCG signal quality assessment. We agree with the reviewer that 

developing new methods for SQI assessment which are not reliant on the ECG can enable more 

robust monitoring of suboptimal cardiovascular function (e.g. in the case of hemorrhage and 

hypovolemia) when ECG usage is infeasible. Thus, we are pleased to hear that the problem 

statement is clear.  

The authors effectively frame why time-delay robustness matters and why TDA might be a 

viable solution. 

We thank the reviewer for their comment. We are pleased to hear that the reasoning behind 

using topological data analysis to address the problem of ECG-dependent SCG signal quality 

indexing is clear. 

The authors transparently discuss the limitations of their setup (e.g., reliance on clean 

templates and porcine data) and propose meaningful next steps. 

We thank the reviewer for their comment. Indeed, in addition to the analysis presented in this 

manuscript, we recognize that there are many promising areas of future work which are 

important towards continuing to develop robust ECG-free SCG SQI assessment algorithms. We 

are pleased to hear that these areas of development are clear and that our transparency is 

appreciated.  

The study design, particularly the controlled addition of noise across a range of SNR levels and 

the systematic evaluation of time-delay offsets, allows for a clean comparison between DTFM 

and TDA. 

We thank the reviewer for this comment. Indeed, many of the study design choices were made 

such that the differences between the algorithms and the effect of time-delay could be clearly 

understood. We, thus, greatly appreciate the reviewer’s recognition of the thought behind our 

study design. 

Weaknesses: 

1. As the authors note, the study is based on SCG from anesthetized pigs in a controlled 

hemorrhage model. While this present work is still useful as a proof-of-concept, the 

absence of validation on human data, especially in ambulatory, wearable use cases 

where motion artifacts and inter-subject variability are much more severe, as 

discussed by the authors in the introduction, limits the practical impact of the 

findings. Future work should aim to include human SCG recordings under realistic 

conditions. 

We thank the reviewer for pointing out limitations in the dataset composition. The 

reviewer is correct that the choice of the dataset is useful as a proof of concept but we 

also believe that the choice of dataset is also directly relevant to real-world applications 



of SCG signal quality. In this study, we chose to use an anesthetized porcine population 

as this population allowed us to understand the robustness of SCG signal quality from 

healthy cardiac function as well as multiple suboptimal blood volume states due to 

hypovolemia. These signals are difficult to obtain in a controlled manner from a human 

population, but such conditions affect the underlying SCG signal characteristics [1,2,4]. It 

is, thus, important that signal quality indices are robust to varying SCG morphology from 

different cardiovascular states as SCG features have demonstrable utility for the 

assessment of suboptimal cardiovascular function in many critical care scenarios where 

hypovolemia may be present [1,2]. 

Although we believe that using such a dataset allows us to better understand algorithm 

behavior under suboptimal cardiovascular function than a human dataset, we agree 

with the reviewer and recognize that there are many sources of variability in real world 

situations which marks the importance of eventually assessing model performance with 

other datasets with larger sample sizes, motion artifacts, and human data. 

We thus modify Section IV: Discussion and Conclusion to highlight the necessity of larger 

datasets of human data following up with our discussion on adding more realistic 

sources of noise as areas of future research: 

“Future work should assess model performances with global templates and assess the 

causes behind failure points. Additionally, the models were assessed in data from 

porcine subjects but should be evaluated with data from larger datasets with human 

subjects as well. Future work should also assess model performance in different 

environmental scenarios with physiological rather than Gaussian noise.” – Section I: 

Introduction 

 

2. The manuscript mentioned post-hoc Bonferroni, but it would be better to provide more 

parameter details of the Bonferroni test, such as the effect size. 

 

We thank the reviewer for their request for additional clarity on the Bonferroni 

correction applied to the statistical testing. The number of comparisons that were 

corrected for was 3 and thus, the corrected 𝛼=0.05/3=0.017. We have added additional 

information about the test as shown below to Section II Methods, Part E: Statistical 

Testing: 

“After running the GEE model, we ran post-hoc pairwise comparisons with a Bonferroni 

correction (for 3 comparisons) to assess which pairs of models performed significantly 

differently. All significance levels were set at α = 0.05.” – Section II 



Additionally, we have added an additional table – Table II: Cohen’s D Effect Size 

Between Models Per Shift quantifying the effect size of each group comparison in each 

shift case: 

 

Finally, we update the wording of Section III: Results to refer the readers to this table: 

“Figure 3 illustrates the separability of the three models in the unshifted and 100 ms 

shift cases. Figure 4 illustrates the distribution of Kendall’s Tau values for all models 

across each time-delay experiment, reflecting model ranking performance. The mean, μ, 

and standard deviation, σ of these distributions across models are additionally 

quantified in Table I and the Cohen’s d effect size is given for each model pair in Table 

II.” – Section III 

 

3. The title and abstract refer to TDA as “time-delay invariant.” However, persistence 

diagrams are not strictly invariant to arbitrary time shifts, especially in discrete signals 

or when no embedding is applied. They are stable under certain types of signal 

perturbations, but without a clear explanation of the filtration used, the claim of 

invariance is a bit overstated. 

 

We thank the reviewer for their comment regarding the invariance of persistence 

diagrams to time delays. Although TDA is invariant to smooth deformations of the signal 

when the signal value set remains the same, the reviewer is correct that segmentation 

of the SCG signals at slightly different time points will change the input signal which may 

cause differences in the output persistence diagram. Thus, we believe that a better term 

to describe the effectiveness of TDA for SCG signal quality in the case of time-delays 

may be “robustness” rather than “invariance” to avoid the misinterpretation that there 

are no changes at all to the extracted persistence diagram representation. To ensure the 

clarity of our methods and to avoid confusion, we have made several changes to the 

paper as shown below. 

First, as suggested by the reviewer, we add greater description of the filtration method 

used for the time series signals in Section II Methods, Part C: Model Descriptions and 

Ranking Task: 

“The first model employed topological data analysis using persistence diagrams. In this 

model, persistence diagrams were extracted via a sublevel set filtration procedure 



described in [9] from the clean unshifted template beat Ox,s,template and each of the 

shifted noisy target beats {Ox,s,SN R[10000,...,−10] }. The distance from each of these 

shifted noisy beats was determined by taking the Wasserstein distance between their 

persistence diagram and that of the template.” – Section II, Part C 

We change the title to better reflect the “robustness” rather than “invariance” of the 

method: 

“Robustness of Persistence Diagrams to Time-Delay for Seismocardiogram Signal Quality 

Assessment” – Title 

Finally, we rephrase the following wording to be more precise: 

“Persistence diagrams (PD) are particularly powerful as a compact representation of 

waveform morphology and have been used successfully in prior work for mechanical 

biosignal analysis [~]. The extraction of PDs is invariant to smooth deformations in the 

signal such as skewing, stretching, rotations, and translations in time [~].” – Section I 

 

4. Just some minor typos: Figure 4 caption: “Analaysis”. Second-to-last paragraph of 

Discussion: “Addiitonally”. 

 

We thank the reviewer for noting the typographical errors that have occured in our 

manuscript. We have taken time to proofread the paper again and we have fixed these 

errors in the manuscript by rewriting the text or fixing the spelling mistakes as shown 

below: 

“Four levels of time-delay (shifts), s, in milliseconds were induced in the SCG beats s = 

{0, 100, 200, 300}. The beat was segmented according to the detected ECG R-peaks 

resulting in an unshifted beat (s = 0) or the start and end of beat segmentation was set 

to be earlier than the R-peak locations s = 100, 200, 300 resulting in a time-delayed 

beat.” - Section II Methods, B: Data Preprocessing 

“Future work should assess model performances with global templates. Additionally, 

the models were assessed in data from porcine subjects but should be evaluated with 

data from human subjects as well.” - Section IV Discussion and Conclusion 

“The above figure depicts the distributions of Kendall’s tau values (ranging from 1: 

perfectly ranked to -1: oppositely ranked) for all beats per model and shift. Topological 

Data Analysis using Persistence Diagrams (TDA) does comparably to DTFMD and DTFMS 

when there is no time-delay. TDA ranking performance remains robust with time-delay 

while DTFM performance diminishes.” - Figure 4 Caption 

 

 



5. “DTFMS performance stays positive but diminishes from the unshifted case likely due 

(to) incorrect mappings to extra spurious candidate points introduced by noise. ” This 

explanation remains speculative, and it would be great, in future work, for a 

quantitative analysis of the failure cases. Is there a systematic pattern in how noise 

disrupts the performance, e.g. valleys/peaks? Any insight here would add clarity to 

the observed performance drop. 

 

We thank the reviewer for their curiosity about the reduced performance of the DTFMS 

algorithm. We completely agree that each method’s failure points should be assessed in 

greater detail in future work. Because of this, we have plotted an example waveform to 

form an initial backing for our statement about DTFMS performance as shown below: 

 

 
 

 

From the above images, we can see that for the unshifted case, the major peaks are 

mapped correctly between template and target. However, with even a 100 ms shift, the 

mapping becomes more inconsistent between template and target (which can result in 

inconsistent ordering of distance metrics across SNR levels).  

 



As these are exploratory analyses, we have modified Section IV: Discussion and 

Conclusion, to highlight this area of future work: 

 

“The study contains limitations. The ranking of beats by SNR levels was performed with 

a perfect template, the ground truth unshifted clean versions of those same beats, to 

assess differences in model performance solely based on time-shift. Future work should 

assess model performances with global templates and assess the causes behind failure 

points. Additionally, the models were assessed in data from porcine subjects but should 

be evaluated with data from human subjects as well.” – Section IV 

 

Reviewer 3: 

Summary Of The Paper: 

This paper evaluates the possibility of topological data analysis (TDA) with persistence diagrams 

for assessing signal quality in seismocardiogram (SCG) signals with no ECG reference. The study 

shows that TDA has comparable performance with dynamic time feature matching (DTFM) 

when segments are taken perfectly, and performs better than DTFM when the segment is taken 

with a shift from R-peaks. Such a result facilitates TDA as a robust method for SCG quality 

evaluation. 

We thank the reviewer for reading through the manuscript and noting areas of strength and 

areas for improvement or clarification. We have addressed each comment below on a point-by-

point basis. 

Strengths: 

This research provides an alternative solution for the problem of SCG quality assessment, which 

is challenging when no other bio signals can serve as references. 

We thank the reviewer for noting the potential for TDA to help address the problem of SCG 

signal quality assessment without a reference signal. Indeed, we agree that the problem is 

challenging because of the loss of complementary information (i.e. a sense of periodicity from 

the ECG) which is useful for SCG preprocessing. However, we agree that TDA can help to extract 

morphological information from the signal which can enable robust SCG SQI analysis. 

This research investigates the performance of quality assessment methods under the case 

when SCG is segmented with a shift from R-peaks, which can happen with no references or 

clean features. Such an investigation is beneficial for the clinical use of SCG. 

We thank the reviewer for noting the potential impact area of ECG-free SCG signal quality 

analysis. Indeed, we agree that developing SCG SQI methods which are robust to slight 

misalignments in SCG preprocessing are critical towards enabling robust SCG usage in scenarios 



of suboptimal cardiovascular function especially in scenarios where noise artifacts may be 

prevalent. Thus, we appreciate the reviewer’s recognition of the impact of our manuscript. 

 

Weaknesses: 

This research is evaluated on data from 5 pigs. This weakens the soundness of the result in 

multiple ways. First, the scale of data and the number of subjects are small, bringing large 

randomness and little inter-subject differences. Second, with plenty of relevant works 

evaluated on SCG from humans, it does not make sense for the authors to use the data from 

pigs, assuming that they aim to promote the use of SCG in human clinical applications. Third, 

the subjects are set to have a large variation in blood volume loss levels. Why is such a factor 

important for SCG quality assessment? Is it closely related to the potential application of 

SCG? Such a setup does not seem common in previous relevant works. 

We thank the reviewer for their concern about the characteristics of the dataset population. 

The reviewer is correct that the choice of the dataset is directly applicable to the potential 

impact area of the work. In this study, we chose to use an anesthetized porcine population as 

this population allowed us to understand the robustness of SCG signal quality from healthy 

cardiac function as well as multiple suboptimal blood volume states due to hypovolemia. These 

signals are difficult to obtain in a controlled manner from a human population, but such 

conditions affect the underlying SCG signal characteristics [1, 2, 4]. It is, thus, important that 

signal quality indices are robust to varying SCG morphology from different cardiovascular states 

as prior work has shown that SCG features have demonstrable utility for the assessment of 

suboptimal cardiovascular function in many critical care scenarios where hypovolemia may be 

present [1,2].  

Thus, we believe that using such a dataset allows us to feasibly assess algorithm behavior under 

suboptimal cardiovascular function that would be difficult to collect with a human dataset [4]. 

Nonetheless, we recognize the importance of eventually assessing model performance with 

other datasets with larger sample sizes, including human SCG. 

We thus modify Section IV: Discussion and Conclusion to highlight the need to validate these 

approaches in larger datasets of signals derived from human subjects: 

“Future work should assess model performances with global templates and assess the causes 

behind failure points. Additionally, the models were assessed in data from porcine subjects but 

should be evaluated with data from larger datasets with human subjects as well. Future work 

should also assess model performance in different environmental scenarios with physiological 

rather than Gaussian noise.” – Section I: Introduction 

 



For the evaluation of SCG quality assessment capability, the authors apply Gaussian noise to 

the clean data to imitate data of low quality. However, common noises in SCG, including 

motion artifacts, have distinct features from Gaussian noise. Results from the paper fail to 

represent the method's performance on real collected SCG data. 

We thank the reviewer for their concern about the type of noise added to the clean SCG signals 

in this study. In physiological signals, it is often difficult to assess realistic noise characteristics 

independently from the cardiac signal because realistic noise can overlap with the frequency 

content of the true signal [5, 6]. Disentangling this noise from the true physiological signal is 

currently an area of ongoing research [5, 7]. In this study, our main aim was to assess how well 

each algorithm could assess signal quality given ground truth labels for signal quality (the dB 

levels). We, thus, decided against using physiologically grounded noises in this initial study, such 

that we can assess the performance of the algorithms without needing to quantify how much of 

the “noise” signal may contain true cardiac information. More simply, this methodology 

allowed us additional control over the signal perturbation process to quantify algorithm 

performance. 

However, we still agree with the reviewer that future work should continue to assess the 

performance of the methodology with other types of noise as SCG SQI algorithms will 

eventually be used with real world scenarios. Because of this, we have modified the wording of 

Section IV: Discussion and Conclusion to highlight this area of future research as shown below: 

“Future work should assess model performances with global templates and assess the causes 

behind failure points. Additionally, the models were assessed in data from porcine subjects but 

should be evaluated with data from larger datasets with human subjects as well. Future work 

should also assess model performance in different environmental scenarios with motion 

artifacts and physiological rather than Gaussian noise.” – Section IV 

 

This work is a comparative study with overstated novelty. TDA has previously been applied to 

biomedical time-series classification tasks. Applying it to SCG quality assessment is 

meaningful but not completely novel. Together with the problem in experiment data and 

evaluation methods, this makes the overall contribution of this paper relatively low. 

We thank the reviewers for their comment. We agree that TDA is a well-documented field 

which can have use cases in many domains. However, this does not preclude the novelty of the 

paper as there are still prevalent gaps in the performance of current methods for the robust 

assessment of SCG SQI quality which is the main goal of the study. Thus, rather than taking 

away from the impact of the paper, we believe that the validated usage of these algorithms in 

prior work with time-series signals adds credence to the work as it enables us to be confident in 

their application to SCG signal quality analysis. 

 



We thank the reviewers for their comment. We agree that TDA is a well-documented field 

which can have use cases in many domains. However, we believe that this does not preclude 

the novelty of the paper. SCG-derived features have shown demonstrable utility towards the 

assessment of conditions such as heart failure and hypovolemia [1, 2]. However, the SCG can be 

heavily affected by motion artifacts and noise which can affect the efficacy of feature extraction 

[3]. Because such noise is ubiquitous in real-world scenarios, there is a critical need for the 

application of novel algorithms for SCG signal quality detection to ensure the validity of the 

extracted feature set. Thus, rather than taking away from the impact of the paper, we believe 

that the validated usage of these algorithms in prior work with time-series signals adds 

credence to the work as it enables us to be more confident in their application to SCG signal 

quality analysis. 

 

To improve the clarity of the novelty of the paper, we have reframed part of the introduction to 

better describe the impact of SCG signal quality assessment such that the importance of SQI 

assessment to enable robust SCG preprocessing and feature extraction is understood: 

 

 “Seismocardiogram (SCG) derived features such as left ventricular ejection time, SCG 

magnitude, heart rate (HR) and HR variability (HRV) have demonstrable utility in the assessment 

of conditions such as heart failure and hypovolemia [~], [~]. Despite its unique utility in non-

invasive monitoring of cardiac mechanical function, the SCG is susceptible to environmental 

noise such as that induced by motion artifacts, especially in ambulatory settings [~]. This can 

impact SCG preprocessing and the efficacy of feature extraction. Due to this susceptibility, a 

concurrently obtained electrocardiogram (ECG) trace is often used to localize the heartbeat and 

segment the SCG signal as part of preprocessing [~], [~]. However, reliance on ECG may not be 

feasible in scenarios where additional bulk, skin irritation, and sweat or body fluids limit its 

usability (e.g. military scenarios, neonatal care and trauma environments) [~], [~]. Thus, a major 

challenge is to reliably assess SCG signal quality without a reference ECG to enable the robust 

assessment of abnormal blood volume status or cardiac function in critical care settings.” – 

Section I: Introduction 

 

Expression and spelling errors occur in this paper, like "Either... Otherwise..." in Section II B 

and "Addiitonally" in the second paragraph of Section IV. Another proofreading may be 

beneficial. 

We thank the reviewer for noting the typographical errors that have occured in our manuscript. 

We have taken time to proofread the paper again and we have fixed these errors in the 

manuscript by rewriting the text or fixing the spelling mistakes as shown below: 

“Four levels of time-delay (shifts), s, in milliseconds were induced in the SCG beats s = {0, 100, 

200, 300}. The beat was segmented according to the detected ECG R-peaks resulting in an 

unshifted beat (s = 0) or the start and end of beat segmentation was set to be earlier than the 



R-peak locations s = 100, 200, 300 resulting in a time-delayed beat.” - Section II Methods, B: 

Data Preprocessing 

“Future work should assess model performances with global templates. Additionally, the 

models were assessed in data from porcine subjects but should be evaluated with data from 

human subjects as well.” - Section IV Discussion and Conclusion 

“The above figure depicts the distributions of Kendall’s tau values (ranging from 1: perfectly 

ranked to -1: oppositely ranked) for all beats per model and shift. Topological Data Analysis 

using Persistence Diagrams (TDA) does comparably to DTFMD and DTFMS when there is no 

time-delay. TDA ranking performance remains robust with time-delay while DTFM performance 

diminishes.” - Figure 4 Caption 
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