
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SEMOBRIDGE: SEMANTIC MODALITY BRIDGE
FOR EFFICIENT FEW-SHOT ADAPTATION OF CLIP

Anonymous authors
Paper under double-blind review

ABSTRACT

While Contrastive Language-Image Pretraining (CLIP) excels at zero-shot tasks
by aligning image and text embeddings, its performance in few-shot classification
is hindered by a critical limitation: intra-modal misalignment. This issue, caused
by a persistent modality gap and CLIP’s exclusively inter-modal training objec-
tive, leaves the embedding spaces uncalibrated, making direct image-to-image
comparisons unreliable. Existing methods attempt to address this by refining
similarity logits or by computationally expensive per-sample optimization. To
overcome these challenges, we introduce SeMoBridge, a lightweight yet powerful
approach that directly addresses the misalignment. Our method maps images
into the text modality, while keeping their semantic content intact through
what we call a Semantic Modality Bridge. SeMoBridge is closed-form and can
optionally be trained through multi-modal supervision, combining image and
text-alignment losses to optimize the projection. Experiments show that the
trained version, SeMoBridge-T, requires only a fraction of the training time while
overall outperforming other methods, particularly in low-data scenarios (1, 2, and
4 shots).

1 INTRODUCTION
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Figure 1: Comparison of average Accuracy
against Training Time of few-shot image classi-
fication methods on 11 datasets. Our proposed
trained SeMoBridge-T achieves better accuracy
using only a fraction of the time.

Contrastive Language-Image Pretraining
(CLIP) (Radford et al., 2021) consists of a vi-
sion encoder and a text encoder that are jointly
trained to map images and text into a shared
embedding space. By leveraging large-scale
image-text pairs and optimizing a contrastive
objective, CLIP achieves strong inter-modal
alignment and remarkable generalization
capability. Owing to these properties, CLIP
has been widely adopted for downstream tasks
such as zero-shot and few-shot classification.

In few-shot classification, a query image must
be matched against a small set of labeled exam-
ples, which requires accurate image-to-image
comparison. Since this is a comparison within
the same modality, it can be viewed as an intra-
modal comparison and thus relies on well-
calibrated intra-modal alignment.

However, CLIP embeddings inherently suffer
from a modality gap (Liang et al., 2022), i.e., a separation between image and text modalities. This
separation, present from initialization, is not resolved by CLIP’s training. Instead, the contrastive
objective’s focus on pulling paired samples together across the gap leaves the internal semantic
structure of each modality uncalibrated. As a consequence, as shown in Figure 2, a query image of
a dog can be mistakenly placed closer to the cat few-shot centroid than to its correct dog counter-
part (dcat < ddog), resulting in misclassification.
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Figure 2: Left: Illustration of the modality gap, intra-modal misalignment, and our proposed Se-
mantic Modality Bridge (SeMoBridge). Due to intra-modal misalignment, query images can be
embedded closer to the wrong class. SeMoBridge addresses this by applying a single unified pro-
jection that maps image embeddings into the text modality, preserving their semantics and enabling
more accurate comparison. Right: Confusion matrices on a subset of 10 classes from the Oxford-
Pets dataset, comparing intra-modal and our bridged inter-modal approach. Each matrix shows how
query images are classified with respect to the few-shot support classes. SeMoBridge substantially
reduces class confusion by enabling more reliable comparisons.

Existing methods tackle this problem from two main directions. Some, such as Tip-X (Udandarao
et al., 2023) and APE (Zhu et al., 2023) avoid direct image-to-image comparisons altogether, relying
on indirect similarity measures via text prompts. While effective to some extent, this limits the
ability to capture fine-grained visual details. In contrast, Cross the Gap (Mistretta et al., 2025)
directly addresses this issue by mapping images to the text modality but requires computationally
expensive, per-sample optimization.

This leads us to ask our work’s central question: Can we design a method that overcomes intra-
modal misalignment without the high computational cost of per-sample optimization?

In this paper, we answer this by introducing SeMoBridge, a lightweight and efficient Semantic
Modality Bridge. It utilizes the pre-trained semantic structure of CLIP to create a single unified
projection that is applicable to all inputs and allows direct comparison of images. The advantage
of our method is illustrated in Figure 2 (left): Applying SeMoBridge enables aligned inter-modal
comparisons between the bridged query image and few-shots (d′dog < d′cat). Figure 2 (right): The
confusion matrices confirm this effect. Intra-modal comparisons often misclassify query images,
whereas SeMoBridge reduces such confusion through bridged inter-modal comparison.

Although SeMoBridge is designed to be training-free, it can be efficiently fine-tuned through multi-
modal supervised training that improves semantic alignment. By updating only the lightweight
bridge while keeping CLIP frozen, our method achieves a very low training cost, as shown in Fig-
ure 1. Extensive experiments across diverse benchmarks confirm that SeMoBridge achieves state-
of-the-art few-shot performance, especially in low-data scenarios.

We summarize the contributions of our work as follows:

• SeMoBridge, a lightweight, training-free Semantic Modality Bridge for efficient few-
shot adaptation of CLIP that minimizes compute by avoiding per-sample optimization.

• A novel multi-modal supervision strategy combining image and text-alignment losses en-
suring bridged embeddings keep semantic knowledge from both modalities, while avoiding
backpropagation through CLIP’s encoders.

• Extensive experiments that show SeMoBridge outperforms existing methods in few-
shot learning with significantly less training time, achieving higher accuracy and better
generalization, especially in very low-shot scenarios.
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2 RELATED WORK

Challenges in CLIP Few-shot Adaptation. Vision-language models such as CLIP (Radford
et al., 2021) have demonstrated strong performance in zero-shot and few-shot classification by em-
bedding images and texts into a shared semantic space. To leverage this, numerous methods have
been proposed to adapt CLIP to few-shot settings without modifying its pretrained backbone. How-
ever, CLIP few-shot adaptation is challenged by intra-modal misalignment, which arises from the
inherent modality gap in CLIP. This misalignment makes direct image-to-image comparisons unre-
liable, motivating the need for more robust adaptation strategies that address this problem.

Types of CLIP Few-shot Adaptation. Several approaches operate only at the prediction logit
level, based on Tip-Adapter (Zhang et al., 2021). Tip-X (Udandarao et al., 2023) addresses intra-
modal misalignment by bypassing direct image-to-image comparisons. Instead, it maps both query
and few-shot images into CLIP’s logit space by computing similarity distributions to a set of class
text prompts. These distributions are then compared using KL-divergence, forming an indirect mea-
sure of similarity between images. Adaptive Prior rEfinement (APE) (Zhu et al., 2023) refines CLIP
embeddings through feature selection and computes trilateral affinities among query, few-shot, and
text features, leading to more semantically accurate representations and robust predictions. Unlike
methods that rely on indirect similarity comparisons between query and few-shot embeddings, Logit
DeConfusion (LDC) (Li et al., 2025) introduces adapter modules that leverage the few-shot set to
learn class-level confusion patterns in CLIP, and applies corrections to improve classification.

While effective, these approaches operate only at the output logit level, and thus cannot fully lever-
age the inter-modal semantic priors in CLIP. We argue that a better adaptation can be achieved by
operating within the embedding space itself.

Optimization-based Modality Inversion. Overcoming the limitations of previous approaches,
recent work (Mistretta et al., 2025) introduces a direct embedding transformation method based
on modality inversion. They propose Optimization-based Textual Inversion (OTI), which learns a
pseudo-text token from a given image embedding, and Optimization-based Visual Inversion (OVI),
which is the reverse. While this approach provides a solution for intra-modal misalignment, it
requires iterative optimization at inference for every image or text sample, which increases compu-
tational cost and limits flexibility.

Closed-form Modality Inversion. SD-IPC (Ding et al., 2023) proposes a closed-form projection
method originally developed for converting image embeddings into the prompt embedding space
of Stable Diffusion (Rombach et al., 2022). Unlike OTI/OVI, which employ iterative optimiza-
tion, SD-IPC leverages the pre-trained alignment between CLIP’s image and text embeddings. It
enables efficient closed-form inversion without iterative optimization per-sample. This provides a
lightweight and general-purpose mechanism for modality inversion, although it is not designed for
classification.

Relations to Our Approach. Unlike existing approaches, our proposed SeMoBridge is the first
to address intra-modal misalignment by fully leveraging CLIP’s inter-modal semantic priors, while
remaining efficient and closed-form. In contrast to methods which operate only with similarity
logit refinement, SeMoBridge bridges the modality gap by mapping image embeddings into the text
space, enabling more reliable inter-modal comparisons. Different from OTI/OVI, that require ex-
pensive per-sample optimization at inference, our method eliminates this overhead through a single
shared projection that generalizes across all samples.

3 METHODOLOGY

3.1 PRELIMINARIES.

CLIP Review. We utilize the pre-trained CLIP model (Radford et al., 2021), which maps images
and texts into a shared d-dimensional embedding space. Given an image x and a corresponding
caption t (e.g., “a shiba inu smiling into the camera”), their embeddings are computed as follows:

xenc = Encimg(x) ∈ Rdi , ximg = Wimg(xenc) ∈ Rd,

3
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teos = EOS(Enctxt(t)) ∈ Rdt , ttxt = Wtxt(teos) ∈ Rd,

where Encimg is the image encoder and Enctxt the text encoder. EOS(·) extracts the end-of-
sequence (EOS) token from the text encoder’s output, which contains the semantic summary of
the text input. Finally, both images and texts are projected to ximg and ttxt through Wimg and
Wtxt, respectively, and then aligned in the shared space through contrastive training.

Few-shot classification problem. CLIP embeds transferable representations that enable both
zero-shot and few-shot learning across diverse visual concepts. Our goal is to predict the class
label yq ∈ {1, ..., C} of a query image xq by leveraging the given few-shot set D = {(xi, yi)}C×K

i=1 ,
of K shots for each class, totaling C ×K images. L ∈ RCK×C denotes the one-hot encoded labels
for the few-shot set.

An intuitive approach is to embed both the query image fimg ∈ Rd and few-shot images Fimg ∈
RC×K×d with CLIP, and then compute class-wise similarities fimgF

⊤
img for classification. How-

ever, due to intra-modal misalignment, image-image comparisons are often unreliable. As shown in
Figure 2, they can be noisy and fail to reflect true semantic relationships, highlighting the need for a
more robust solution.

3.2 SEMANTIC MODALITY BRIDGE.

We address this challenge by converting intra-modal comparisons into robust inter-modal ones,
leveraging the strong image-text alignment that CLIP was trained to learn. Our idea is to adapt
this alignment for few-shot classification by producing a text-like bridged embedding from an im-
age that allows more reliable comparisons within CLIP’s shared space.

To achieve this, we build on SD-IPC (Ding et al., 2023), which introduced a method for deriving
a “pseudo” End-of-Sequence (EOS) token from an image embedding that preserves its semantics.
While originally proposed for generating prompts in text-to-image models such as Stable Diffu-
sion (Rombach et al., 2022), we repurpose this mechanism for few-shot classification. Formally, we
first derive a pseudo-EOS token f̂eos using SD-IPC’s approach. Then we map it through CLIP’s text
projection layer Wtxt to obtain our final bridged embedding f̂txt, which can be directly and reliably
compared with image embeddings in CLIP’s shared space.

This process is justified by CLIP’s training objective, which explicitly maximizes the cosine simi-
larity between paired image and text embeddings. This forces their vector representations to point
in the same direction within the shared space. Based on this, we can assume that the normalized
vectors of an image embedding fimg and its corresponding (but unknown) text embedding f̂txt are
approximately equal:

fimg

∥fimg∥
≈ f̂txt

∥f̂txt∥
, where f̂txt = Wtxtf̂eos. (1)

With this approximation, we can estimate the unknown pseudo-EOS token f̂eos. The idea is to back-
project the pseudo text embedding f̂txt through the text projection matrix using its Moore–Penrose
pseudo-inverse W+

txt (Penrose, 1955). Since Eq. 1 implies that fimg’s direction is aligned with f̂txt,
we can substitute fimg in its place.

f̂eos ≈
∥f̂eos∥

∥W+
txtfimg∥

W+
txtfimg ≈

∥Teos∥
∥W+

txtfimg∥
W+

txtfimg. (2)

After the inverse projection, the magnitude (norm) may not match that of a real EOS token f̂eos. To
correct for this, we rescale ∥W+

txtfimg∥ so that it matches genuine EOS tokens. However, the true
norm ∥f̂eos∥ is unknown, we approximate it as the average EOS norm across all class descriptions.
∥Teos∥, which is computed as 1

CK

∑C
c=1

∑K
k=1 ∥Tc,k

eos∥.
Finally, we project it into the shared space to get the final bridged embedding:

4
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Figure 3: Overall architecture of our method. Left: At inference time, SeMoBridge maps both query
and few-shot images into the text modality. The resulting pseudo-EOS tokens are passed through
CLIP’s text projection layer, enabling robust inter-modal comparisons. Classification is performed
by blending three logits: CLIP’s Zero-Shot Prior, Original Few-Shots vs. Bridged Query, and Orig-
inal Query vs. Bridged Few-Shots. Right: SeMoBridge-T is supervised from both images and texts.
Three primary loss terms are used: image alignment, encoded text alignment, and projected text
alignment. Only the SeMoBridge parameters are updated, and all CLIP components remain frozen.

f̂txt = Wtxtf̂eos ≈
∥Teos∥

∥W+
txtfimg∥

fimg (3)

Here, by rearranging the scale factor to the front, we observe that the composition WtxtW
+
txt

approximately forms an identity matrix due to the properties of the pseudo-inverse. As a result,
the transformation simplifies to a scaled version of the original image embedding, with its magni-
tude aligned to that of a text embedding. Through this process, we can now perform image-image
comparisons inter-modally fimgFimg → f̂txtFimg (see Figure 2).

3.3 TRAINING-FREE SEMOBRIDGE INFERENCE.

SeMoBridge offers a powerful baseline that requires no training. It works by initializing the bridge
with the pseudo-inverse of CLIP’s text projection matrix.

To make a final prediction, we combine CLIP’s zero-shot prior with two few-shot signals derived
from our bridge. This is achieved by blending the logit scores (see Figure 3), each playing a specific
role in refining the classification decision:

• z1 Zero-Shot Prior. Standard inter-modal CLIP zero-shot logit, calculated as the similarity
between the original query image embedding (fimg) and the class text prompts (Ttxt).

• z2 Original Few-Shots (Fimg) vs. Bridged Query (f̂txt). This compares how well the
bridged query image matches the class few-shot images through CLIP’s inter-modal space.

• z3 Original Query (fimg) vs. Bridged Few-Shots (F̂txt). This offers a complementary
signal by doing the reverse: we now compare the original query image against the bridged
versions of the few-shot images, increasing robustness.

The final prediction is a weighted sum of these three logits: zq = λ1z1 + λ2z2 + λ3z3.

Where λi are scalar blending weights that balance the contribution of each similarity signal. Ad-
ditionally, we adapt the same logit sharpening strategy as APE (Zhu et al., 2023). All parameters

5
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are tuned via optimization on a validation set. This strategy enables SeMoBridge to robustly blend
signals while dynamically adapting to class confidence.

3.4 MULTI-MODAL SUPERVISED SEMOBRIDGE-T TRAINING.

By using multi-modal supervision, SeMoBridge-T is trained to align the bridged embeddings with
both their original images and class descriptions. This ensures robust semantic alignment with their
respective class. To adapt the projection better for our task, we add a class-specific bias (CSB)
term τ̂ ∈ RC×dt for each class after the transformation. This allows the bridge to capture nuanced
semantic differences across a large number of classes (e.g. 1000 for ImageNet), overcoming the
expressiveness bottleneck of a single projection.

Formally, during training, few-shot embeddings of a class c are bridged into the text modality fol-
lowing the procedure described in Section 3.2, in addition to the CSB term:

F̂c
eos ≈

∥Teos∥
∥Ŵ+

txtF
c
img + τ̂ c∥

(Ŵ+
txtF

c
img + τ̂ c) (4)

Here, Ŵ+
txt and τ̂ are learnable and our parameters to optimize. F̂c

eos is projected to F̂c
txt through

CLIP’s text projection Wtxt. Notably, the CSB learned from the few-shot set during training is not
applied to bridge the query image embedding fimg, since its class is unknown.

We train SeMoBridge-T using the following multi-modal loss objective:

L = λitLimg + (1− λit)(
Ltxte + Ltxtp

2
) + λcLcons + λbLbias (5)

First, Limg ensures that the bridged few-shots F̂txt retain semantic information of the few-shot
embeddings Fimg, computed using the centroid of the K shots per class. Second, Ltxte encourages
alignment to the class description EOS tokens Teos. Ltxtp is the same, but in projected CLIP space.
Together, these primary losses guide the bridge to learn representations that retain both visual and
textual semantic information. Image and text influence is balanced by a hyperparameter λit = 1

2 ,
which we keep fixed for all datasets.

In addition, we include Lcons as a generalization that encourages all bridged few-shots F̂txt ∈
RC×K×d within the same class to be similar to each other. This promotes more robust representa-
tions for each class. The final term Lbias stabilizes training by regularizing the norms of the CSB
vectors τ̂ ∈ RC×dt , ensuring that they remain balanced across classes. This is particularly impor-
tant because these biases are not applied when bridging query images during inference, and high
variation could lead to instability of the bridge. Their respective coefficients λc = 1

10 and λb = 1
10

are both fixed as well.

4 EXPERIMENTS

Table 1: Comparison of training metrics. We re-
port average accuracy (%) of all shot settings. Pa-
rameters are for 16-shot ImageNet on ViT-B/16.

Method Param. Avg. Time Avg. Acc.

CoOp 0.01 M 10 h 0 min 63.90
CLIP-Adapter 0.52 M 32 min 69.45
Tip-Adapter-F 16.3 M 4 min 75.90
LDC 69 M 2 min 77.17
APE-T 0.51 M 3 min 30 s 77.18
PromptSRC 0.05 M 1 h 42 min 77.90
SeMoBridge-T w/o CSB 0.26 M 22 s 78.14
SeMoBridge-T 0.77 M 27 s 78.15

We evaluate SeMoBridge and SeMoBridge-T
across 11 datasets commonly used in few-shot
image classification (details in Appendix A.1).
All experiments are done using CLIP’s ViT-
B/16 unless otherwise stated. Further imple-
mentation details are in Appendix A.2.

Performance against state-of-the-art. Fig-
ures 4 and 5 present accuracy across all
datasets and shot counts for SeMoBridge and
SeMoBridge-T, respectively. The training-
free SeMoBridge outperforms APE on 7/11
datasets, with great improvements on low shot
counts (1, 2, and 4). Similarly, SeMoBridge-T overall outperforms all prior methods on low shot
counts while requiring a fraction of the training time (see Figure 1). Results on RN-50 are reported
in Appendices 11 and 12.
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Figure 4: Few-shot accuracy of training-free SeMoBridge against other methods with ViT-B/16.

Table 2: Comparison of accuracy (%) under 16-
shot ImageNet out-of-distribution setting.

Method Source Target

ImageNet -V2 -Sketch

Zero-Shot
CLIP 66.73 60.83 46.15
Training-free
APE 71.81 64.81 49.95
SeMoBridge 71.86±0.05

+0.05
64.90±0.08

+0.09
49.55±0.02

-0.40
Training
CoOp 71.51 64.20 47.99
CoCoOp 71.02 64.07 48.75
MaPLe 70.72 64.07 49.15
LDC 73.88 66.10 48.85
APE-T 74.13 66.21 49.73

SeMoBridge-T 73.98±0.05
-0.15

66.49±0.04
+0.28

50.44±0.14
+0.71

Efficiency Analysis. We report parameter
count, training time, and accuracy in Table
1. SeMoBridge-T achieves superior accuracy
to other methods, while requiring a fraction
of the training time. This is the result of
its lightweight architecture, backpropagating
through only the text projection and small pro-
jection module. The minimal memory and
compute footprint makes SeMoBridge highly
practical for real-world applications.

Robustness to Distribution Shift. In Table
2, we evaluate robustness to distribution shift
by using the 16-shot standard ImageNet few-
shot set and testing on variants. Interestingly,
SeMoBridge-T outperforms existing methods
on both OOD sets by up to +0.71 % even though
standard ImageNet accuracy is lower. This sug-
gests that the bridged representations general-
ize well across domains and is robust.

5 ABLATION STUDY

The Role of Text Supervision. SeMoBridge-T excels in low-data settings (1, 2, and 4 shots) due
to its effective use of text supervision, an advantage that grows as the number of shots decreases. Fig-
ure 6 (right) reveals that descriptive, LLM-generated prompts, such as CuPL (Pratt et al., 2023), pro-
vide a greater performance benefit over simpler templates when fewer images are available. These
rich prompts offer class-specific semantic information, such as attributes and context, which the
model can leverage when visual data is scarce. SeMoBridge-T is designed to take advantage of this:
during training, bridged embeddings are aligned with both image and text modalities. This allows
the model to rely on strong semantic priors from text prompts when image supervision is weak. Ab-
lation studies (Table 3) confirm this, showing that adding textual alignment losses (Ltxte and Ltxtp)
provides the largest accuracy boost in 1-shot scenarios. The benefit of text supervision diminishes in
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Figure 5: Few-shot accuracy of trained SeMoBridge-T against other methods with ViT-B/16.

            
  

    

  

    

  

    

  

                    

 
  
 
  
  
  
 
 

      

  

  

  

  

  

  

                 

            

             

    

                  

               

 
  
 
  
  
  
 
 

      

  

  

  

  

  

  

                 

            

             

    

                  

               

 
  
 
  
  
  
 
 

Figure 6: Left: Sensitivity analysis of λit, λc, and λb on 16-shot ImageNet. Performance is sta-
ble across varying hyperparameters. Right: Analysis of different class text prompt templates on
SeMoBridge-T’s average accuracy over 11 datasets for different numbers of shots.

higher-shot settings (8-16 shots) as the model can increasingly rely on the visual information from
the larger set of few-shot images.

Cosine similarity distribution. An analysis of cosine similarity distributions (Figure 7) shows
the effectiveness of SeMoBridge in addressing intra-modal misalignment. Direct image-to-image
comparisons (2) suffer from poor calibration, demonstrated by a large overlap in similarity scores
between images of the same class (paired) and those from different classes (unpaired).
SeMoBridge resolves this by transforming image embeddings into the text modality, which pre-
serves semantic information and achieves a much clearer separation between paired and unpaired
samples (3), similarly to CLIP’s pre-training (1).
The trained version, SeMoBridge-T, further enhances this effect, increasing the separation between
the distributions (4) and confirming its ability to correct the misalignment and enable more reliable
comparisons.

Impact of loss terms. Table 3 presents an ablation of the SeMoBridge-T training loss compo-
nents. Image supervision (Limg) is most critical when a large number of shots are available (16-
shot). However, in very low-data settings (1-shot), the addition of text supervision (Ltxte, Ltxtp)
becomes essential. It provides complementary semantic knowledge from LLMs, which improves
performance when visual data is scarce. Combining both image and text supervision leads to con-
sistent improvements across all settings.
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Figure 7: Histogram of cosine similarity distributions on ImageNet’s few-shot set using different
comparison methods. Each method shows the similarity for unpaired (different class) and paired
(same class).

Table 3: Ablation study of SeMoBridge-T’s train-
ing loss terms and their impact on accuracy (%)
over 11 datasets for 1 and 16 shot tasks.

Loss Terms K-Shot-Accuracy (%)
Limg Ltxtp Ltxte Lcons Lbias 1 16 avg.

No supervision 72.25 78.09 75.17
Image

✓ 72.74 81.79 77.27
✓ ✓ ✓ 72.95 82.38 77.67

Text
✓ ✓ 71.91 77.47 74.69
✓ ✓ ✓ ✓ 72.17 77.15 74.66

Image + Text
✓ ✓ ✓ 73.96 81.88 77.92
✓ ✓ ✓ ✓ 73.99 82.18 78.09
✓ ✓ ✓ ✓ ✓ 74.01 82.20 78.11

While the consistency loss Lcons shows no ben-
efit in the 1-shot regime, where there is no
intra-class variation in the few-shot set, it be-
comes important as the number of shots in-
creases. In the 16-shot setting, it improves gen-
eralization by encouraging the bridged embed-
dings of all shots within the same class to stay
similar. Finally, the bias norm regularization
Lbias provides additional stability with the best-
performing configuration.

Ablation of Logits. Table 4 presents SeMo-
Bridge’s accuracy when using only specific
logit signals for prediction. The first row with
only z1 refers to zero-shot CLIP. z2 and z3
are SeMoBridge-derived logits. Notably, Se-
MoBridge and SeMoBridge-T are both able to
achieve excellent accuracy even without CLIP’s
logit signal (z2 + z3). Although the 1-shot-
scenario does not provide enough informa-
tion for the training-free model in this case,
SeMoBridge-T’s training strategy yields large
improvements.

Table 4: Ablation of the impact of logit signals on
accuracy over 11 datasets for 1 and 16 shot tasks.
Results are shown for both the training-free Se-
MoBridge and the trained SeMoBridge-T.

Logits K-Shot-Accuracy (%)
SeMoBridge SeMoBridge-T

z1 z2 z3 1 16 avg. 1 16 avg.
✓ 65.52 65.52 65.52 65.52 65.52 65.52

✓ 40.92 70.78 55.85 42.26 77.12 59.69
✓ 37.23 62.59 49.91 72.36 81.31 76.84

✓ ✓ 40.97 70.72 55.85 72.58 82.05 77.32
✓ ✓ 72.25 78.06 75.16 73.65 81.62 77.64
✓ ✓ ✓ 72.25 78.09 75.17 74.02 82.35 78.19

In the trained model, bridging the few-shot im-
ages to the text modality (z3) yields the best
accuracy when using only a single logit sig-
nal. This is because SeMoBridge-T was trained
to bridge the few-shot set into the text modal-
ity while preserving the semantic information.
Bridging the unseen query image (z2) is also
effective for the 16-shot scenario.

6 CONCLUSION

We propose SeMoBridge, a Semantic Modality Bridge that efficiently adapts CLIP for few-shot
classification by resolving intra-modal misalignment. By bridging image embeddings into the text
modality via a closed-form transformation, SeMoBridge enables more accurate few-shot learning
by leveraging CLIP’s strong inter-modal alignment. Its lightweight trainable variant, SeMoBridge-
T, uses multi-modal supervision to further enhance performance. Extensive experiments across 11
datasets confirm that our method achieves state-of-the-art results with minimal computational cost,
outperforming existing baselines. Future work will extend SeMoBridge to other CLIP-based tasks
like multi-modal retrieval and object detection.
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Reproducibility Statement. To ensure the reproducibility of our results and ensure a fair com-
parison with prior work, all of our experiments are built upon the Dassl framework by the CoOp
authors (Zhou et al., 2022). Given that few-shot accuracy is highly sensitive to the specific samples
available, its use guarantees that we evaluate our approach on the exact same few-shot data splits
as methods like CoOp and Tip Adapter (Zhang et al., 2021). Comprehensive details regarding the
datasets, data augmentation strategies, hyperparameters, and other implementation specifics are doc-
umented in the Appendices A.1 and A.2. Our full source code with running instructions is included
in the supplementary material.
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A APPENDIX

A.1 DATASET DETAILS

We evaluate SeMoBridge and SeMoBridge-T across 11 datasets commonly used in few-shot im-
age classification: OxfordPets (Parkhi et al., 2012), OxfordFlowers (Nilsback & Zisserman, 2008),
FGVCAircraft (Maji et al., 2013), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), Stan-
fordCars (Krause et al., 2013), Food101 (Bossard et al., 2014), SUN397 (Xiao et al., 2010), Cal-
tech101 (Fei-Fei et al., 2004), UCF101 (Soomro et al., 2012), and ImageNet (Deng et al., 2009). For
robustness evaluation, we follow standard practice and test on out-of-distribution (OOD) splits -V2
and -Sketch (Recht et al., 2019) derived from ImageNet. In all experiments, we follow the few-shot
setup of CoOp (Zhou et al., 2022), using 1, 2, 4, 8, or 16 labeled image samples per class. For each
dataset, shot count, and vision encoder, we run three experiments with seeds 1, 2, and 3. We report
the standard deviation of the accuracy based on them.

In Table 5, we present dataset sizes, the calculated ∥Teos∥ from Equation 4, and which data aug-
mentation is applied to the few-shot sets. Augmented shots are treated the same as ”real” shots,
essentially increasing the size of K by creating altered images.

Table 5: Dataset statistics including average CLIP text token length ∥Teos∥ and data augmentation
strategy.

Dataset Classes Train Test ∥Teos∥ Few-shot Augmentation

ViT-B/16 RN-50 Aug. Epochs Hor. Flip Rand. Res. Crop Rand. Hor. Flip Col. Jitter

ImageNet 1,000 1.28M 50,000 19.82 18.78 1 ✓
Caltech101 100 4,128 2,465 19.37 18.40 0
DTD 47 2,820 1,692 20.10 18.89 10 ✓ ✓ ✓
EuroSAT 10 1,600 8,100 20.26 19.08 1 ✓
FGVCAircraft 100 3,334 3,333 20.42 19.31 1 ✓
Flowers102 102 4,093 2,463 21.02 19.59 10 ✓ ✓ ✓
Food101 101 50,500 30,300 19.89 18.87 0
OxfordPets 37 2,944 3,669 20.79 19.53 0
StanfordCars 196 6,509 8,041 20.67 19.55 1 ✓
SUN397 397 15,880 19,850 19.49 18.56 1 ✓
UCF101 101 7,639 3,783 19.99 18.86 1 ✓

A.2 IMPLEMENTATION DETAILS

For class text descriptions, we use a combination of CLIP’s handmade templates and CuPL-
generated LLM prompts (Pratt et al., 2023), following APE (Zhu et al., 2023). We apply horizontal
flipping, random resized crop, and color jittering as data augmentation to the few-shot set. This is
applied depending on the dataset characteristics.

All input images are resized such that the longer side is 224 pixels, followed by center-crop to 224×
224, and normalization following CLIP preprocessing. SeMoBridge-T is trained using AdamW for
5000 epochs, with a fixed learning rate of 0.15e−4 and linear warmup for the first 500 epochs. We
preload all few-shot samples into GPU memory, eliminating the need for batching. After training,
we first select the best model epoch based on the accuracy on the held-out validation set, and then
optimize the logit blending parameters on it.

We run the experiments using an RTX 4090 (24GB) and a Ryzen 5 5600X with 32GB RAM on
Ubuntu 22.04 LTS. GPU memory used during training is 10GB. Main packages are Python 3.12.8
and PyTorch version 2.7.0 on CUDA 12.8.

A.3 THE ROLE OF CLASS-SPECIFIC BIAS AND Lbias

To better understand the behaviour of the class-specific bias (CSB) vectors used in SeMoBridge-T,
we analyze their ℓ2-norms across the classes of the FGVCAircraft dataset. We compare 16-shot
models trained with and without the regularization term Lbias.

As shown in Figure 8, the regularized biases (green) have no variance. The class-specific vectors
are uniformly scaled, which helps the bridge to stay balanced across classes. In contrast, the unreg-
ularized norms (red) vary much more, indicating that some classes dominate the bridge more than
others.
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Figure 8: Class-specific bias norm ∥τ̂∥ ∈ RC comparison
with and without Lbias on FGVCAircraft’s 100 classes.

Figure 9: Examples from FGVCAir-
craft.
Top: 707-320 (visually regular).
Bottom: Spitfire (visually distinct).

This is a problem during inference. Since the class of the query image is unknown, we cannot apply
the class-specific bias to it. The bridge must operate in a way that is semantically centered across
all classes. If the learned biases are highly unbalanced, the bridged query embedding may be pulled
towards a subset of the classes, hindering generalization.

Interestingly, the bias norm is smaller for ”regular looking” or common aircraft such as the 707-320,
CRJ-200, and MD-90. For more visually distinct aircraft like the Hawk T1 and Spitfire, the bias
norm is much larger. This suggests that the unregularized bridge is centered around the more typical
aircraft, which makes the bridging less effective for unusual classes. A Spitfire query, for example,
may be poorly aligned if the bridge has shifted away from that region of the space.

Regularizing the bias norms encourages the model to keep all classes equally represented in the
bridging space. This helps maintain alignment even for visually unique classes, improving general-
ization at inference time.

We report class-specific bias norms for all 11 datasets in Figure 10.
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Figure 10: Class-specific bias norm ∥f̂∥ ∈ RC comparison with and without Lbias on all 16-shot
datasets.
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A.4 GPT-3 PROMPTS USED IN CUPL

In Table 6, we show all prompts used for GPT-3 to generate the class descriptions for each dataset.

Table 6: GPT-3 Commands Used in CuPL.

Dataset GPT-3 Commands
ImageNet “Describe what a {} looks like”

“How can you identify {}?”
“What does {} look like?”
“Describe an image from the internet of a {}”
“A caption of an image of {}:”

Caltech101 “Describe what a {} looks like”
“What does a {} look like”
“Describe a photo of a {}”

DTD “What does a {} material look like?”
“What does a {} surface look like?”
“What does a {} texture look like?”
“What does a {} object look like?”
“What does a {} thing look like?”
“What does a {} pattern look like?”

EuroSAT “Describe an aerial satellite view of {}”
“How does a satellite photo of a {} look like”
“Visually describe a satellite view of a {}”

FGVCAircraft “Describe a {} aircraft”

Flowers102 “What does a {} flower look like”
“Describe the appearance of a {}”
“A caption of an image of {}”
“Visually describe a {}, a type of flower”

Food101 “Describe what a {} looks like”
“Visually describe a {}”
“How can you tell the food in the photo is a {}?”

OxfordPets “Describe what a {} pet looks like”
“Visually describe a {}, a type of pet”

StanfordCars “How can you identify a {}”
“Description of a {}, a type of car”
“A caption of a photo of a {}:”
“What are the primary characteristics of a {}?”
“Description of the exterior of a {}”
“What are the characteristics of a {}, a car?”
“Describe an image from the internet of a {}”
“What does a {} look like?”
“Describe what a {}, a type of car, looks like”

SUN397 “Describe what a {} looks like”
“How can you identify a {}?”
“Describe a photo of a {}”

UCF101 “What does a person doing {} look like”
“Describe the process of {}”
“How does a person {}”

ImageNet-V2 “Describe what a {} looks like”
“How can you identify {}?”
“What does {} look like?”
“Describe an image from the internet of a {}”
“A caption of an image of {}:”

ImageNet-Sketch “Describe what a {} looks like”
“How can you identify {}?”
“What does {} look like?”
“Describe an image from the internet of a {}”
“A caption of an image of {}:”
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A.5 FULL ALGORITHMS FOR INFERENCE AND TRAINING.

In Algorithms 1 and 2, we describe our inference and training processes in detail.

Algorithm 1 Training-free SeMoBridge Inference

1: Definition.
Pretrained CLIP encoders: Encimg, Enctxt,
Pretrained projection matrices: Wimg,Wtxt,
Pseudo-inverse projection: W+

txt ← pinv(Wtxt),
Sharpening function: ϕ(z, λ) = exp(−λ(1− z)),

2: Input:
Query image xq ,
Few-shot set D = {(xi, yi)}C×K

i=1 ,
Text prompts {tc}Cc=1,
Class-wise one-hot labels L ∈ RC×C

3: Output: Prediction logits zq ∈ RC

4: Encode and project the query&few-shot set:
fqimg ∈ Rd ←Wimg(Encimg(xq))

Fimg ∈ RC×K×d ← {Wimg(Encimg(xi))}C×K
i=1

5: Encode and project the text prompts:
Teos ∈ RC×dt ← {EOS(Enctxt(tc))}Cc=1
Ttxt ∈ RC×d ← {Wtxt(T

c
eos)}Cc=1

6: Compute text token norm estimate:
∥Teos∥ ← 1

C

∑C
i=1 ∥Ti

eos∥
7: Compute bridged query image:

f̂qeos ∈ Rdt ← ∥Teos∥
∥W+

txtf
q
img∥
·W+

txtf
q
img

f̂qtxt ∈ Rd ←Wtxt(f̂
q
eos)

8: for all few-shot embeddings Fi
img ∈ Ftxt do

9: F̂i
eos ∈ Rdt ← ∥Teos∥

∥W+
txtF

i
img∥
·W+

txtF
i
img

10: F̂i
txt ∈ Rd ←Wtxt(F̂

i
eos)

11: end for
12: Compute class-wise mean of few-shot embeds:

F′
img ∈ RC×d ← Classwisemean(Fimg)

F̂′
txt ∈ RC×d ← Classwisemean(F̂txt)

13: Normalize:
F′

img ← Normalize(·)
F̂′

txt ← Normalize(·)
Ttxt ← Normalize(·)

14: Optimize logit blending parameters on validation set:
α, β, γ, δ, λ1, λ2, λ3, λ4

15: Compute soft label matrix:
L̃ ∈ RC×C = exp

(
θ ·DKL(F

′
imgT

⊤
txt∥L)

)
16: Compute logits:

z1 ← ϕ(fqimgT
⊤
txt, α)

z2 ← ϕ(f̂qtxtF
′⊤
img, γ) · L̃

z3 ← ϕ(fqimgF̂
′⊤
txt, β) · L̃

17: Compute final logits:
zq ← λ1z1 + λ2z2 + λ3z3

18: return zq
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Algorithm 2 Training Procedure for SeMoBridge-T

1: Definition.
Pretrained CLIP encoders: Encimg, Enctxt,
Projection matrices: Wimg,Wtxt ∈ Rdt×d,
Pseudo-inverse projection: W+

txt ← pinv(Wtxt),
Trainable inverse projection: Ŵ+

txt ←W+
txt,

2: Input:
Few-shot set D = {(xi, yi)}C×K

i=1 ,
Text prompts {tc}Cc=1,
Class-wise one-hot labels L ∈ RC×C

Consistency loss target Lcons ∈ RCK×C

3: Output:
Trained inverse projection Ŵ+

txt ∈ Rd×dt

Trained class-specific bias f̂c ∈ RC×dt

4: Encode and project the few-shot set:
Fimg ∈ RC×K×d ← {Wimg(Encimg(xi))}C×K

i=1
5: Encode and project the text prompts:

Teos ∈ RC×dt ← {EOS(Enctxt(tc))}Cc=1
Ttxt ∈ RC×d ← {Wtxt(T

c
eos)}Cc=1

6: Compute norm estimate: ∥Teos∥ ← 1
C

∑C
i=1 ∥Ti

eos∥
7: for each training epoch do
8: Compute bridged few-shot embeddings:

F̂c,k
eos ←

∥Teos∥
∥Ŵ+

txtF
c,k
img∥
· Ŵ+

txtF
c,k
img + f̂c

F̂c,k
txt ←Wtxt(F̂

c,k
eos)

9: Compute class-wise mean embeddings:
F′

img ∈ RC×d ← Classwisemean(Fimg)

F̂′
txt ∈ RC×d ← Classwisemean(F̂txt)

F̂′
eos ∈ RC×dt ← Classwisemean(F̂eos)

10: Normalize:
F′

img ← Normalize(·)
F̂′

txt, F̂′
eos ← Normalize(·)

T′
txt,T

′
eos ← Normalize(·)

11: Compute loss terms:
Image loss:
Limg ← CE

(
F′c

img · F̂′c⊤
txt, Lc

)
Encoded text loss:
Ltxte ← CE

(
B̂′c

eos ·T′c⊤
eos, Lc

)
Projected text loss:
Ltxtp ← CE

(
F̂′c

txt ·T′c⊤
txt, Lc

)
Consistency loss:
Lcons ← CE

(
f̂ ctxt · F′c⊤

img, Lcons

)
Bias regularization:

Compute mean norm: τ̄ ← 1
C

∑C
c=1 ∥τ̂c∥

Lbias ← 1
C

∑C
c=1(∥τ̂c∥ − τ̄)2

12: Compute total loss:
L ← λitLimg + (1− λit) · Ltxte+Ltxtp

2
+λc · Lcons + λb · Lbias

13: Update Ŵ+
txt, τ̂c via gradient descent

14: end for
15: return Ŵ+

txt, τ̂c
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A.6 FEW-SHOT RESULTS USING RESNET-50.

In Figures 11 and 12, we plot RN-50 results for all datasets in comparison with other few-shot
methods.
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Figure 11: Few-shot accuracy of SeMoBridge against other training-free methods with RN-50.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

1 2 4 8 16

64.0
66.0
68.0
70.0
72.0
74.0
76.0
78.0
80.0

SeMoBridge-T
LDC
APE-T
Tip-Adapter-F

Average

A
cc

. (
%

)

1 2 4 8 16

61.0
62.0
63.0
64.0
65.0
66.0

SeMoBridge-T
LDC
APE-T
Tip-Adapter-F

ImageNet

1 2 4 8 16
89.0

90.0

91.0

92.0

93.0

94.0

SeMoBridge-T
LDC
APE-T
Tip-Adapter-F

Caltech101

1 2 4 8 16

50.0

55.0

60.0

65.0

70.0

SeMoBridge-T
LDC
APE-T
Tip-Adapter-F

DTD

1 2 4 8 16

60.0
65.0
70.0
75.0
80.0
85.0
90.0

SeMoBridge-T
LDC
APE-T
Tip-Adapter-F

EuroSAT

A
cc

. (
%

)

1 2 4 8 16

20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0

SeMoBridge-T
LDC
APE-T
Tip-Adapter-F

FGVCAircraft

1 2 4 8 16
80.0
82.0
84.0
86.0
88.0
90.0
92.0
94.0
96.0

SeMoBridge-T
LDC
APE-T
Tip-Adapter-F

Flowers102

1 2 4 8 16

77.5

78.0

78.5

79.0

79.5

SeMoBridge-T
LDC
APE-T
Tip-Adapter-F

Food101

1 2 4 8 16

86.5
87.0
87.5
88.0
88.5
89.0
89.5
90.0
90.5

SeMoBridge-T
LDC
APE-T
Tip-Adapter-F

OxfordPets

Shots
A

cc
. (

%
)

1 2 4 8 16

60.0

65.0

70.0

75.0

80.0

SeMoBridge-T
LDC
APE-T
Tip-Adapter-F

StanfordCars

Shots
1 2 4 8 16

64.0

66.0

68.0

70.0

72.0

SeMoBridge-T
LDC
APE-T
Tip-Adapter-F

SUN397

Shots
1 2 4 8 16

65.0

70.0

75.0

80.0

SeMoBridge-T
LDC
APE-T
Tip-Adapter-F

UCF101

Shots

Figure 12: Few-shot accuracy of SeMoBridge-T against other trained methods with RN-50.

B LLM USAGE FOR WRITING OF THIS PAPER

LLMs were used as a writing aid throughout the preparation of this manuscript. We employed LLMs
to assist with sentence formulation, improve clarity, and for general grammatical polishing to refine
the overall readability of the text.
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