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A DERIVATION OF THE ELBO

The variational inference Evidence Lower BOund is defined as
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Using these expressions, the ELBO takes the following form:
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The expectation can be split in two terms:
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The logarithm in the first term does not depend on the regression coefficients {Al}Ll=1 and neither on
{F l}L−1

l=1 . On the other hand, the logarithm on the second term does not depend on {F l}Ll=1 . Thus,
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B DERIVATION OF THE MARGINALS

The variational distribution q({f l}Ll=1) factorizes as the product of Gaussian distributions:
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As a result, the nth marginal of the final layer depends only on the nth marginals of the other layers.
That is,
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C EXPERIMENTAL SETTINGS

To speed-up computations in DVIP, at each layer l the generative function that defines the IP prior is
shared across units. That is, the function gθl

h
(·, z) is the same for every dimension h in that layer. As

a consequence, the prior IP samples only need to be generated once per layer, as in Ma et al. (2019).
In the BNN prior of DVIP and VIP, we tune the prior mean and variance of each weight and bias
by maximizing the corresponding estimate of the marginal likelihood. As no regularizer is used for
the prior parameters, the prior mean and variances are constrained to be the same in a layer of the
BNN. This configuration avoids over-fitting and leads to improved results. The positive effect of this
constraint is shown in Appendix D. In DGP we consider 100 shared inducing points in each layer.
We use ADAM (Kingma and Ba, 2015) as the optimization algorithm, and we set the learning rate
to 10−3, in DVIP, as in Ma et al. (2019). In DGP we use 10−2 as the learning rate, as in Salimbeni
and Deisenroth (2017). Unless indicated otherwise, in DVIP and DGP we use the input dimension
as the layer dimensionality, i.e Hl = D, for l = 1, . . . , L− 1. In DGP the kernel employed is RBF
with ARD (Rasmussen and Williams, 2006). The batch size is 100. All methods are trained for
150, 000 iterations unless indicated otherwise. In VIP we do not employ the marginal likelihood
regularizer described in Ma et al. (2019), since the authors of that paper told us that they did not use
it in practice. Similarly, we do not regularize the estimation of the prior IP covariances in VIP nor
DVIP. The inner dimensions of DVIP and DGP are fixed to the minimum between the number of
attributes of the dataset and 30, as in Salimbeni and Deisenroth (2017). We use α = 0.5 for VIP, as
suggested in Ma et al. (2019). The reason why α = 0 is used in the experiments on DVIP is that the
use of alpha-divergences requires the optimization of the hyper-parameter α, which was against our
no hand-tuning approach. Moreover, even if a fixed value of α could perform well on average, its use
would also require to propagate more than one Monte Carlo sample to get a low biased estimate of
objective function, which slows down training. For these reasons, we decided to keep the standard VI
ELBO. Future work may consider using alpha-divergences for training DVIP. The source code can be
accessed using the Github Repository DeepVariationalImplicitProcesses.

D IMPACT OF THE CONSTRAINED PRIOR

Figure 5 shows, on a toy problem, the obtained predictive distributions and learned prior samples
of VIP, for α = 0. This corresponds to a 1 layer particular case of DVIP. We consider two cases:
(1) using a full unconstrained prior BNN, in which the mean and variance of each weight and bias
can be independently tuned, (shown above) and (2), the considered constrained BNN in which prior
means and variances are shared across layers (shown below). The second approach considerably
reduces the number of parameters in the prior and we observe that it generates smoother prior
functions. The predictive distribution is also smoother than when the prior is unconstrained. However,
despite providing better results by avoiding over-fitting, there might be datasets where using the full
unconstrained parameterization of the BNN leads to improved results. For example, in problems
where a more flexible prior may be beneficial to obtain good generalization properties on un-seen
data.

Consider the Boston and the Energy datasets. To highlight that prior over-fitting is a dataset-specific
matter, Table 4 shows the obtained results using an unconstrained prior and a constrained prior for
VIP on the aforementioned datasets. As one may see, significantly over-fitting is taking place on
Boston. More precisely, the training error improves a lot when using the un-constrained prior. By
contrast, test error and other performance metrics deteriorate on the test set. In Energy, however, a
more flexible prior results in better test RMSE and CRPS, but worse test log-likelihood.

Table 4: Results on Boston and Energy dataset using the constrained and unconstrained BNN prior
for VIP with α = 0.

Unconstrained RMSE Train RMSE Test NLL Train NLL Test CRPS Train CRPS Test

Boston 0.05± 0.00 5.85± 0.14 −1.21± 0.19 5126.07± 274.79 0.03± 0.00 4.31± 0.08
Energy 0.14± 0.00 0.57± 0.01 −0.51± 0.01 6.52± 0.42 0.079± 0.00 0.36± 0.01

Constrained RMSE Train RMSE Test NLL Train NLL Test CRPS Train CRPS Test

Boston 3.90± 0.02 4.73± 0.24 2.77± 0.00 23.03± 0.07 2.06± 0.01 2.40± 0.08
Energy 2.35± 0.03 2.57± 0.08 2.27± 0.01 2.07± 0.02 1.28± 0.01 1.27± 0.04
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Figure 5: Resulting predictive distribution and prior samples over a toy dataset with full BNN prior
(above) and constraint prior BNN (below).

E IMPACT OF THE NUMBER OF PRIOR SAMPLES

We explore the impact of the number of prior samples S has on the performance and training time
of the proposed method. Table 5 shows the results obtained using DVIP with 3 layers on Protein
and Power datasets (UCI). These results show how increasing the number of prior samples produces
better results, in terms of performance, compared to using lower values of S. However, it is important
to consider that this value scales quadratically the computational complexity of evaluating the ELBO,
heavily influencing the training cost of the model.

Table 5: Results on Power and Protein datasets (UCI) using DVIP with 3 layers and different values
of the number of prior samples S.

Power S = 10 S = 20 S = 30 S = 40 S = 50

RMSE 4.03± 0.04 4.01± 0.04 3.94± 0.04 3.92± 0.04 3.94± 0.04
NLL 2.81± 0.01 2.81± 0.00 2.79± 0.01 2.78± 0.01 2.79± 0.01
CRPS 2.19± 0.01 2.18± 0.01 2.14± 0.01 2.11± 0.01 2.13± 0.01
CPU Time (s) 2693± 19 2806± 22 3152± 20 3451± 63 3742± 55

Protein S = 10 S = 20 S = 30 S = 40 S = 50

RMSE 4.53± 0.01 4.40± 0.01 4.28± 0.01 4.27± 0.01 4.21± 0.01
NLL 2.92± 0.00 2.90± 0.00 2.87± 0.00 2.86± 0.00 2.85± 0.00
CRPS 2.52± 0.00 2.43± 0.00 2.36± 0.00 2.34± 0.00 2.31± 0.00
CPU Time (s) 2334± 28 2734± 19 3616± 11 3727± 35 4330± 52

F ROBUSTNESS OVER THE PRIOR BNN ARCHITECTURE

In this section, we study the impact that changing the prior BNN structure has over the performance
of the proposed method. Table 6 shows the results obtained using DVIP with 2,3 and 4 layers on
Protein and Power datasets (UCI) with two different BNN structures, 2 hidden layers with 20 units
(20-20) and 3 hidden layers with 10 units (10-10-10). These results (that are to be compared with
the original ones obtained using 2 hidden layers and 10 units on Table 11) show that changing the
structure of the BNN does not heavily affect the obtained results, given that it is capable of learning
similar function distributions with the different BNN architectures.
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Table 6: Results on Power and Protein datasets (UCI) using DVIP with different prior BNN architec-
tures.

BNN 10-10-10 BNN 20-20

Power DVIP 2 DVIP 3 DVIP 4 DVIP 2 DVIP 3 DVIP 4

RMSE 4.02± 0.04 3.94± 0.04 3.97± 0.04 4.02± 0.04 3.99± 0.04 3.93± 0.04
NLL 2.81± 0.01 2.79± 0.00 2.80± 0.01 2.81± 0.01 2.80± 0.01 2.79± 0.01
CRPS 2.18± 0.01 2.13± 0.01 2.15± 0.01 2.18± 0.01 2.16± 0.01 2.13± 0.01

Protein DVIP 2 DVIP 3 DVIP 4 DVIP 2 DVIP 3 DVIP 4

RMSE 4.57± 0.01 4.37± 0.01 4.29± 0.01 4.55± 0.01 4.43± 0.01 4.31± 0.01
NLL 2.93± 0.00 2.89± 0.00 2.87± 0.00 2.93± 0.00 2.90± 0.00 2.87± 0.00
CRPS 2.55± 0.00 2.42± 0.00 2.36± 0.00 2.54± 0.00 2.45± 0.00 2.37± 0.00

G USING A GP AS PRIOR IN DVIP AND VIP

In this section we investigate the use of a GP prior in DVIP to approximate GPs and hence DGPs.
From a theoretical point of view, GP samples could be used in VIPs prior, ensuring that VIP does
converge to a GP when the number of prior samples (and linear regression coefficients) is large
enough. As a result, DVIP can converge to a DGP. However, DVIP needs to evaluate covariances
among the process values at the training points. This requires taking continuous samples from a GP,
something that is not possible in practice unless one samples the process values at all the training
points, something that is intractable for big datasets. To surpass this limitation, a BNN with a single
layer of cosine activation functions can be used to approximate a GP with RBF kernel (Rahimi and
Recht, 2007). Generating continuous samples from this BNN is easy. One only has to sample the
weights from their corresponding prior distribution. However, in order to correctly approximate the
GP, a large number of hidden units is needed in the BNN, increasing the computational cost of taking
such samples.

Furthermore, in many situations the predictive distribution of a sparse GP is very different of that of a
full GP. Meaning that even when using an approximate GP prior in VIP, by means of a BNN with
enough hidden units, it may not be enough to accurately approximate a sparse GP. Specifically, we
have observed that this is the case in the Year dataset. In this dataset, the difference in performance
between DVIP and DGP is not only a consequence of the different prior, but also the posterior
approximation. More precisely, DVIP uses a linear regression approximation to the GP, while a
DGP uses an inducing points based approximation. To show this, we have also implemented an
inducing points approximation on VIP. For this, the required covariance matrices are estimated using
a large number of prior samples. The obtained results can be seen in Table 7. There, we show the
results of VIP using an approximated GP prior, using both the linear regression approximation and an
approximation based on inducing points. We also report the results of the sparse GP and the average
training time of each method in seconds. The table shows that VIP can be used with inducing points
to approximate a GP. Specifically, the inducing points approximation of VIP gives very similar results
to those of a sparse GP. However, this is achieved at at a prohibitive training time. The computational
bottlenecks are the GP approximation using a wide single layer BNN (we used 2000 units in the
hidden layer), and the generation of a large number of prior samples from the BNN to approximate
the covariance matrix (we used 2000 samples). Given the high computational cost of training a VIP
model on this dataset, considering DVIP with more than 1 layer is too expensive.

Table 7: Results on Year dataset of VIP with the usual BNN prior with 2 hidden units of width 10
and tanh activations, VIP using a BNN that approximates a GP with RBF kernel, VIP with the last
prior and 100 inducing points and a sparse GP with 100 inducing points. Experiments with VIP are
trained using α = 0.

Year VIP VIP-GP (linear regression) VIP-GP (inducing points) SGP

RMSE 10.27± 0.01 10.23± 0.01 9.28± 0.01 9.15± 0.01
NLL 3.74± 0.00 3.77± 0.00 3.64± 0.00 3.62± 0.00
CRPS 5.45± 0.01 5.45± 0.02 4.85± 0.01 4.83± 0.01
CPU Time (s) 1217± 257 1687± 271 30867± 326 1874± 265
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We have carried out extra experiments in the smaller datasets Protein and Kin8nm to assess if using a
GP prior in the context of DVIP generates results that are closer to those of a DGP. These are the
regression datasets from the UCI repository where DGPs performed better than DVIP. In this case,
we did not consider the inducing points approximation of the GP, as in the previous paragraph, but the
linear regression approximation of VIP. We include results for (i) DVIP using the initially proposed
BNN prior with 2 layers of 10 hidden units and tanh activation functions; (ii) DVIP using the wide
BNN that approximates the prior GP; (iii) DGPs using sparse GPs in each layer based on inducing
points. The results obtained are shown in Tables 8 and 9. We observe that in both cases using a GP
prior in DVIP often improves results and performs similarly to a DGP, especially for a large number
of layers L, even when there are differences in the approximation of the posterior distribution, i.e.,
DVIP uses a linear regression approximation to the GP and DGP uses inducing points. Again, using a
wide BNN to approximate the prior GP results in a significant increment of the training time, making
DVIP slower than DGP.

Table 8: Results on Protein UCI dataset using DVIP with the usual BNN prior, the approximated GP
prior and deep GPs. Experiments with VIP are trained using α = 0.

BNN Prior VIP DVIP 2 DVIP 3 DVIP 4 DVIP 5

RMSE 4.76± 0.01 4.24± 0.01 4.14± 0.01 4.14± 0.01 4.09± 0.01
NLL 2.98± 0.00 2.86± 0.00 2.84± 0.00 2.84± 0.00 2.83± 0.00
CRPS 2.68± 0.00 2.34± 0.00 2.26± 0.00 2.25± 0.00 2.21± 0.00
CPU time (s) 3086± 173 3981± 182 8604± 774 9931± 616 12568± 327

GP Prior VIP DVIP 2 DVIP 3 DVIP 4 DVIP 5

RMSE 4.89± 0.01 4.26± 0.01 4.07± 0.01 4.02± 0.01 4.01± 0.01
NLL 3.00± 0.00 2.87± 0.00 2.82± 0.00 2.81± 0.00 2.81± 0.00
CRPS 2.77± 0.00 2.35± 0.00 2.21± 0.00 2.17± 0.00 2.16± 0.00
CPU time (s) 5880± 249 12293± 564 20351± 1110 18514± 575 25835± 1259

DS-DGP SGP DGP 2 DGP 3 DGP 4 DGP 5

RMSE 4.56± 0.01 4.17± 0.01 4.00± 0.01 4.01± 0.01 4.02± 0.01
NLL 2.93± 0.00 2.84± 0.00 2.79± 0.00 2.79± 0.00 2.80± 0.00
CRPS 2.56± 0.00 2.31± 0.00 2.19± 0.00 2.19± 0.00 2.20± 0.00
CPU time (s) 2690± 114 10031± 129 17528± 689 16128± 190 20653± 969

Table 9: Results on Kin8nm UCI dataset using DVIP with the usual BNN prior, the approximated GP
prior and deep GPs. Experiments with VIP are trained using α = 0.

BNN Prior VIP DVIP 2 DVIP 3 DVIP 4 DVIP 5

RMSE 0.15± 0.00 0.07± 0.00 0.07± 0.00 0.07± 0.00 0.07± 0.00
NLL −0.47± 0.00 −1.13± 0.00 −1.18± 0.00 −1.16± 0.00 −1.17± 0.00
CRPS 0.08± 0.00 0.04± 0.00 0.04± 0.00 0.04± 0.00 0.04± 0.00
CPU time (s) 2109± 57 5086± 232 6927± 27 9459± 77 11763± 141

GP Prior VIP DVIP 2 DVIP 3 DVIP 4 DVIP 5

RMSE 0.14± 0.00 0.07± 0.00 0.06± 0.00 0.06± 0.00 0.06± 0.00
NLL −0.43± 0.00 −1.20± 0.00 −1.25± 0.00 −1.26± 0.00 −1.25± 0.00
CRPS 0.08± 0.00 0.04± 0.00 0.03± 0.00 0.03± 0.00 0.03± 0.00
CPU time (s) 6672± 442 14300± 847 17573± 1033 22561± 980 22669± 657

DS-DGP SGP DGP 2 DGP 3 DGP 4 DGP 5

RMSE 0.09± 0.00 0.06± 0.00 0.06± 0.00 0.06± 0.00 0.06± 0.00
NLL −0.91± 0.00 −1.29± 0.00 −1.32± 0.00 −1.33± 0.00 −1.30± 0.00
CRPS 0.05± 0.00 0.03± 0.00 0.03± 0.00 0.03± 0.00 0.03± 0.00
CPU time (s) 2053± 81 6375± 331 11147± 472 17502± 1060 21846± 1246

As a conclusion, DVIPs general and flexible definition allows the usage of (approximate) GP priors
and inducing points. This enables performing (nearly) equally to a sparse GP or a DGP. However, the
computational overhead of doing these approximations is prohibitive. Thus, if a GP prior is to be
considered, it is a much better approach to just use the DGP framework, and leave DVIP to cases
where flexible but easy-to-sample-from priors can be used.
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H FURTHER RESULTS

The results regarding the regression UCI benchmark datasets are provided in Table 11. In addition,
results on large scale regression datasets are given in Table 10.

Table 10: Negative Log Likelihood and Continuous Ranked Probability Score results on large scale
regression datasets.

NLL
Single-layer Ours DS-DGP

SGP VIP DVIP 2 DVIP 3 DVIP 4 DVIP 5 Best DGP

Year 3.62± 0.00 3.74± 0.00 3.68± 0.00 3.64± 0.00 3.64± 0.00 3.63± 0.00 3.59± 0.00
Airline 5.10± 0.00 5.11± 0.00 5.08± 0.00 5.07± 0.00 5.07± 0.00 5.06± 0.00 5.07± 0.00
Taxi 7.73± 0.00 7.73± 0.00 7.72± 0.00 7.69± 0.00 7.72± 0.00 7.70± 0.00 7.73± 0.00

CRPS
Single-layer Ours DS-DGP

SGP VIP DVIP 2 DVIP 3 DVIP 4 DVIP 5 Best DGP

Year 4.83± 0.01 5.45± 0.01 5.13± 0.02 4.96± 0.01 4.93± 0.01 4.91± 0.02 4.680± 0.01
Airline 17.90± 0.05 17.93± 0.04 17.53± 0.05 17.54± 0.07 17.51± 0.05 17.45± 0.04 17.47± 0.03
Taxi 283.79± 0.19 284.22± 0.20 282.09± 0.32 274.65± 0.68 281.28± 0.44 277.60± 0.90 282.99± 0.21

In order to complement the missing values interpolation results on the CO2 dataset. The same
experiment is repeated on a Deep GP with a single layer, that is, an sparse GP. The configuration that
has been used for all of the experiments is kept here. These results show that a single sparse GP does
also suffer from the same problem that Deep GPs. That is, the mean reversion problem when facing a
(wide enough) gap in the training dataset.

Figure 6: Missing values interpolation results on the CO2 dataset. Predictive distribution of a sparse
GP (Deep GP with a single layer). Two times the standard deviation is represented.

I POTENTIAL NEGATIVE SOCIETAL IMPACTS

Given that machine learning models are increasingly being used to make decisions that have a
significant impact on society, industry, and individuals (e.g. autonomous vehicle safety McAllister
et al. (2017), disease detection Sajda (2006); Singh (2021)), it is critical that we have a thorough
understanding of the methods used and can provide rigorous performance guarantees. We conscien-
tiously studied the performance and application of DVIP to different kinds of datasets and tasks as
part of our empirical evaluation, demonstrating its ability to adjust to each domain-specific dataset.
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Table 11: Negative Log Likelihood, Root Mean Squared Error and Continuous Ranked Probability Score results on regression UCI benchmark datasets.

NLL
Single-layer Ours DS-DGP

SGP VIP VIP 200 SIP DVIP 2 DVIP 3 DVIP 4 DVIP 5 DGP 2 DGP 3 DGP 4 DGP 5

Boston 2.62± 0.05 2.76± 0.05 2.69± 0.03 2.72± 0.03 2.85± 0.09 2.59± 0.06 2.67± 0.09 2.66± 0.08 2.63± 0.05 2.63± 0.05 2.64± 0.05 2.65± 0.05
Energy 1.54± 0.02 2.07± 0.02 2.07± 0.02 1.17± 0.02 0.76± 0.02 0.70± 0.01 0.70± 0.01 0.73± 0.01 0.72± 0.01 0.74± 0.01 0.72± 0.01 0.73± 0.01
Concrete 3.16± 0.01 3.45± 0.02 3.48± 0.01 3.60± 0.05 3.24± 0.04 3.20± 0.05 3.03± 0.02 3.06± 0.02 3.17± 0.01 3.20± 0.01 3.13± 0.01 3.12± 0.01
Winered 0.93± 0.01 0.94± 0.01 0.96± 0.01 0.97± 0.01 0.94± 0.01 0.94± 0.01 0.94± 0.01 0.95± 0.01 0.94± 0.01 0.94± 0.01 0.94± 0.01 0.93± 0.01
Power 2.84± 0.00 2.85± 0.00 2.86± 0.00 2.84± 0.00 2.82± 0.01 2.81± 0.00 2.79± 0.01 2.79± 0.01 2.81± 0.01 2.80± 0.00 2.80± 0.00 2.80± 0.01
Protein 2.93± 0.00 3.03± 0.00 3.03± 0.00 3.00± 0.00 2.93± 0.00 2.89± 0.00 2.88± 0.00 2.86± 0.00 2.84± 0.00 2.79± 0.00 2.79± 0.00 2.80± 0.00
Naval −6.11± 0.06 −4.50± 0.02 −4.31± 0.00 −2.79± 0.00 −5.89± 0.02 −5.98± 0.01 −5.90± 0.01 −5.92± 0.01 −6.35± 0.09 −6.21± 0.04 −6.27± 0.06 −6.21± 0.08
Kin8nm −0.91± 0.00 −0.31± 0.00 −0.25± 0.00 −0.27± 0.02 −1.00± 0.00 −1.13± 0.00 −1.15± 0.00 −1.16± 0.00 −1.29± 0.00 −1.32± 0.00 −1.33± 0.00 1.30± 0.00

RMSE
Single-layer Ours DS-DGP

SGP VIP VIP 200 SIP DVIP 2 DVIP 3 DVIP 4 DVIP 5 DGP 2 DGP 3 DGP 4 DGP 5

Boston 3.48± 0.17 4.78± 0.28 4.49± 0.28 5.10± 0.32 3.87± 0.19 3.50± 0.20 3.60± 0.19 3.66± 0.21 3.51± 0.18 3.53± 0.19 3.55± 0.20 3.56± 0.20
Energy 1.07± 0.03 2.57± 0.08 2.68± 0.07 3.27± 0.09 0.52± 0.01 0.47± 0.01 0.46± 0.01 0.47± 0.01 0.46± 0.01 0.47± 0.01 0.46± 0.01 0.46± 0.01
Concrete 5.84± 0.12 7.75± 0.15 8.06± 0.16 8.70± 0.43 6.01± 0.16 5.68± 0.18 5.13± 0.12 5.27± 0.13 5.86± 0.12 6.01± 0.12 5.54± 0.11 5.52± 0.12
Winered 0.61± 0.00 0.62± 0.00 0.63± 0.00 0.64± 0.00 0.62± 0.00 0.62± 0.00 0.62± 0.00 0.62± 0.00 0.62± 0.00 0.62± 0.00 0.62± 0.00 0.62± 0.00
Power 4.15± 0.03 4.21± 0.03 4.22± 0.03 4.14± 0.03 4.06± 0.04 4.01± 0.04 3.97± 0.04 3.95± 0.04 4.00± 0.04 3.98± 0.03 3.99± 0.03 3.96± 0.04
Protein 4.56± 0.01 5.05± 0.01 5.04± 0.01 4.92± 0.02 4.54± 0.01 4.40± 0.01 4.33± 0.01 4.26± 0.01 4.17± 0.01 4.00± 0.01 4.01± 0.01 4.02± 0.01
Naval 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.01± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00
Kin8nm 0.09± 0.00 0.17± 0.00 0.18± 0.00 0.18± 0.00 0.08± 0.00 0.07± 0.00 0.07± 0.00 0.07± 0.00 0.06± 0.00 0.06± 0.00 0.06± 0.00 0.06± 0.00

CRPS
Single-layer Ours DS-DGP

SGP VIP VIP 200 SIP DVIP 2 DVIP 3 DVIP 4 DVIP 5 DGP 2 DGP 3 DGP 4 DGP 5

Boston 1.79± 0.05 2.25± 0.08 2.13± 0.08 2.35± 0.11 1.91± .06 1.76± 0.07 1.81± 0.07 1.78± 0.06 1.79± 0.05 1.80± 0.06 1.80± 0.06 1.81± 0.06
Energy 0.62± 0.01 1.27± 0.04 1.30± 0.03 1.21± 0.04 0.28± 0.00 0.26± 0.00 0.26± 0.00 0.26± 0.00 0.26± 0.00 0.26± 0.00 0.26± 0.00 0.26± 0.00
Concrete 3.20± 0.05 4.29± 0.08 4.43± 0.08 4.69± 0.11 3.26± 0.07 3.03± 0.09 2.74± 0.05 2.83± 0.05 3.21± 0.05 3.31± 0.05 3.05± 0.05 3.04± 0.05
Winered 0.34± 0.00 0.34± 0.00 0.35± 0.00 0.35± 0.00 0.34± 0.00 0.34± 0.00 0.34± 0.00 0.34± 0.00 0.34± 0.00 0.34± 0.00 0.34± 0.00 0.34± 0.00
Power 2.27± 0.01 2.31± 0.01 2.31± 0.01 2.27± 0.01 2.21± 0.01 2.18± 0.01 2.14± 0.01 2.14± 0.01 2.17± 0.01 2.16± 0.01 2.17± 0.01 2.15± 0.01
Protein 2.56± 0.00 2.87± 0.00 2.86± 0.01 2.77± 0.00 2.54± 0.00 2.43± 0.00 2.38± 0.00 2.33± 0.00 2.31± 0.00 2.19± 0.00 2.19± 0.00 2.20± 0.00
Naval 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00
Kin8nm 0.05± 0.00 0.09± 0.0 0.10± 0.00 0.10± 0.00 0.04± 0.00 0.04± 0.00 0.04± 0.00 0.04± 0.00 0.03± 0.00 0.03± 0.00 0.03± 0.00 0.03± 0.00
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