
Push Past Green: Learning to Look Behind Plant Foliage by Moving It473

Supplementary Material474

A Implementation Details for Vine Experiments475

A.1 Robot Action Space476

(c.1) Starting image

(c.4) Push 

(c.2) Approach plant (c.3) Insert grabber into plant

(c.5) Move grabber back (c.6) Retract grabber 

y

x(x, y)

(a) Push action in rectified view

d �

(b) Seven possible pushing directions

Region to be revealed

Robot reachable space

Push start 
location

Push end 
location

z

Figure S1: Robot’s action space for vine setup. (a) shows the rectified image that we operate in,
the region to be revealed (red box), and the region that the robot can reach (black box). The robot
can execute push actions that start at a pixel (x, y) in the rectified image and push a distance of d
at an angle ✓. We use 7 discrete push directions {0,⇡/6,⇡/3,⇡/2, . . . ,⇡} as shown in (b). (c.1)
through (c.6) show a sample execution of the push action.

The robot’s action space consists of non-prehensile pushing actions. As shown in Figure S1 (a),477

these actions are parameterized by (x, y, ✓, d). Such parameterization for pushing actions has been478

used in past works, e.g. [51]. Here, (x, y) denotes the start location for the push interaction on the479

board, ✓ denotes the push angle, and d denotes the push length. As shown in Figure S1 (b), we480

sample ✓ to be one of 7 angles from {0,⇡/6,⇡/3,⇡/2, 2⇡/3, 5⇡/6,⇡}. We do not sample angles481

greater than ⇡ because pushing towards the bottom of the vines only drags down the vines and could482

pull the board over. We assume that the grabber inserts deep enough into the vines to push the vines483

but not too far to knock it over; therefore, the pushes are planar actions executed with the same z484

value. We estimate the location and orientation of the board and establish a coordinate frame that is485

aligned with the board. Push locations and orientations are expressed in this coordinate frame. We486

implement these actions by moving the grabber through 4 waypoints, as shown in Figure S1 (c.2) to487

Figure S1 (c.5). In Figure S1 (c.4), we can see the effect of a randomly sampled action on the state488

of the vines. We drive the Franka Emika robot between these waypoints using the Franka-interface489

and frankapy library [58].490

A.2 SRPNet491

For the vine setup, we are unable to position the camera such that it is perpendicular to the board.492

Therefore, we design SRPNet to work on rectified images of the scene, such that the camera is493

looking straight at the vines. This corresponds to using a homography to transform the image such494

that the surface underneath the vines becomes fronto-parallel. We build the model to only reason495

about a 40cm⇥40cm neighborhood around the action start location. Parts of the board get occluded496

behind the robot arm as the robot executes the action. These occluded parts and area with no depth497

readings are masked out for evaluation and training.498

A.3 Data Collection499

The robot’s actions are in the same fronto-parallel plane used for SRPNet as described earlier. We500

estimate the space that can be safely reached by the robot ahead of time to make sure it is not close501

to its joint limits during interactions. The resulting space is roughly 40cm ⇥ 40cm. We divide the502

feasible space into a 20⇥20 grid. Action starting locations (x, y) are sampled at the centers of these503

13



Push Angle 0 ⇡/6 ⇡/3 ⇡/2 2⇡/3 5⇡/6 ⇡ Full Dataset

# Interactions 985 460 360 348 359 433 584 3529
Mean area revealed (cm2) 215.7 177.3 93.6 58.8 100.4 180.9 237.1 170.3

Table S1: Statistics for the different push directions in the collected vine dataset. Collected
dataset reveals many aspects of the problem. For example, for vines, horizontal push actions (0 and
⇡) are the most effective at this task.

grid squares (i.e., 400 possible starting locations). We sample push directions from the 7 possible504

angles, {0,⇡/6, 2⇡/6, . . . , 6⇡/6}, and push by 15cm clipping to the feasible space as necessary.505

Therefore, not all interactions have d = 15; for starting locations near the boundary, d < 15.506

Our full dataset contains 3529 interactions (summed to roughly 30 hours) collected over 11 different507

days (nonconsecutive). This data includes 2571 interactions done specifically for the purpose of508

data collection. The remaining interactions come from when we were developing control algorithms.509

These don’t follow uniform sampling from the robot’s action space and are biased towards horizontal510

actions since the most effective actions for the baselines are often horizontal actions.511

We automatically compute the ground truth for training the model on the collected data. Specifically,512

we use color thresholding to determine when the surface beneath the vines has been fully exposed.513

We found this simple strategy to be reasonably robust. Note that while we train and use SRPNet514

to predict whether all vines were moved aside to reveal the board, we can process the data in other515

ways to also train the model for other tasks. For example, we can re-purpose the data for a task that516

involves only looking beneath the first layer of vines. We can re-compute ground truth to identify517

locations where the height decreased by (say) more than 5cm for such a task.518

A.4 Cross-entropy Method519

Our CEM implementation uses 3 iterations that each evaluate 300 candidate actions. We sample520

(x, y, ✓) from Gaussian distributions. In the first CEM iteration, x, y, ✓ are sampled from Gaussians521

with different mean and variances, chosen to cover the whole action space. The parameters are then522

discretized to match the distribution from data collection. When sampling actions, we only retain523

action samples that are feasible (i.e. within the robot’s reachable space as shown in Figure S1 (a)).524

Elite samples are the top 20% candidates that have the most amount of new space revealed. Running525

line 3 to 6 in Algorithm 1 (Section 4.3) for vines takes about 5 seconds.526

14



B Implementation Details for Dracaena Experiments527

B.1 Robot Action Space528

The robot’s action space for Dracaena is similar to that of vines. However, since the Dracaena leaves529

are at different heights, we define three possible z values that the grabber can insert to. The Dracaena530

plant body is about 45cm tall so we defined the z values to be about 22.5, 17.5, and 12.5cm from the531

top of the plant. For each z value, planar pushing actions (x, y, ✓, d) are defined on a plane parallel532

to the ground. We sample ✓ from 8 possible angles: {0,⇡/4,⇡/2, 3⇡/4,⇡, 5⇡/4, 3⇡/2, 7⇡/4}. The533

angles are 45 degrees away from one another instead of 30 degrees as used in vines because we want534

to keep the total number of possible actions reasonable.535

(c.1) Starting image

(c.4) Push 

(c.2) Approach plant (c.3) Insert grabber into plant

(c.5) Retract grabber 

(x, y)

(a) Push action in topdown view

d �

Region to be revealed

Robot reachable space

y

x
z

z

(b) Eight possible pushing directions

Figure S2: Dracaena robot action space. Similar to Figure S1, (a) shows the image from the
camera, (b) shows the pushing directions, and (c) shows the sample execution of a push action.

B.2 SRPNet536

Since the Kinect camera is looking down at the Dracaena plant, SRPNet does not work on rectified537

images as it does for vines and instead takes in images from the camera as they are. We project538

action start locations into their image coordinates using the camera intrinsics and crop around the539

locations to obtain local patches to input into the network. When training SRPNet, adding another540

head to predict height decrease in addition to the binary classification head helps AP performance.541

We use Huber loss with � = 0.1 to provide an auxiliary loss to the network.542

B.3 Data Collection543

The reachable space of the robot in the Dracaena setup is roughly 57cm ⇥ 53cm and corresponds544

to a 29 ⇥ 27 grid of 2cm cells. Similar to the vines’ setup, the action starting point (x, y) is sam-545

pled from these 783 possible locations. Given that pushing from the center of the plant tends to546

displace it entirely, we aim to discourage such actions to prevent damage to areas where new leaves547

may sprout. We manually delineate a rectangular region around the plant center and do not sam-548

ple or execute actions in this region. We also sample z from 3 possible values (22.5, 17.5, and549

12.5cm from the top of the plant as mentioned before), push directions from 8 possible angles,550

{0,⇡/4,⇡/2, 3⇡/4,⇡, 5⇡/4, 3⇡/2, 7⇡/4}, and push by 15cm clipping to the feasible space as nec-551

essary. Therefore, not all interactions have d = 15; for starting locations near the boundary, d < 15.552

Since the plant wobbles during pushing, we discount the area that is revealed due to whole-plant553

movement. We construct plant point clouds before and after an action; then, iterative closest point554

(ICP) is performed to align the two point clouds. During execution, the robot body occludes parts555

15



Push Angle 0 ⇡/4 ⇡/2 3⇡/4 ⇡ 5⇡/4 3⇡/2 7⇡/4 Full Dataset

# Interactions 257 262 295 273 249 297 289 253 2175
Mean area revealed (pixels) 1391.4 1138.7 990.4 802.0 1154.0 1110.8 1154.9 1495.2 1147.7

Table S2: Statistics for the different push directions in the collected Dracaena dataset.

of the plant, so we mount a Intel RealSense camera at the wrist to fill in these occluded regions to556

aid ICP. Area where the plant height has decreased in the aligned point cloud is considered to be557

revealed space.558

B.4 Cross-entropy Method559

We follow the same algorithm as the one outlined in Algorithm 1 (Section 4.3). The Dracaena CEM560

uses 3 iterations that each evaluate 300 candidate actions. We sample (x, y, ✓, z) from uniform561

distributions within the robot’s reachable space. The parameters are then discretized to match the562

data collection’s distribution. Top 20% candidates that reveal the most amount of new space are563

chosen as elite samples that are fitted with Gaussian distributions for the next iteration. Running one564

iteration takes about 7 seconds.565

B.5 Comparing Tangential to Random Actions566

Method Area revealed (pixels)

Random Action 3956.1 ± 1213.2
Tangential Action 5125.6 ± 2042.5

Table S3: Effectiveness of tangential actions. We execute actions tangent to Dracaena leaves in
the Tiling baseline because they reveal more space on average compare to random actions.

We chose horizontal actions for the Tiling baseline of vines because they on average reveal the most567

amount of space. In order to come up with a similar Tiling baseline for Dracaena, we observe that568

leaves are pushed aside more easily when the grabber moves tangent to the leaves. We verify that569

tangent actions are better than random actions by comparing average space revealed upon execution570

of actions from the two methods. As shown in Table S3, tangential actions reveal more space than571

random actions, so we use them in the Tiling baseline to test the effectiveness of PPG w/ SRPNet572

against this strong baseline.573

16



C Visualizations574

(a) RGB Image (b) Height Image (c) Ground (d) SRPNet (e) SRPNet (f) SRPNet
Truth (No Image) (No Action) (Full)

Figure S3: Visualizations of output from our proposed SRPNet. We show examples from the
test set. The white regions in ground truth images represent space revealed by actions drawn as red
arrows. Column (d) shows prediction from SRPNet without image input (i.e. no RGB, no height),
column (e) shows prediction from SRPNet without action input, and column (f) shows predictions
from SRPNet. The brighter the region, the higher the predicted probability of revealing space.
Ground truth revealed space indicates the complexity of the task and suggests why the hand-crafted
dynamics model (shown in Figure 5) performs poorly at this task. SRPNet is able to effectively use
the visual information to make good predictions.

17



t = 0 t = 1 t = 2 t = 3 t = 4
V

ie
w

be
fo

re
In

te
ra

ct
io

n
Ex

ec
ut

ed
A

ct
io

n
Sp

ac
e

R
ev

ea
le

d
(C

t+
1
)

V
ie

w
be

fo
re

In
te

ra
ct

io
n

Ex
ec

ut
ed

A
ct

io
n

Sp
ac

e
R

ev
ea

le
d

(C
t+

1
)

Figure S4: First five time steps of a sample execution from our method. Top row shows the RGB
image before interaction, middle row shows the push action executed, and the bottom row shows the
cumulative space revealed so far. Our model picks actions that are effective at revealing space.

18


	Introduction
	Related Work
	Problem Setup
	Proposed Approach: Push Past Green
	Space-Revealed Prediction Network
	Data Collection and Preparation
	Looking Behind Leaves Using SRPNet

	Experiments and Results
	Offline Evaluation of SRPNet
	Online Evaluation for Looking Behind Plants Task
	Baselines
	Results


	Discussion
	Limitations
	Implementation Details for Vine Experiments
	Robot Action Space
	SRPNet
	Data Collection
	Cross-entropy Method

	Implementation Details for Dracaena Experiments
	Robot Action Space
	SRPNet
	Data Collection
	Cross-entropy Method
	Comparing Tangential to Random Actions

	Visualizations

