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A Source Code

We have made the code for our implementation publicly accessible for the sake of transparency and
reproducibility. It can be found at: https://github.com/DingShizhe/HINT.

B Additional Details of NIERT block and HINT block

In the present study, we introduce an enhanced interpolation block, predicated on the NIERT in-
terpolator [2]], and elucidate the principal improvements. To underscore the distinctions between
the two methodologies, we furnish an in-depth exposition of the architectural design of the NIERT
interpolator.
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Figure 1: Comparison of architecture of NIERT interpolator and HINT interpolation block.

Fig.[Ta]depicts the NIERT interpolator, which accepts the positions and values (zo, yo) of observed
points and the position z7 of the target point as inputs, and outputs the predicted value at the target
points 1, along with reconstructed values at auxiliary observed points 3o.

In the embedding phase, NIERT uniformly embeds both observed and target points. A learnable
mask vector is introduced for target points lacking value data. The NIERT interpolator’s core is a
Transformer encoder with a masked self-attention mechanism, uniformly encoding observed and
target points and modeling their correlations within the same feature space. The masked self-attention
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mechanism ensures that the target point’s influence is excluded when modeling scattered correlations,
aligning with the interpolation task’s requirement that the target interpolation function is determined
solely by the observed points. The Transformer encoder yields representations of encoded observed
and target points containing value information. The NIERT interpolator’s final output includes the
predicted value at the target point 47, serving as the interpolation result.

The NIERT, a Transformer encoder-only architecture that uniformly encodes observed points and
models their correlations, exhibits superior interpolation accuracy. Leveraging insights from the
NIERT interpolator, we have devised the architecture of the interpolation block in HINT, as depicted
in Fig. Our proposed architecture, specifically adapted to HINT’s overall framework, introduces
significant enhancements, underlining the following key aspects:

1. HINT employs residuals on observed points to estimate residuals on target points. To acquire
residuals on observed points, the interpolation block must estimate consistent values on
these points while also estimating values on target points. Consequently, each interpolation
block introduces a set of ‘masked observed’ points to address the issue of inconsistent
distribution between observed and target points.

2. HINT capitalizes on the hierarchical structure of the function’s main and residual components
and applies progressively stronger local constraints on these interpolation blocks. As such,
each interpolation block requires the ability to configure local constraints. These constraints,
implemented via K-nearest neighbor graph constraints, are applied to the range of observed
points for target points in correlation modeling.

C Additional Datasets Details

C.1 Dataset Statistics

Table (1| provides the statistical details for interpolation tasks in each dataset, encompassing the
dimensionality of the scattered data, the count of observed points, and the count of target points. These
sets of interpolation tasks, with their wide-ranging characteristics, facilitate a thorough assessment of
interpolation performance.

Table 1: Statistics of the interpolation tasks used for training in each dataset.

Dataset d, dy, #Allpoints N #Observed pointsn  #Target points m

Mathit-2D 2 1 256 (10, 50]] N-—-n
Perlin 2 1 256 64 N—n
PTV 2 2 [2291,5899] 512 N-n
TFRD 2 1 40000 37 N-—n

C.2 Dataset Details

Theoretical dataset I: Mathit-2D [2] constitutes an interpolation task set designed for 2D mathemat-
ical function interpolation. This dataset was derived from random sampling of 1,000,000 uniquely
generated two-dimensional mathematical functions. The domain of these functions is confined to
[—1,1]2, with the range set to [0, 1]. For each task sampling, 512 scattered points were randomly
chosen and partitioned into observed and target points. The count of observed points was randomly
sampled within the range of [10, 50]. In addition to the training dataset, a test set comprising 12, 000
interpolation tasks was also synthesized. To prevent overlap between the training and test sets,
mathematical expressions common to both sets were excluded from the test set. The synthesis code
for Mathit-2D can be found at the following URL: https://github.com/DingShizhe/NIERT.

Theoretical dataset II: Perlin is another synthetic assembly of interpolation tasks, specifically
designed for the numerical interpolation of two-dimensional rough functions. Each interpolation
task in this dataset stems from randomly generated Perlin noise functions [5]. These functions are

“This implies that in the interpolation tasks of this dataset, the number of observed points 7 varies from 10 to
50.
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created by amalgamating multiple smooth and continuous noise functions of varying levels and
frequencies, yielding rich details that present a formidable challenge for scattered point interpolation
tasks. We synthesized 1024 random Perlin functions for training and an additional 1024 for testing.
The domain of these functions is confined to [—1,1]2. For each task sampling, 256 scattered
points were randomly chosen and partitioned into 64 observed points and 192 target points. The
synthesis code for Perlin can be accessed from our code repository at the following URL: https:
//github.com/DingShizhe/HINT.

Application dataset I: TFRD [1] is employed to evaluate the performance of 2D temperature
field reconstruction from measurements taken at a finite set of scattered points. It comprises three
distinct sub-datasets: HSink, ADlet, and DSine, each of which simulates the temperature field
of mechanical devices using specific types of heat generation and boundary conditions [1]]. Each
reconstruction task within each subset encompasses 200 x 200 regular grid points, representing the
temperature field within a 0.1m x 0.1m square area. Of these points, the temperature at 37 scattered
points is known and these are utilized as observed points, while the remaining points serve as target
points. Each subset contains a total of 10,000 training instances and 10, 000 test instances. The
TFRD datasets can be downloaded from the following URL: https://github. com/shendu-sw/
recon-data-generator/.

Application dataset I1: PTV [2] is a scattered dataset where the scattered points represent particles
with velocities in the flow field. PTV is utilized to assess performance in particle tracking velocimetry,
i.e., the reconstruction of a two-dimensional velocity field from a finite number of observed particles
with velocities. These data are extracted from raw images of laminar jet experiment scenes [7]]. There
are a total of 1200 raw frames, each corresponding to a distinct velocity field, and each frame extracts
a set of scattered points with velocity, ranging from approximately 6000 points at most to 2000 points
at least. For each set of scattered data, we randomly select 512 points as observed points and the
remaining points as target points to construct an interpolation task. We randomly allocate a quarter of
the tasks to the test set and the remainder to the training set. The PTV dataset can be downloaded
from the following URL: https://github.com/DingShizhe/PTV-Dataset/|

D Additional Implementation Details

Hyperparameter Settings. As delineated in Table 2] we outline the key hyperparameter configu-
rations for our HINT methodology across all datasets. In an effort to ensure a fair comparison in
each experiment, we have aligned the number of attention layers in the NIERT and TFR-Transformer
methods with the aggregate number of attention layers across all interpolation blocks of HINT. Fur-
thermore, we have upheld consistency in the number of heads in the multi-head attention mechanism
and the dimensions of the latent space.

Table 2: Hyper-parameters of HINT in experiments on the four datasets.

Parameter value in experiments on

Parameter name TFRD
Mathit-2D Perlin PTV
HSink ADlet DSine

Number of interpolation blocks L 2 4 4 4 4 4
Number of layer of main block 6 2 2 2 2 2
Number of layer of residual block 2 2 2 2 2 2
Number of heads 8 4 4 4 4 4
Hidden dimension 512 128 128 128 128 128
Local constraint parameter K () 1] n n/4 n/2 n n
Local constraint parameter K i, 8 8 n/8 8 8 8
Auxiliary loss weight A 0.05 0.01 0.0001 0.5 0.5 0.5

In our experiments, we discerned that the calibration of hyperparameters profoundly influences
the interpolation efficacy of the model. Venturing into novel interpolation contexts, the paramount
hyperparameter determinations in our model can be construed based on the ensuing insights:
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1. Block number (L): Functions manifesting smoother profiles are optimally served with
a diminutive L. In juxtaposition, functions characterized by meticulous details or higher
frequency components demand a magnified L.

2. Attention layer number in the main block: Voluminous datasets call for an escalated
number of attention layers to ensure optimal model capacity. Conversely, for datasets of a
more diminutive scale, curtailing attention layers can mitigate overfitting risks.

3. Local constraint parameter (K, K,i,): The calibration of K is non-trivial. For functions
displaying expansive spatial auto-correlation, augmented K and K,,;, are propitious. In
our experiments, we found that determining the optimal K and K;,, often requires trial
and tuning.

For instance, for the Mathit-2D dataset—a synthetic set comprised of smoother mathematical func-
tions with a significant volume—a smaller block number L and more attention layers seem optimal.
The mathematical functions’ features correlate over longer distances (periodicity, symmetry, trends,
etc.), thus initially a larger L covering all observation points is prudent. Conversely, for the Perlin
dataset—a real-world 2D velocity field dataset of smaller volume but intricate, detailed functions—a
larger block number L, fewer attention layers, and a smaller L are logical.

Training Parameter Settings. We optimize model parameters utilizing the Adam optimizer [3]]. For
the Mathit-2D dataset, our training protocol involves 160 epochs with a fixed learning rate of 0.0001
and a batch size of 256. For the Perlin dataset, we adopt a similar approach, employing a batch size
of 128 and a training period of 100 epochs, also with a non-decaying learning rate of 0.0001. For the
PTV dataset, we modify our strategy to accommodate a batch size of 4, a learning rate of 0.0005 with
a decay rate of 0.97 per epoch, and a training period of 100 epochs. Finally, for the three sub-datasets
of TFRD, we implement a batch size of 5, a learning rate of 0.0005 with a decay rate of 0.97, and a
training duration of 100 epochs.

Our models were implemented using the PyTorch framework [4]. All experimental procedures were
conducted on a computational infrastructure equipped with two NVIDIA GeForce RTX 3090 GPUs.

E Computational Efficiency Comparison

E.1 Comparison of Theoretical Computational Efficiency

Table [3| presents a comparison of the theoretical computational efficiency of our proposed HINT with
the comparable method NIERT. The average theoretical floating-point operations (GFLOPs) on the
entire dataset are used as the metric. It can be observed that on the PTV dataset, HINT achieves a
lower average theoretical floating-point operation count of 3.968 compared to the state-of-the-art
interpolation method NIERT (5.421). On the Perlin dataset, HINT has a higher average theoretical
floating-point operation count of (0.238) compared to NIERT (0.178). On the TFRD-ADIet dataset,
HINT has a higher average theoretical floating-point operation count of (27.083) compared to NIERT
(24.009).

These results indicate that HINT offers competitive computational efficiency in terms of theoretical
floating-point operations compared to existing high-precision methods. On the PTV dataset, HINT
demonstrates superior computational efficiency compared to NIERT. On the Perlin and TFRD-ADIet
datasets, HINT’s computational efficiency is slightly lower than NIERT, but within an acceptable
range and in the same order of magnitude.

Table 3: Comparison of computational efficiency (GFLOPs) on different datasets.

Interpolation ~ Computational efficiency on dataset (GFLOPs)

approach PTV Perlin TFRD-ADlet
NIERT 5.421 0.178 24.009
HINT (ours) 3.968 0.238 27.083

“Here, n is the number of observed points of the interpolation task.



It’s imperative to highlight that even though the adoption of local constraints, in theory, reduces
computational demands, HINT consistently manifests a higher FLOP count than NIERT across
specific datasets, an observation clearly corroborated by the comparison in Table[3] While at first
glance this disparity might be perplexing, it is cogently rationalized by HINT’s intricate architectural
choices. On one hand, HINT’s structure is characterized by multiple blocks, each distinctively
furnished with embedding and prediction layers, setting it in stark contrast to NIERT’s more linear
configuration. On the other hand, HINT encompasses an extensive token repertoire, weaving together
both observed and masked data points, as well as target entities, aggregating to (2n + m) tokens. In
contrast, NIERT adeptly navigates a more concise token collection, tallying (n + m), where n and m
explicitly denote the quantity of observed and target points, respectively.

E.2 Comparison of Empirical Interpolation Times

We conducted additional evaluations to assess the efficiency of our proposed method, HINT. Specifi-
cally, we evaluated the average interpolation time required by our HINT method in comparison to
existing interpolation techniques, encompassing both traditional and deep learning-based approaches,
on the Mathit-2D test dataset. The inclusion of traditional methods was motivated by the well-known
efficiency of conventional algorithms in interpolation tasks, serving as a reference benchmark. In
accordance with the methodology outlined in [2]], we selected Radial Basis Function (RBF) interpola-
tion [6] and MIR [8]] as representatives of traditional interpolation algorithms. The results, comprising
the average interpolation time and interpolation accuracy on the test dataset, are presented in Table ]

Table 4: The average time and accuracy comparison of interpolation approaches on Mathit-2D dataset.

Interpolation Average interpolation time ~ Interpolation accuracy
approach (ms) (MSEx107%)

RBF 0.66 34.706
MIR 80.30 27.460
CNP 13.53 24.868
ANP 27.55 14.001
BANP 29.19 8.419
TFR-Transformer 26.16 5.857
NIERT 31.99 3.167
HINT (ours) 36.20 2.722

As observed in the table, the traditional interpolation method, RBF, exhibits the highest interpolation
efficiency at 0.66 ms, albeit with a noticeable compromise in accuracy. On the other hand, MIR
offers slightly improved accuracy but has the longest interpolation time among all evaluated methods,
standing at 80.30 ms. In the realm of deep neural network-based techniques, a discernible trend
emerges, indicating a progression in accuracy from CNP to our HINT method, accompanied by a
gradual increase in computational time. Specifically, our HINT method boasts an average time of
36.20 ms, marginally higher than that of NIERT (31.99 ms), yet substantially more efficient than the
traditional MIR (80.30 ms).

Furthermore, it is noteworthy that our current HINT implementation employs dense attention compu-
tation combined with an attention mask to implement the hierarchical local constraints outlined in our
paper. Given that these local constraints are theoretically sparse, there remains room for optimizing
the computational cost of HINT. Our primary research focus was centered on achieving superior
interpolation accuracy, and at this stage, HINT emerges as the optimal choice for scenarios that
prioritize high accuracy with some flexibility regarding time constraints.

F Additional Evaluation on High-dimensional Scattered Data

In light of the critical importance of validating the accuracy of interpolation algorithms in high-
dimensional data, we introduced a 10-dimensional dataset referred to as “D10” to assess the interpo-
lation performance of our proposed HINT method. Within this dataset, each function results from the
summation of multiple 10-dimensional Gaussian functions, formalized as:



B X 4 1(x—c)?
f(@) = Z k €Xp _5‘77/2@ .
k=1
We maintained a fixed K value of 5. The parameters for each Gaussian function were uniformly
sampled: the center ¢y, from [—1, 1]!°, the width o, from [1, 2], and the weight Ay, from [—1, 1].

Our training set comprised 256K instances, while the test set contained 512 cases, all sampled from
this function distribution. Each instance consisted of 64 observed points and 192 target points,
uniformly sampled from [—1,1]'0. For the test set, we conducted direct evaluations of classical
methods and data-driven models after 100 training epochs. The interpolation accuracy of these
methods is presented in Table 3]

Table 5: Interpolation performance on D10 dataset.

Interpolation Interpolation accuracy
approach (MSEx10~%)

CNP 35.623

ANP 12.578
BANP 12.077
TFR-Transformer 7.465
NIERT 5.496
HINT (ours) 4.173

These results suggests that HINT consistently outperforms other methods on the D10 dataset, achiev-
ing the lowest MSE, which underscores HINT’s capability to maintain high precision even in
high-dimensional scenarios.

G Additional Examples of Interpolation Results

To provide a more comprehensive demonstration of the interpolation performance of our proposed
HINT, we present the interpolation results on additional test set examples, contrasting these with the
results from existing methodologies, as shown in Fig. [2J3[d]and[5] The cases we highlight below are
drawn from the test sets of Mathit-2D, Perlin, PTV, and TFRD-ADIet. In the visualizations for each
example, the image in the top-left corner displays the ground truth for the case, while the image in
the bottom-left corner illustrates the observed points for the interpolation task. The row of images
on the top right presents the interpolation results from HINT and existing methods, and the row of
images on the bottom right provides the error maps comparing these interpolation results with the
ground truth.

In the majority of examples, the interpolation accuracy of HINT significantly outperforms that of the
compared baselines. Visually, the error map of HINT’s interpolation results is superior to the error
maps of other methods’ interpolation results, demonstrating its exceptional interpolation performance.
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Figure 2: Additional cases from Mathit-2D test set.
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Figure 3: Additional cases from Perlin test set.
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Figure 4: Additional cases from TFRD-ADlet test set.
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Figure 5: Additional cases from PTV test set.
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