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1 RELATED WORK FOR COUNTING TASKS

Specialized counting. Counting for specialized objects has a number of practical applica-
tions Marsden et al. (2018), including but are not limited to cell counting Xie et al. (2018), crowd
counting Sindagi & Patel (2017), vehicle counting Onoro-Rubio & López-Sastre (2016), wild-life
counting Arteta et al. (2016), etc. While less general, they are important computer vision appli-
cations to respective domains, e.g. medical and surveillance. Standard convolution filters are used
extensively in state-of-the-art models Cheng et al. (2019) to produce density maps that approximate
the target count number in a local neighborhood. However, such models are designed to deal exclu-
sively with a single category of interest, and usually require point-level supervision Sindagi & Patel
(2017) in addition to the ground-truth overall count number for training.

Another line of work on specialized counting is psychology-inspired Cutini & Bonato (2012), which
focuses on the phenomenon coined ‘subitizing’ Kaufman et al. (1949), that humans and animals can
immediately tell the number of salient objects in a scene using holistic cues Zhang et al. (2015). It
is specialized because the number of objects is usually limited to be small (e.g. up to 4 Zhang et al.
(2015)).

General visual counting. Lifting the restrictions of counting one category or a few items at a time,
more general task settings for counting have been introduced. Generalizing to multiple semantic
classes and more instances, common object counting Chattopadhyay et al. (2017) as a task has been
explored with a variety of strategies such as detection Ren et al. (2015), ensembling Galton (1907),
or segmentation Laradji et al. (2018). The most recent development in this direction Cholakkal et al.
(2019) also adopts a density map based approach, achieving state-of-the-art with weak, image-level
supervision alone. Even more general is the setting of open-ended counting, where the counting
target is expressed in natural language questions Acharya et al. (2019). This allows more advanced
‘reasoning’ task to be formulated involving objects, attributes, relationships, and more. Our module
is designed for these general counting tasks, with the modulation coming from either a question or
a class embedding.

2 IMPLEMENTATION DETAILS

In our experiments, query representations q∈RD have two types: questions and categories.

Question representation. We use LSTM and Self Attention (SA) layers Vaswani et al. (2017) for
question encoding Yu et al. (2019). It was shown in Natural Language Processing (NLP) research
that adding SA layers helps to produce informative and discriminative language representations De-
vlin et al. (2019); and we also empirically observe better results (0.7% improvement in accuracy
and 0.1 reduction in RMSE according to our analysis on HowMany-QA Trott et al. (2018) val set).
Specifically, a question (or sentence in NLP) consisting ofN words is first converted into a sequence
Q0={w0

1, . . . , w
0
N} ofN 300-dim GloVe word embeddings Pennington et al. (2014), which are then

fed into a one-directional LSTM followed by a stacked of L=4 layers of self attention:

Q1 =
−−−−→
LSTM(Q0), (1)

Ql = SAl(Q
l−1), (2)
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where Ql={wl
1, . . . , w

l
N}, l∈{2, . . . , L + 1} is the D=512 dimensional embedding for each word

in the question after the (l−1)-th SA layer. We cap all the questions to the same length N as in
common practice and pad all-zero vectors to shorter questions Nguyen & Okatani (2018).

Our design for the self-attention layer closely follows Vaswani et al. (2017) and uses multi-head
attentions (h=8 heads) with each head having Dk=D/h dimensions and attend with a separate set
of keys, queries, and values. Layer normalization and feed-forward network are included without
position embeddings.

Given the final QL+1, to get the conditional vector q, we resort to a summary attention mecha-
nism Nguyen & Okatani (2018). A two-layer 512-dim MLP with ReLU non-linearity is applied to
compute an attention score sn for each word representation wL+1

N . We normalize all scores by soft-
max to derive attention weights αn and then compute an aggregated representation q via a weighted
summation over QL+1.

Object detection based counting. We train a Faster R-CNN Ren et al. (2015) with feature pyramid
networks Lin et al. (2017) using the latest implementation on Detectron2 Wu et al. (2019). For fair
comparison, we also use a ResNet-50 backbone He et al. (2016) pre-trained on ImageNet, the same
for our counting module. The detector is trained on the train2014 split of COCO images, which
is referred as the train set for common object counting Chattopadhyay et al. (2017). We train the
network for 90K iterations, reducing learning rate by 0.1× at 60K and 80K iterations – starting
from a base learning rate of 0.02. The batch size is set to 16. Both left-right flipping and scale
augmentation (randomly sampling shorter-side from {640, 672, 704, 736, 768, 800}) are used. The
reference AP Ren et al. (2015) on COCO val2017 split is 37.1. We directly convert the testing output
of the detector to the per-category counting numbers.

3 DEFINITION OF RMSE VARIANTS

Besides accuracy and RMSE,1 object counting Chattopadhyay et al. (2017) additionally proposed
several variants of RMSE to evaluate a system’s counting ability. For convenience, we also include
them here. The standard RMSE is defined as:

RMSE =

√√√√ 1

M

M∑
i=1

(ĉi − ci)2, (3)

where ĉi is ground-truth, ci is prediction, and N is the number of examples. Focusing more on
non-zero counts, RMSE-nz tries to evaluate a model’s counting ability on harder examples where
the answer is at least one:

RMSE-nz =

√√√√ 1

Mnz

∑
i∈{i|ĉi>0}

(ĉi − ci)2, (4)

where Mnz is the number of examples where ground-truth is non-zero. To penalize the mistakes
when the count number is small (as making a mistake of 1 when the ground-truth is 2 is more
serious than when the ground-truth is 100), rel-RMSE is proposed as:

rel-RMSE =

√√√√ 1

M

M∑
i=1

(ĉi − ci)2
ĉi + 1

. (5)

And finally, rel-RMSE-nz is used to calculate the relative RMSE for non-zero examples – both
challenging and aligned with human perception.

4 COMMON OBJECTS COUNTING ON VOC

As mentioned in Sec. ?? of the main paper, we present the performance of MoVie on test split of
Pascal VOC counting dataset in Tab. 1. Different from COCO, the VOC dataset is much smaller with

1https://en.wikipedia.org/wiki/Root-mean-square_deviation
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Method Instance
supervision RMSE ↓ RMSE-nz ↓ rel-RMSE ↓ rel-RMSE-nz ↓

LC-ResFCN (2018) 3 0.31 1.20 0.17 0.61
LC-PSPNet (2018) 3 0.35 1.32 0.20 0.70
glance-noft-2L (2017) 7 0.50 1.83 0.27 0.73
CountSeg (2019) 7 0.29 1.14 0.17 0.61
MoVie 7 0.36 1.37 0.18 0.56

Table 1: Common object counting on VOC test set with various RMSE metrics.

# Train params (M) # Test params (M) Train mem (G) Train speed (s/iter)
MCAN-Large (2019) 218.2 218.2 10.5 0.84
MCAN-Large + MoVie 260.2 241.2 11.7 0.89

Table 2: Adding MoVie as a module to MCAN. Training speed is ∼5% slower, and the additional
parameters during testing is minimal (∼10%) as it uses the joint branch only.

20 object categories Everingham et al. (2015). We can see that MoVie achieves comparable results
to the state-of-the-art method, CountSeg Cholakkal et al. (2019) in two relative metrics (rel-RMSE
and rel-RMSE-nz) and falls behind in RMSE and RMSE-nz. In contrast, as shown in Tab. ??,
MoVie outperforms CountSeg on COCO with a significant margin on three RMSE metrics. The
performance difference in two datasets suggests that MoVie scales better than CountSeg in terms
of dataset size and number of categories. Moreover, the maintained advantage on relative metrics
indicates the output of MoVie is better aligned with human perception Chattopadhyay et al. (2017).

5 COUNTING MODULE FOR VQA ARCHITECTURES

As mentioned in ??, we integrate MoVie into VQA models as a counting module. Naturally, such
an integration leads to changes in model size, training speed etc. We report the added computational
costs in Tab. 2 for our three-branch fusion scheme into MCAN. We see the training speed is only
∼5% slower, and the additional parameters used during testing is kept minimal (∼10%). Note that
since the integration of MoVie mainly benefits ‘number’ questions, it is different from general model
size increase.

Similar to MCAN, we also conducted experiments incorporating MoVie to Pythia Jiang et al. (2018),
the 2018 VQA challenge winner, where we trained using the VQA 2.0 train+val, and evaluated on
test-dev using the server. We observe even more significant improvements on Pythia for ‘number’
related questions (Tab. 3). MoVie also improves the performance of the network in all other cate-
gories, verifying that our MoVie generalizes to multiple VQA architectures.

6 VISUALIZATION OF WHERE MOVIE HELPS

When MoVie is used as a counting module for generic VQA tasks, we fuse features pooled from
MoVie and the features used by state-of-the-art VQA models (e.g. MCAN Yu et al. (2019)) to jointly
predict the answer. Then a natural question arise: where does MoVie help? To answer this question,
we want visualize how important MoVie and the original VQA features contribute to the final answer
produced by the joint model. We conduct this study for each of the 55 question types listed in the
VQA 2.0 dataset Antol et al. (2015) for better insights.

Specifically, suppose a fused representation in the joint branch is denoted as o=f(i+v), where i is
from the VQA model, v is from MoVie, and f(·) is the function consisting of layers applied after
the features are summed up. We can compute two variants of this representation o: one without v:
o−v=f(i), and one without i: o−i=f(v). The similarity score is then computed between two pairs
via dot-product: pi=oTo−v and pv=oTo−i. Given one question, we assign a score of 1 to MoVie
if pi>pv, and otherwise 0. The scores within each question type are then averaged, and produces
the probability of how MoVie is chosen over the base VQA model for that particular question type.
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Method Test set Yes/No ↑ Number ↑ Other ↑ Overall ↑
MCAN-Large + X-101 (2020) test-dev 88.46 55.68 62.85 72.59
MCAN-Large + X-101 + MoVie 88.39 57.05 63.28 72.91
Pythia + X-101 (2018) test-dev 84.13 45.98 58.76 67.76
Pythia + X-101 + MoVie 85.15 53.25 59.31 69.26

Table 3: VQA accuracy of Pythia with and without MoVie on VQA 2.0 test-dev set.

Figure 1: Visualization of where MoVie helps MCAN for different question types on VQA 2.0 val
set. We compute the probability by assigning each question to MoVie based on similarity scores (see
Sec. 6 for detailed explanations). The top contributed question types are counting related, confirming
that state-of-the-art VQA models that perform global fusion are not ideally designed for counting,
and the value of MoVie with local fusion. Best viewed on a computer screen with zoom.

Figure 2: Similar to Fig. 1 but with Pythia. Best viewed on a computer screen with zoom.

We take two models as examples. One is MCAN-Small Yu et al. (2019) + MoVie (three-branch),
and the other one replaces MCAN-Small with Pythia Jiang et al. (2018). The visualizations are
shown in Fig. 1 and Fig. 2, respectively. We sort the question types based on how much MoVie has
contributed, i.e. the ‘probability’. Some observations:
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• MoVie shows significant contribution in the counting questions for both MCAN and Pythia:
the top three question types are consistently ‘how many people are in’, ‘how many people
are’, and ‘how many’, this evidence strongly suggests that existing models that fuse fea-
tures globally between vision and language are not well suited for counting questions, and
confirms the value of incorporating MoVie (that performs fusion locally) as a counting
module for generic VQA models;
• The ‘Yes/No’ questions are likely benefited from MoVie as well, since the contribution of

MoVie spreads in several question types belong to that category (e.g. ‘are’, ‘are they’, ‘do’,
etc.) – this maybe because counting also includes ‘verification-of-existing’ questions such
as ‘are there people wearing hats in the image’;
• For Pythia, we also find it likely helps ‘color’ related questions (e.g. ‘what color are the’,

‘what color’, etc.) and some other types – this strengthens our exploration that our model
contributes beyond counting capability.
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