
A Datasets496

Generators. To generate high-quality SAT datasets that do not contain trivial instances, we have em-497

ployed a rigorous process of selecting appropriate parameters for each CNF generator in G4SATBench.498

Table 7 provides detailed information about the generators we have used.499

Table 7: Details of the synthetic generators employed in G4SATBench.
Dataset Description Parameters Notes

SR

The SR dataset is composed of pairs of satisfiable and unsatisfiable formulas,
with the only difference between each pair being the polarity of a single
literal. Given the number of variables n, the synthetic generator iteratively
samples k = 1+Bernoulli(b)+Geometric(g) variables uniformly at random
without replacement and negates each one with independent probability 50%
to build a clause. This procedure continues until the generated formula is
unsatisfiable. The satisfiable instance is then constructed by negating the
first literal in the last clause of the unsatisfiable one.

General: b = 0.3, g = 0.4,
Easy dataset: n ∼ Uniform(10, 40),
Medium dataset: n ∼ Uniform(40, 200),
Hard dataset: n ∼ Uniform(200, 400)

The sampling parameters
are the same as the original
paper [34].

3-SAT

The 3-SAT dataset comprises CNF formulas at the phase transition, where
the proportion of generated satisfiable and unsatisfiable formulas is roughly
equal. Given the number of variables n and clauses m, the synthetic gen-
erator iteratively samples three variables (and their polarities) uniformly at
random until m clauses are obtained.

General: m = 4.258n+ 58.26n−2/3,
Easy dataset: n ∼ Uniform(10, 40),
Medium dataset: n ∼ Uniform(40, 200),
Hard dataset: n ∼ Uniform(200, 300)

The parameter m is the
same as the paper [10]

CA

The CA dataset contains SAT instances that are designed to mimic the
community structures and modularity features found in real-world indus-
trial instances. Given variable number n, clause number m, clause size k,
community number c, and modularity Q, the synthetic generator iteratively
selects k literals in the same community uniformly at random with probabil-
ity P = Q+ 1/c and selects k literals in the distinct community uniformly
at random with probability 1 - P to build a clause and repeat for m times to
construct a CNF formula.

General: m ∼ Uniform(13n, 15n),
k ∼ Uniform(4, 5),
c ∼ Uniform(3, 10),
Q ∼ Uniform(0.7, 0.9)
Easy dataset: n ∼ Uniform(10, 40),
Medium dataset: n ∼ Uniform(40, 200),
Hard dataset: n ∼ Uniform(200, 400)

The parameters are selected
based on the experiments in
the original paper [14] and
our own study to ensure that
the generated SAT instances
have a balance of satisfiabil-
ity and unsatisfiability.

PS

PS dataset encompasses SAT instances with a power-law distribution in
the number of variable occurrences (popularity), and good clustering be-
tween them (similarity). Given variable number n, clause number m, and
average clause size k, the synthetic generator first assigns random angles
θi, θj ∈ [0, 2π] to each variable i and each clause j, and then randomly sam-
ples variable i in clause j with the probability P = 1/(1 + (iβjβ

′
θij/R)T ).

Here, θij = π − |π − |θi − θj || is the angle between variable i and clause
j. The exponent parameters β and β′ control the power-law distribution
of variable occurrences and clause size respectively. The temperature pa-
rameter T controls the sharpness of the probability distribution, while R is
an approximate normalization constant that ensures the average number of
selected edges is km.

General: m ∼ Uniform(6n, 8n),
k ∼ Uniform(4, 5),
β ∼ Uniform(0, 1),
β′ = 1,
c ∼ Uniform(3, 10),
T ∼ Uniform(0.75, 1.5)
Easy dataset: n ∼ Uniform(10, 40),
Medium dataset: n ∼ Uniform(40, 200),
Hard dataset: n ∼ Uniform(200, 300)

The parameters are selected
based on the experiments in
the original paper [15] and
our own study to ensure that
the generated SAT instances
have a balance of satisfiabil-
ity and unsatisfiability.

k-Clique

The k-Clique dataset includes SAT instances that encode the k-Clique prob-
lem, which involves determining whether there exists a clique (i.e., a subset
of vertices that are all adjacent to each other) with v vertices in a given
graph. Given the number of cliques k, the synthetic generator produces an
Erdős-Rényi graph with v vertices and a given edge probability p and then
transforms the corresponding k-Clique problem into a SAT instance.

General: p =
(
v
k

)−1/(v2),
Easy dataset: v ∼ Uniform(5, 15),
k ∼ Uniform(3, 4),
Medium dataset: v ∼ Uniform(15, 20),
k ∼ Uniform(3, 5),
Hard dataset: v ∼ Uniform(20, 25),
k ∼ Uniform(4, 6)

The parameter p is selected
based on the paper [5], mak-
ing the expected number of
k-Cliques in the generated
graph equals 1.

k-Domset

The k-Domset dataset contains SAT instances that encode the k-Dominating
Set problem. This problem is to determine whether there exists a dominating
set (i.e., a subset of vertices such that every vertex in the graph is either
in the subset or adjacent to a vertex in the subset) with at most k vertices
in a given graph. Given the domination number k, the synthetic generator
produces an Erdős-Rényi graph with v vertices and a given edge probability
p and then transforms the corresponding k-Dominating Set problem into a
SAT instance.

General: p = 1−
(
1−

(
v
k

)−1/(v−k)
)1/k

,
Easy dataset: v ∼ Uniform(5, 15),
k ∼ Uniform(2, 3),
Medium dataset: v ∼ Uniform(15, 20),
k ∼ Uniform(3, 5),
Hard dataset: v ∼ Uniform(20, 25),
k ∼ Uniform(4, 6)

The parameter p is selected
based on the paper [40],
making the expected num-
ber of domination set with
size k in the generated
graph equals 1.

k-Vercov

The k-Vercov dataset consists of SAT instances that encode the k-Vertex
Cover problem, i.e., check whether there exists a set of k vertices in a graph
such that every edge has at least one endpoint in this set. Given the vertex
cover number k, the synthetic generator produces a complement graph of an
Erdős-Rényi graph with v vertices and a given edge probability p and then
converts the corresponding k-Vertex Cover problem into a SAT instance.

General: p =
(
v
k

)−1/(v2),
Easy dataset: v ∼ Uniform(5, 15),
k ∼ Uniform(3, 5),
Medium dataset: v ∼ Uniform(10, 20),
k ∼ Uniform(6, 8),
Hard dataset: v ∼ Uniform(15, 25),
k ∼ Uniform(9, 10)

The parameter p is selected
based on the relationship be-
tween k-Vertex Cover and
k-Clique problems, making
the size of the minimum ver-
tex cover in the generated
graph around k.

Statistics. To provide a comprehensive understanding of our generated datasets, we compute several500

characteristics across three difficulty levels. These statistics include the average number of variables501

and clauses, as well as graph measures such as average clustering coefficient (in VIG) and modularity502

(in VIG, VCG, and LCG). The dataset statistics are summarized in Table 8.503

Table 8: Dataset statistics across difficulty levels in G4SATBench.
Dataset Easy Difficulty Medium Difficulty Hard Difficulty

#Variables #Clauses C.C.(VIG) Mod.(VIG) Mod.(VCG) Mod.(LCG) #Variables #Clauses C.C.(VIG) Mod.(VIG) Mod.(VCG) Mod.(LCG) #Variables #Clauses C.C.(VIG) Mod.(VIG) Mod.(VCG) Mod.(LCG)

SR 25.00 148.35 0.98 0.00 0.25 0.33 118.36 646.54 0.62 0.06 0.31 0.37 299.64 1613.86 0.32 0.09 0.32 0.37

3-SAT 25.05 113.69 0.72 0.06 0.36 0.46 120.00 513.14 0.27 0.16 0.43 0.51 250.44 1067.34 0.14 0.17 0.45 0.52

CA 31.66 303.48 0.65 0.19 0.73 0.73 120.27 1661.07 0.54 0.38 0.80 0.80 299.68 4195.50 0.59 0.57 0.80 0.80

PS 25.41 176.68 0.98 0.00 0.27 0.32 118.75 822.78 0.86 0.05 0.35 0.37 249.61 1728.34 0.77 0.08 0.38 0.28

k-Clique 34.85 592.89 0.90 0.03 0.45 0.49 69.56 2220.05 0.91 0.03 0.48 0.49 112.87 5543.26 0.88 0.04 0.49 0.50

k-Domset 41.90 369.40 0.70 0.26 0.47 0.53 90.64 1736.22 0.70 0.21 0.49 0.51 137.31 4032.48 0.70 0.20 0.49 0.51

k-Vercov 45.41 484.28 0.66 0.16 0.48 0.53 107.40 2634.14 0.69 0.16 0.49 0.51 190.24 8190.94 0.69 0.16 0.50 0.51
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B GNN Models504

Message-passing schemes on VCG*. Recall that VCG* incorporates two distinct edge types,505

G4SATBench employs different functions to execute heterogeneous message-passing in each direction506

of each edge type. Formally, we define a d-dimensional embedding for each variable and clause node,507

denoted by hl and hc, respectively. These embeddings are initialized to two learnable vectors h0
v and508

h0
c , depending on the node type. At the k-th iteration of message passing, these hidden representations509

are updated as follows:510

h(k)
c = UPD

(
AGG
v∈c+

({
MLP+

v

(
h(k−1)
v

)})
,AGG
v∈c−

({
MLP−

v

(
h(k−1)
v

)})
, h(k−1)

c

)
,

h(k)
v = UPD

(
AGG
c∈v+

({
MLP+

c

(
h(k−1)
c

)})
,AGG
c∈v−

({
MLP−

c

(
h(k−1)
c

)})
, h(k−1)

v

)
,

(7)

where c+ and c− denote the sets of variable nodes that occur in the clause c with positive and negative511

polarity, respectively. Similarly, v+ and v− denote the sets of clause nodes where variable v occurs in512

positive and negative form. MLP+
v , MLP−

v , MLP+
c , and MLP−

c are four MLPs. UPD(·) is the update513

function, and AGG(·) is the aggregation function.514

GNN baselines. Table 9 summarizes the message-passing algorithms of the GNN models used in515

G4SATBench. We adopt heterogeneous versions of GCN [23], GGNN [27], and GIN [41] on both516

LCG* and VCG*, while maintaining the original NeuroSAT [34] only on LCG*.

Table 9: Supported GNN models in G4SATBench.
Graph Method Message-passing Algorithm Notes

LCG*

NeuroSAT
h
(k)
c , s

(k)
c = LayerNormLSTM1

( ∑
l∈N (c)

MLPl

(
h
(k−1)
l

)
,
(
h
(k−1)
c , s

(k−1)
c

))
,

h
(k)
l , s

(k)
l = LayerNormLSTM2

([ ∑
c∈N (l)

MLPc

(
h
(k−1)
c

)
, h

(k−1)
¬l

]
,
(
h
(k−1)
l , s

(k−1)
l

)) sc, sl are the hidden states which are initialized to
zero vectors.

GCN
h
(k)
c = Linear1

([ ∑
l∈N (c)

MLPl

(
h
(k−1)
l

)
√
dldc
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c
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c )√
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(k−1)
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(k−1)
l

]) dc, dl are the degrees of clause node c and literal
node l in LCG respectively.

GGNN
h
(k)
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h
(k)
c = MLP1
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h
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VCG*
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517

C Benchmarking Evaluation518

C.1 Implementation Details519

In G4SATBench, we provide the ground truth of satisfiability and satisfying assignments by calling520

the state-of-the-art modern SAT solver CaDiCaL [13] and generate the truth labels for unsat-core521
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variables by invoking the proof checker DRAT-trim [39]. All neural networks in our study are522

implemented using PyTorch [31] and PyTorch Geometric [12]. For all GNN models, we set the523

feature dimension d to 128 and the number of message passing iterations T to 32. The MLPs524

in the models consist of two hidden layers with the ReLU [29] activation function. To select the525

optimal hyperparameters for each GNN baseline, we conduct a grid search over several settings.526

Specifically, we explore different learning rates from {10−3, 5 × 10−4, 10−4, 5 × 10−5, 10−5},527

training epochs from {50, 100, 200}, weight decay values from {10−6, 10−7, 10−8, 10−9, 10−10},528

and gradient clipping norms from {0.1, 0.5, 1}. We employ Adam [22] as the optimizer and set the529

batch size to 128, 64, or 32 to fit within the maximum GPU memory (48G). For the parameters τ530

and κ of the unsupervised loss in Equation 4 and Equation 5, we try the default settings (τ = t−0.4531

and κ = 10, where t is the global step during training) as the original paper [1] as well as other532

values (τ ∈ {0.05, 0.1, 0.2, 0.5}, κ ∈ {1, 2, 5}) and empirically find τ = 0.1, κ = 1 yield the best533

results. Furthermore, it is important to note that we use three different random seeds to benchmark534

the performance of different GNN models and assess the generalization ability of NeuroSAT and535

GGNN using one seed for simplicity.536

C.2 Satiafiability Prediction537

Evaluation across different difficulty levels. The complete results of NeuroSAT and GGNN across538

different difficulty levels are presented in Figure 6. Consistent with the findings on the SR and 3-SAT539

datasets, both GNN models exhibit limited generalization ability to larger instances beyond their540

training data, while displaying relatively better performance on smaller instances. This observation541

suggests that training these models on more challenging instances could potentially enhance their542

generalization ability and improve their performance on larger instances.543
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Figure 6: Results across different difficulty levels. The x-axis denotes testing datasets and the y-axis
denotes training datasets.

Evaluation with different message passing iterations. To investigate the impact of message-544

passing iterations on the performance of GNN models during training and testing, we conducted545

experiments with varying iteration values. Figure 7 presents the results of NeuroSAT and GGNN546

trained and evaluated with different message passing iterations. Remarkably, using a training iteration547

value of 32 consistently yielded the best performance for both models. Conversely, employing too548

small or too large iteration values during training resulted in decreased performance. Furthermore, the549

models trained with 32 iterations also demonstrated good generalization ability to testing iterations 16550

and 64. These findings emphasize the critical importance of selecting an appropriate message-passing551

iteration to ensure optimal learning and reasoning within GNN models.552
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Figure 7: Results across different message passing iterations T . The x-axis denotes testing iterations
and the y-axis denotes training iterations.
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C.3 Satisfying Assignment Prediction553
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Figure 8: Results of NeuroSAT across different
datasets (with UNS2 as the training loss). The
x-axis denotes testing datasets and the y-axis
denotes training datasets.

Evaluation with different datasets. Figure 8 il-554

lustrates the performance of NeuroSAT across dif-555

ferent datasets. For easy datasets, we observe that556

NeuroSAT demonstrates a strong generalization557

ability to other datasets when trained on the SR, 3-558

SAT, CA, and PS datasets. However, when trained559

on the k-Clique, k-Domset, and k-Vercov datasets,560

which involve specific graph structures inherent561

to their combinatorial problems, NeuroSAT strug-562

gles to generalize effectively. This observation563

indicates that the GNN model may overfit to lever-564

age specific graph features associated with these565

combinatorial datasets, without developing a gen-566

eralized solving strategy that can be applied to other problem domains for satisfying assignment567

prediction. For medium datasets, NeuroSAT also faces challenges in generalization, as its perfor-568

mance is relatively limited. This can be attributed to the difficulty of these datasets, where finding569

satisfying assignments is much harder than easy datasets.570

Evaluation across different difficulty levels. The performance of NeuroSAT across different diffi-571

culty levels is shown in Figure 9. Notably, training on medium datasets yields superior generalization572

performance compared to training on easy datasets. This suggests that training on more challenging573

instances can enhance the model’s ability to generalize to a wider range of problem complexities.574

easy medium hard

easy

medium

79.05 29.50 2.25

81.80 37.25 5.19

NeuroSAT on the SR dataset
easy medium hard

easy

medium

80.98 35.72 7.25

82.63 41.61 11.34

NeuroSAT on the 3-SAT dataset
easy medium hard

easy

medium

89.35 68.25 59.91

85.13 70.85 68.96

NeuroSAT on the CA dataset
easy medium hard

easy

medium

88.67 64.04 43.63

89.88 71.03 55.47

NeuroSAT on the PS dataset
easy medium hard

easy

medium

63.43 19.05 1.76

64.85 32.48 14.68

NeuroSAT on the k-Clique dataset
easy medium hard

easy

medium

98.96 69.72 19.43

96.65 96.18 91.77

NeuroSAT on the k-Domset dataset
easy medium hard

easy

medium

99.81 75.11 0.00

99.15 95.03 81.21

NeuroSAT on the k-Vercov dataset

Figure 9: Results of NeuroSAT across different difficulty levels (with UNS2 as the training loss). The
x-axis denotes testing datasets and the y-axis denotes training datasets.
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Figure 10: Results of NeuroSAT with different
inference algorithms.

Evaluation with different inference algorithms.575

Figure 10 illustrates the results of NeuroSAT us-576

ing various decoding algorithms (with UNS2 as577

the training loss). Surprisingly, all three decoding578

algorithms demonstrate remarkably similar per-579

formances across all datasets. This observation580

indicates that utilizing the standard readout after581

message passing is sufficient for predicting a sat-582

isfying assignment. Also, the GNN model has583

successfully learned to identify potential satisfy-584

ing assignments within the latent space, which can be extracted by clustering the literal embeddings.585

Evaluation with unsatisfiable training instances. Following previous works [1, 2, 30], our586

evaluation of GNN models focuses solely on satisfiable instances. However, in practical scenarios,587

the satisfiability of instances may not be known before training. To address this gap, we explore the588

effectiveness of training NeuroSAT using the unsupervised loss UNS2 on noisy datasets that contain589

unsatisfiable instances. Table 10 presents the results of NeuroSAT when trained on such datasets,590

where 50% of the instances are unsatisfiable. Interestingly, incorporating unsatisfiable instances for591

training does not significantly affect the performance of the GNN model. This finding highlights the592

potential utility of training GNN models using UNS2 loss on new datasets, irrespective of any prior593

knowledge regarding their satisfiability.594

17



Table 10: Results of NeuroSAT when trained on noisy datasets. Values in parentheses indicate the
performance difference compared to the model trained without unsatisfiable instances. The k-Clique
dataset is excluded as NeuroSAT fails during training.

Easy Datasets Medium Datasets

SR 3-SAT CA PS k-Domset k-Vercov SR 3-SAT CA PS k-Domset k-Vercov

0.7884 0.8048 0.8701 0.8866 0.9800 0.9524 0.3721 0.4175 0.7649 0.7252 0.9493 0.9618
(-0.95) (-0.11) (-2.33) (-0.13) (-0.85) (-4.49) (-0.04) (+0.14) (+5.64) (+1.46) (-1.25) (+0.19)

C.4 Unsat-core Variable Prediction595

Evaluation across different datasets. Figure 11 shows the generalization results across different596

datasets. NeuroSAT and GGNN demonstrate good generalization performance to datasets that are597

different from their training data, except for the CA dataset. This discrepancy can be attributed to the598

specific characteristics of the CA dataset, where the number of unsat-core variables is significantly599

smaller compared to the number of variables not in the unsat core. In contrast, other datasets exhibit a600

different distribution, where the number of variables in the unsat core is much larger. This variation in601

distribution presents a challenge for the models’ generalization ability in the case of the CA dataset.602
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Figure 11: Results across different datasets. The x-axis denotes testing datasets and the y-axis denotes
training datasets.

Evaluation across different difficulty levels. The results across different difficulty levels are603

presented in Figure 12. Remarkably, both NeuroSAT and GGNN exhibit a strong generalization604

ability when trained on easy or medium datasets. This suggests that GNN models can effectively605

learn and generalize from the characteristics and patterns present in these datasets, enabling them to606

perform well on a wide range of problem complexities.607
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Figure 12: Results across different difficulty levels. The x-axis denotes testing datasets and the y-axis
denotes training datasets.

D Advancing Evaluation608

Implementation details. To create the augmented datasets, we leverage CaDiCaL [13] to generate609

a DART proof [39] for each SAT instance, which tracks the clause learning procedure and records all610

the learned clauses during the solving process. These learned clauses are then added to each instance,611

with a maximum limit of 1,000 clauses. For experiments on augmented datasets, we keep all training612

settings identical to those used for the original datasets.613
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For contrastive pretraining experiments, we treat each original formula and its augmented counterpart614

as a positive pair and all other instances in a mini-batch as negative pairs. We use an MLP projection615

to map the graph embedding zi of each formula to mi and employ the SimCLR’s contrastive loss [8],616

where the loss function for a positive pair of examples (i, j) in a mini-batch of size 2N is defined as:617

Li,j = − log
exp(sim(mi,mj)/τ)∑2N

k=1 1[k ̸=i] exp(sim(mi,mk)/τ)
. (8)

Here, 1[k ̸=i] is an indicator function that evaluates to 1 if k ̸= i, τ is a temperature parameter, and618

sim(·, ·) is the similarity function defined as sim(mi,mj) = m⊤
i mj/∥mi∥∥mj∥. The final loss is619

the average over all positive pairs. In our experiments, we set the temperature parameter to 0.5 and620

utilize a learning rate of 10−4 with a weight decay of 10−8. The pretraining process is performed for621

a total of 100 epochs. Once the pretraining is completed, we only keep the GNN model and remove622

the projection head for downstream tasks.623

For experiments involving random initialization, we utilize Kaiming Initialization [18] to initialize all624

literal/variable and clause embeddings during both training and testing. For the predicted assignments,625

we utilize 2-clustering decoding to construct two possible assignment predictions for NeuroSAT*626

at each iteration. When calculating the number of flipped variables and the number of unsatisfiable627

clauses for NeuroSAT*, we only consider the better assignment prediction of the two at each iteration,628

which is the one that satisfies more clauses. All other experimental settings remain the same as in the629

benchmarking evaluation.630
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