A Datasets

496
497 Generators. To generate high-quality SAT datasets that do not contain trivial instances, we have em-
498 ployed a rigorous process of selecting appropriate parameters for each CNF generator in G4SATBench.
499 Table[7]provides detailed information about the generators we have used.
Table 7: Details of the synthetic generators employed in G4SATBench.
Dataset Description Parameters Notes
The SR dataset is composed of pairs of satisfiable and unsatisfiable formulas,
with the only difference between each pair being the polarity of a single
literal. Given the number of variables n, the synthetic generator iteratively ~ General: b = 0.3,9 = 0.4, The sampling parameters
SR samples k = 1+Bernoulli(b) +Geometric(g) variables uniformly at random ~ Easy dataset: n ~ Uniform(10, 40), are the saim i 1’111& original
without replacement and negates each one with independent probability 50% Medium dataset: n ~ Uniform(40, 200), aper [34 s
to build a clause. This procedure continues until the generated formula is ~ Hard dataset: n ~ Uniform(200, 400) paper 2.
unsatisfiable. The satisfiable instance is then constructed by negating the
first literal in the last clause of the unsatisfiable one.
The 3-SAT dataset comprises CNF formulas at the phase transition, where A ' o3
the proportion of generated satisfiable and unsatisfiable formulas is roughly General: m - 4258”’.% 58.26n ’ The para is th
3-SAT equal. Given the number of variables n and clauses m, the synthetic gen- Easy(dataset, n~ Unltorfn(lo,40), © parameter m 15 the
q > Y g N
. f . . L . Medium dataset: n ~ Uniform(40,200), same as the paper [10]
erator iteratively samples three variables (and their polarities) uniformly at Hard dataset: Unif 200. 300
random until m clauses are obtained. ard dataset: n. ~ Uniform(200, 300)
The CA _dalasel contains SAT instances that are des¥gned to mimic the General: m ~ Uniform(13n, 15n), The parameters are selected
community structures and modularity features found in real-world indus- % ~ Uniform(4, 5) based on the experiments in
trial instances. Given variable number 7, clause number m, clause size k, . 2 10 g P ;
5 ¢ ~ Uniform(3, 10), the original paper [14] and
CA community number ¢, and modularity (), the synthetic generator iteratively Q ~ Uniform(0.7,0.9) our own study to ensure that
selects k literals in the same community uniformly at random with probabil- L .
N S e e R . . Easy dataset: n ~ Uniform(10, 40), the generated SAT instances
ity P = @ + 1/c and selects k literals in the distinct community uniformly . . o e
. o f - Medium dataset: n ~ Uniform(40,200), have a balance of satisfiabil-
at random with probability 1 - P to build a clause and repeat for m times to X I y . R 2
3 Hard dataset: n ~ Uniform(200, 400) ity and unsatisfiability.
construct a CNF formula.
PS dataset encompasses SAT instances with a power-law distribution in
the number of variable occurrences (popularity), and good clustering be- . -
tween them (similarity). Given variable number 7, clause number m, and Senera]:fm ~4Umt0rm(6n, 8n), Th ! d
average clause size k, the synthetic generator first assigns random angles gN I[Jjn{ form()’ ?) ba ?garan;lctcrs are s Cc_tc.
0;,0; € [0,27] to each variable i and each clause j, and then randomly sam- :j,i niform(0, 1), t;;eorfgl;l:af;:ﬁ:rnrllgm;rig
PS ples variable i in clause j with the probability P = 1/(1 + (1',"7]'.“f 0;/R)T). c~ Ul;iform(i’;, 10). our own study to ensure that
{'Ie“"l; bij = — \7"‘ - 10; — 9]J\ is (?‘f/a‘fgle bilzeen varlafle 7’d",".'d,§1al.lse T ~ Uniform(0.75, 1.5) the generated SAT instances
]‘1_ T © eb)l(ponem pdrdmete;b 'lj d? ‘j z,ontro‘t_ elpov]v_ir- aw distribution Easy dataset: n ~ Uniform(10, 40), have a balance of satisfiabil-
of variable occurrences and clause size respectively. The temperature pa- - predjym dataset: n ~ Uniform(40,200), ity and unsatisfiability.
rameter T_conlrols the §har_pness of the probability distribution, while R IS Hard dataset: n ~ Uniform (200, 300)
an approximate normalization constant that ensures the average number of
selected edges is km.
i i i i General: p = (”)71/(5)
The k-Clique dataset includes SAT instances that encode the k-Clique prob- p k o The parameter p is selected
lem, which involves determining whether there exists a clique (i.e., a subset Easy da_taset: v ~ Uniform(5, 15), baseg on the aIerl |l5 mak-
-Clique of vertices that are all adjacent to each other) with v vertices in a given & ~ Uniform(3,4), . ine the ex, ecptes number of
4 graph. Given the number of cliques k, the synthetic generator produces an ~ Medium dataset: v ~ Uniform(15, 20), k-%lli uespin the generated
Erd&s-Rényi graph with v vertices and a given edge probability p and then k ~ Uniform(3, 5), . a hqe als 1 g
transforms the corresponding k-Clique problem into a SAT instance. Hard dataset: v ~ Uniform(20, 25), &raph equ; :
k ~ Uniform(4, 6)
The k-Domset dataset contains SAT instances that encode the k-Dominating Lp—1 1_ (v) Y=k 1/k
Set problem. This problem is to determine whether there exists a dominating ~O¢neral: p =1 - (-) > The parameter p is selected
set (i.e., a subset of vertices such that every vertex in the graph is either ~Easy dataset: v ~ Uniform(5, 15), based on the paper [40],
-Domset in the subset or adjacent to a vertex in the subset) with at most k vertices &k ~ Uniform(2, 3), making the expected num-
in a given graph. Given the domination number k, the synthetic generator ~Medium dataset: v ~ Uniform(15, 20), ber of domination set with
produces an Erd6s-Rényi graph with v vertices and a given edge probability & ~ Uniform(3,5), size k in the generated
p and then transforms the corresponding k-Dominating Set problem into a Hard dataset: v ~ Uniform(20, 25), graph equals 1.
SAT instance. k ~ Uniform(4, 6)
Al — ()G ara is select
The k-Vercov dataset consists of SAT instances that encode the k-Vertex ~ Ceneral: p = (7) (‘2‘)’ g:;dpf:ﬁi:tzﬁ lil(b);:}ll‘i%f:-
Cover problem, i.c., check whether there exists a set of k vertices in a graph ~ Easy da_tasct: v Uniform(5, 15), tween k-Vertex Coverpand
J-Vercov such that every edge has at least one endpoint in this set. Given the vertex ko~ Umform(d. 5), . . k-Clique problems. makin
cover number , the synthetic generator produces a complement graph of an Medium dataset: v ~ Uniform(10, 20), the :igc ofpthc minimum ch_
FErd6s-Rényi graph with v vertices and a given edge probability p and then % ~ Uniform(6, 8), . tex >c0ver in the eenerated
converts the corresponding k-Vertex Cover problem into a SAT instance. Hard da_lasel: v ~ Uniform(15, 25), aph 2 dk &
k ~ Uniform(9, 10) graph around .
s00 Statistics. To provide a comprehensive understanding of our generated datasets, we compute several
501 characteristics across three difficulty levels. These statistics include the average number of variables
s02 and clauses, as well as graph measures such as average clustering coefficient (in VIG) and modularity
503 (in VIG, VCG, and LCG). The dataset statistics are summarized in Table[§]

Table 8: Dataset statistics across difficulty levels in G4SATBench.

Dataset Easy Difficulty Medium Difficulty Hard Difficulty
#Variables #Clauses C.C(VIG) Mod(VIG) Mod(VCG) Mod(LCG) #Variables #Clauses C.C.VIG) Mod.(VIG) Mod.(VCG) Mod.(LCG) #Variables #Clauses C.C.(VIG) Mod.(VIG) Mod.(VCG) Mod.(LCG)

SR 25.00 14835 098 0.00 025 033 11836 64654 062 0.06 031 037 29964 1613.86 032 009 032 037
3-SAT 25.05 113.69 072 006 036 046 12000 51314 027 0.16 043 051 25044 1067.34 0.14 017 045 052
CA 3166 30348 065 0.19 073 073 12027 1661.07 054 038 0.80 0380 29968 4195.50 059 057 030 080
Ps 2541 176.68 098 0.00 027 032 11875 82278 086 005 035 037 24961 172834 077 008 038 028
k-Clique 34.85 592.89 090 003 045 049 6956 222005 091 0.03 048 049 11287 554326 038 004 049 050
k-Domset 41.90 369.40 0.70 026 047 053 9064 173622 070 021 049 051 13731 403248 070 020 049 051
k-Vercov 4541 484.28 0.66 0.16 048 053 10740 263414 069 0.16 049 051 19024 819094 069 0.16 050 051

14

504

505
506
507
508
509
510

511
512
513
514

515
516

517

518

5

9

520
521

B GNN Models

Message-passing schemes on VCG*. Recall that VCG* incorporates two distinct edge types,
G4SATBench employs different functions to execute heterogeneous message-passing in each direction
of each edge type. Formally, we define a d-dimensional embedding for each variable and clause node,
denoted by h; and h., respectively. These embeddings are initialized to two learnable vectors h? and
hY, depending on the node type. At the k-th iteration of message passing, these hidden representations
are updated as follows:

) = UPD (i\gg ({MLPj (hg’“*)) }) AGG ({MLP; (hg’“*”) }) ,hﬁ’“”) :

149 = urD (406 ({uez (1)) Ao ({mues (n6=0))).

where ¢ and ¢~ denote the sets of variable nodes that occur in the clause ¢ with positive and negative
polarity, respectively. Similarly, v™ and v~ denote the sets of clause nodes where variable v occurs in
positive and negative form. MLP,", MLP; , MLP/", and MLP, are four MLPs. UPD(:) is the update
function, and AGG(-) is the aggregation function.

GNN baselines. Table[9] summarizes the message-passing algorithms of the GNN models used in
G4SATBench. We adopt heterogeneous versions of GCN [23]], GGNN [27], and GIN [41] on both
LCG* and VCG*, while maintaining the original NeuroSAT [34] only on LCG*.

Table 9: Supported GNN models in G4SATBench.

Graph Method Message-passing Algorithm Notes

LEN (c)

2® s® — LayerNormLSTM, | 32 MLP, (hfk*”) , (h,f,*'*”, »ﬁ“”) .
Sc, s are the hidden states which are initialized to

NeuroSAT zero vectors

hw, S;H = LayerNormLSTM, [> MLP, (hgkfl)) Jﬁkfl)} s (111(’”71),51(1“71)>>

cEN(1)
: MLP; (R{E7Y o

],f:]‘) = Linear, [(T ‘d) .h,(k H N

GCN 1eN(c) e d., d; are the degrees of clause node ¢ and literal
*) MLP (D) (A Y L (k=1) node [in LCG respectively.
h;"’ = Linear, Nomn Jhiy by
i
ceN(l)

LCG*

h® = GRU, ({MLP, (h“ 1))}) Jlik—l)>,

leN(c)

GGNN
n*¥) = GRU, S MLP, h(k ” BT ket
cEN(1)
W =iy (|5 ({mee (nf70)}) hl “} ,
GIN LEN ()
n =MLP, (| S MLP, (h“ ”) R e
ceEN (1)
.) (D) MLPS (RF=V)) (k—1)
h,f.") = Linear; MLP L s At he s
GCN vEet dude vEC™ dude d., d,, are the degrees of clause node ¢ and variable
W0 1 T) ML, (1)) node v in VCG respectively.
v = Linear; s hy
cevt cev™

»® = cru, (| ¥ ML}
VCG* GGNN et

[) o ()]

n = GRUp (| 3 MLPY (n81Y, . ML, (RE=2Y| Al
(h72). 2 ey (577).
(R 2 e (577),

AP =mLp, [| S MLp (D ¥ MLP} RFDY pY
GIN vEct
B =MLP, [| S MLpr (pED) s mep; (A% RdY
cevt cev™

C Benchmarking Evaluation

C.1 Implementation Details

In G4SATBench, we provide the ground truth of satisfiability and satisfying assignments by calling
the state-of-the-art modern SAT solver CaDiCaL [[13] and generate the truth labels for unsat-core

15

522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

538
539
540
541
542
543

544
545
546
547
548
549
550
551
552

variables by invoking the proof checker DRAT-trim [39]. All neural networks in our study are
implemented using PyTorch [31] and PyTorch Geometric [12]. For all GNN models, we set the
feature dimension d to 128 and the number of message passing iterations 7" to 32. The MLPs
in the models consist of two hidden layers with the ReL.U [29]] activation function. To select the
optimal hyperparameters for each GNN baseline, we conduct a grid search over several settings.
Specifically, we explore different learning rates from {10725 x 1074,107%,5 x 107°,1075},
training epochs from {50, 100,200}, weight decay values from {1075,10=7,107%,1079, 10710},
and gradient clipping norms from {0.1, 0.5, 1}. We employ Adam as the optimizer and set the
batch size to 128, 64, or 32 to fit within the maximum GPU memory (48G). For the parameters 7
and k of the unsupervised loss in EquationEl and Equation we try the default settings (7 = ¢4
and k = 10, where ¢ is the global step during training) as the original paper [I]] as well as other
values (7 € {0.05,0.1,0.2,0.5}, k € {1,2,5}) and empirically find 7 = 0.1, k = 1 yield the best
results. Furthermore, it is important to note that we use three different random seeds to benchmark
the performance of different GNN models and assess the generalization ability of NeuroSAT and
GGNN using one seed for simplicity.

C.2 Satiafiability Prediction

Evaluation across different difficulty levels. The complete results of NeuroSAT and GGNN across
different difficulty levels are presented in Figure[6] Consistent with the findings on the SR and 3-SAT
datasets, both GNN models exhibit limited generalization ability to larger instances beyond their
training data, while displaying relatively better performance on smaller instances. This observation
suggests that training these models on more challenging instances could potentially enhance their
generalization ability and improve their performance on larger instances.

6556 54.82

[ISCW 7498 66.08 98.80 99.67 100.00 9633 9594 96.67 [ERZM 6678 50.20 EEEEN 5095 5000

easy| easy| easy| easy| easy| easyl easy]

medium| [TRERINANN o327 8467 8330 MNWRNR oc17 9950 100.00 PN 9527 9689 93.00 [ENNNNN (WIS FETN 0067 8540 MWW 8957 9991 96.99

easy medium _hard easy medium hard easy medium hard easy medium hard easy medium hard easy medium hard easy medium hard
NeuroSAT on the SR dataset NeuroSAT on the 3-SAT dataset NeuroSAT on the CA dataset NeuroSAT on the PS dataset NeuroSAT on the k-Clique dataset NeuroSAT on the k-Domset dataset NeuroSAT on the k-Vercov dataset

P o072 | 8408 EEXTH 5285 s0.00
52

99.50 100.00 MM 9453 9653 97.53 [T NCUELERSENERINFRURNE o570 9o

PO osco 9963 10000 BN 0580 9606 97.25 [N

ULy 9499 8578 83.60 PTNRY 96.17 99.61 | 88.92

easy medium hard easy medium hard easy medium hard Gasy _medum Tard easy medium hard easy ~medum hard
GGNN on the SR dataset GGNN on the 3-SAT dataset GGNN on the CA dataset GGNN on the PS dataset GGNN on the k-Clique dataset GGNN on the k-Domset dataset GGNN on the k-Vercov dataset

Figure 6: Results across different difficulty levels. The x-axis denotes testing datasets and the y-axis
denotes training datasets.

Evaluation with different message passing iterations. To investigate the impact of message-
passing iterations on the performance of GNN models during training and testing, we conducted
experiments with varying iteration values. Figure[7]presents the results of NeuroSAT and GGNN
trained and evaluated with different message passing iterations. Remarkably, using a training iteration
value of 32 consistently yielded the best performance for both models. Conversely, employing too
small or too large iteration values during training resulted in decreased performance. Furthermore, the
models trained with 32 iterations also demonstrated good generalization ability to testing iterations 16
and 64. These findings emphasize the critical importance of selecting an appropriate message-passing
iteration to ensure optimal learning and reasoning within GNN models.

o 6725 7084 7154 6053 o sees 173 o 795 | 52 s036 s039 5121 4923 | o 5730 5001 5000 5000 5000 5000 50.00

16| S04 6368 16| 6879 [1o 5052 6433 sem suse

3 055 5894 3| 6216 3 5040 B8

o 4008 s2s2 |7 RERTS & 5000 5000 4999 5720 | g 5130 6632 o 5000 s120 | 7159 [RERE 6 5000 5237 215 5422 | g 5000 5028 €925

L ™ o ™ 3 T La ™ ™ g T

NeuroSAT on the easy SR dataset NewroSAT on the easy 3-sat dataset NeuroSAT on the medium SR dataset NeuroSAT on the medium 3.SAT dataset GGNN on the easy SR dataset GGNN on the easy J.sat dataset GGNN on the medium SR dataset GG on the medium 3.SAT dataset

Figure 7: Results across different message passing iterations 7'. The x-axis denotes testing iterations
and the y-axis denotes training iterations.

16

553

554
555
556

558
559
560
561

563
564
565
566

568
569
570

571
572
573
574

575
576
577
578
579
580

582
583
584
585

586
587
588
589
590
591
592
593
594

C.3 Satisfying Assignment Prediction

Evaluation with different datasets. Figure 3]il-
lustrates the performance of NeuroSAT across dif-
ferent datasets. For easy datasets, we observe that
NeuroSAT demonstrates a strong generalization
ability to other datasets when trained on the SR, 3-
SAT, CA, and PS datasets. However, when trained
on the k-Clique, k-Domset, and k-Vercov datasets, p E V ,
which involve specific graph structures inherent NeUroSAT on easy otacete NewroSAT on medium d;tase;s
to their combinatorial problems, NeuroSAT strug-
gles to generalize effectively. This observation
indicates that the GNN model may overfit to lever-
age specific graph features associated with these
combinatorial datasets, without developing a gen-
eralized solving strategy that can be applied to other problem domains for satisfying assignment
prediction. For medium datasets, NeuroSAT also faces challenges in generalization, as its perfor-
mance is relatively limited. This can be attributed to the difficulty of these datasets, where finding
satisfying assignments is much harder than easy datasets.

Figure 8: Results of NeuroSAT across different
datasets (with UNS,, as the training loss). The
x-axis denotes testing datasets and the y-axis
denotes training datasets.

Evaluation across different difficulty levels. The performance of NeuroSAT across different diffi-
culty levels is shown in Figure[9] Notably, training on medium datasets yields superior generalization
performance compared to training on easy datasets. This suggests that training on more challenging
instances can enhance the model’s ability to generalize to a wider range of problem complexities.

1905 176 | e 59.72

3248 1468

casyRERLH 2950 225 casy JELECH 3572 725

medium MO 3725 519 |mediumERER 4161 1134 |egiym JCERE]

easy medum hard easy medum hard easy medium hard easy medum har easy medium hard easy medium har
NeuroSAT on the SR dataset NeuroSAT on the 3-SAT dataset NeuroSAT on the CA dataset NeuroSAT on the PS dataset NeuroSAT on the k-Clique dataset NeuroSAT on the k-Domset dataset NeuroSAT on the k-Vercov dataset

Figure 9: Results of NeuroSAT across different difficulty levels (with UNS as the training loss). The
x-axis denotes testing datasets and the y-axis denotes training datasets.

Evaluation with different inference algorithms.
Figure [I0]illustrates the results of NeuroSAT us-
ing various decoding algorithms (with UNS; as
the training loss). Surprisingly, all three decoding
algorithms demonstrate remarkably similar per-
formances across all datasets. This observation
indicates that utilizing the standard readout after
message passing is sufficient for predicting a sat- Figure 10: Results of NeuroSAT with different
isfying assignment. Also, the GNN model has inference algorithms.

successfully learned to identify potential satisfy-

ing assignments within the latent space, which can be extracted by clustering the literal embeddings.

SSAT A kCllque k-Domsetkvercov % SR,
NeuroSAT on easy datasets

B k-Domsetk-Vercov

3SAT CA S5kl
NeuroSAT on medium datasets

Evaluation with unsatisfiable training instances. Following previous works [}, 2 30], our
evaluation of GNN models focuses solely on satisfiable instances. However, in practical scenarios,
the satisfiability of instances may not be known before training. To address this gap, we explore the
effectiveness of training NeuroSAT using the unsupervised loss UNS2 on noisy datasets that contain
unsatisfiable instances. Tablelmpresents the results of NeuroSAT when trained on such datasets,
where 50% of the instances are unsatisfiable. Interestingly, incorporating unsatisfiable instances for
training does not significantly affect the performance of the GNN model. This finding highlights the
potential utility of training GNN models using UNS, loss on new datasets, irrespective of any prior
knowledge regarding their satisfiability.

17

595

596
597
598
599
600
601
602

608

609
610
611
612
613

Table 10: Results of NeuroSAT when trained on noisy datasets. Values in parentheses indicate the
performance difference compared to the model trained without unsatisfiable instances. The k-Clique
dataset is excluded as NeuroSAT fails during training.
Easy Datasets Medium Datasets
SR 3-SAT CA PS k-Domset k-Vercov SR 3-SAT CA PS k-Domset k-Vercov

0.7884 0.8048 0.8701 0.8866 09800 09524 03721 04175 0.7649 0.7252 09493 0.9618
(-0.95) (-0.11) (-233) (-0.13) (-0.85) (-449) (-0.04) (+0.14) (+5.64) (+146) (-125) (+0.19)

C.4 Unsat-core Variable Prediction

Evaluation across different datasets. Figure[IT]shows the generalization results across different
datasets. NeuroSAT and GGNN demonstrate good generalization performance to datasets that are
different from their training data, except for the CA dataset. This discrepancy can be attributed to the
specific characteristics of the CA dataset, where the number of unsat-core variables is significantly
smaller compared to the number of variables not in the unsat core. In contrast, other datasets exhibit a
different distribution, where the number of variables in the unsat core is much larger. This variation in
distribution presents a challenge for the models’ generalization ability in the case of the CA dataset.

29 o:

29 o:

NeuroSAT on easy datasets NeuroSAT on medium datasets GGNN on easy datasets GGNN on medium datasets

Figure 11: Results across different datasets. The x-axis denotes testing datasets and the y-axis denotes
training datasets.

Evaluation across different difficulty levels. The results across different difficulty levels are
presented in Figure [12] Remarkably, both NeuroSAT and GGNN exhibit a strong generalization
ability when trained on easy or medium datasets. This suggests that GNN models can effectively
learn and generalize from the characteristics and patterns present in these datasets, enabling them to
perform well on a wide range of problem complexities.

easy] 9 9 casy| 8351 BL55 8315 | o) 8618 8637 8573 9 99.96 P 0147 99.10

medium| 89:51 90.05 REVRFE CTRTETY I | | 6105 8570 86.01 |megium| 85.93 8854

casy medum hard easy medium hard Gasy _medlum _hard casy medum hard easy medum hard easy medum hard easy ~medum hard
NeuroSAT on the SR dataset NeuroSAT on the 3-SAT dataset NeuroSAT on the CA dataset NeuroSAT on the PS dataset NeuroSAT on the k-Clique dataset NeuroSAT on the k-Domset dataset NeuroSAT on the k-Vercov dataset

casy| 8954 87.49 8850 PP 9437 98.96 99.09 casy| 8363 8555 85.94 casy| 8585 8637 8595 99.93 99.96 99.99 PR 0582 97.26 98.98 oY 0448 99.02

medium| 86.57 88.84 medium{IELE LRI | 8105 8570 86.01 |megium| 8489 88.04 9034 | cgium IRECERNECKIINCEREN . i, IEKCCTA SRR | (CEE UL EE

casy medum hard easy medium hard €asy _medum hard casy medum hard easy medium hard easy medium hard easy medium hard
GGNN on the SR dataset GGNN on the 3-SAT dataset GGNN on the CA dataset GGNN on the PS dataset GGNN on the k-Clique dataset GGNN on the k-Domset dataset GGNN on the k-Vercov dataset

Figure 12: Results across different difficulty levels. The x-axis denotes testing datasets and the y-axis
denotes training datasets.

D Advancing Evaluation

Implementation details. To create the augmented datasets, we leverage CaDiCaL to generate
a DART proof [39] for each SAT instance, which tracks the clause learning procedure and records all
the learned clauses during the solving process. These learned clauses are then added to each instance,
with a maximum limit of 1,000 clauses. For experiments on augmented datasets, we keep all training
settings identical to those used for the original datasets.

18

614
615
616
617

618
619
620
621
622
623

624
625
626
627

629
630

For contrastive pretraining experiments, we treat each original formula and its augmented counterpart
as a positive pair and all other instances in a mini-batch as negative pairs. We use an MLP projection
to map the graph embedding z; of each formula to m; and employ the SimCLR’s contrastive loss [8],
where the loss function for a positive pair of examples (4, j) in a mini-batch of size 2N is defined as:

exp(sim(m;, m;)/T)
SN Lppq) exp(sim(mg, my) /7)

Here,]l[k#] is an indicator function that evaluates to 1 if k # ¢, 7 is a temperature parameter, and

ﬁi,j = —log (8)

sim(-, -) is the similarity function defined as sim(m;, m;) = m; m;/|/m;|||/m;||. The final loss is
the average over all positive pairs. In our experiments, we set the temperature parameter to 0.5 and
utilize a learning rate of 10~* with a weight decay of 10~8. The pretraining process is performed for
a total of 100 epochs. Once the pretraining is completed, we only keep the GNN model and remove
the projection head for downstream tasks.

For experiments involving random initialization, we utilize Kaiming Initialization [18] to initialize all
literal/variable and clause embeddings during both training and testing. For the predicted assignments,
we utilize 2-clustering decoding to construct two possible assignment predictions for NeuroSAT*
at each iteration. When calculating the number of flipped variables and the number of unsatisfiable
clauses for NeuroSAT*, we only consider the better assignment prediction of the two at each iteration,
which is the one that satisfies more clauses. All other experimental settings remain the same as in the
benchmarking evaluation.

19

	Datasets
	GNN Models
	Benchmarking Evaluation
	Implementation Details
	Satiafiability Prediction
	Satisfying Assignment Prediction
	Unsat-core Variable Prediction

	Advancing Evaluation

