
Published as a conference paper at ICLR 2024

A RELATED WORK

As previously highlighted in the introduction, several critical bottlenecks restrict universal applications
of prompt control algorithms to disease. When it comes to quickly acquiring new skills, meta-learning
emerges as an ideal paradigm for achieving rapid mastery in specific scenarios. In terms of data
efficiency, both model-based reinforcement learning (MBRL) and meta-learning have the potential to
significantly reduce sample complexity.
Neural Temporal Point Process. In the realm of modeling real-world data, the use of constrained
models like Multivariate Hawkes Processes (Hawkes, 1971) can often lead to unsatisfactory results
due to model misspecification. In recent studies, researchers have started exploring neural network
parameterizations of Temporal Point Processes (TPPs) to mitigate these limitations. Common
approaches (Du et al., 2016; Mei & Eisner, 2017) involve the employment of recurrent neural
networks to evolve a latent state from which the intensity value can be derived. However, this
approach falls short in capturing clustered and bursty event sequences, which are prevalent, as it
overlooks vital temporal dependencies or necessitates an excessively high sampling rate (Nickel &
Le, 2020).
To surmount these challenges, Neural Jump SDEs (Jia & Benson, 2019) and Neural Spatial Temporal
Process (NSTT) (Chen et al., 2020a) extend the Neural Ordinary Differential Equation (ODE)
framework, facilitating the computation of exact likelihoods for neural TPPs while addressing the
limitations of prior methodologies. These two advancements closely align with our dynamic model,
and we draw upon their concepts to develop neural excitatory point processes (EPPs) that are
governed by an influence matrix. Besides Neural ODE, other streams of research on networked
excitatory point processes are also proposed. Hawkes Processes on Large Network (Delattre et al.,
2016) extends the construction of multivariate Hawkes processes to encompass a potentially infinite
network of counting processes situated on a directed graph. Other approaches of latent structure
learning in multivariate point process (Cai et al., 2022; Fang et al., 2023) emphasize accommodating
heterogeneous user-specific traits and incorporating both excitatory and inhibitory influences.
Manipulation of Dynamic Processes. The manipulation and control of dynamic processes represent
an active area of research. Typically, control policies for temporal process manipulating can be
divided into two categories: (1) Gradually introducing exogenous event interventions into the
existing historical events, and (2) Promptly enforcing network interventions to the influence matrix
between different types of events. Currently, most research is centered around the first type of
intervention, primarily focusing on low-frequency and low-dimensional event interventions within
social media datasets. For example, techniques like dynamic programming (Farajtabar et al., 2014;
2017) and stochastic control on SDE (Wang et al., 2018) with a closed feedback loop are utilized to
steer user activities in social media platforms. However, the number of event types in the above work
is limited to derive the closed-form solution. Modern Reinforcement Learning approaches, including
both model-free (Upadhyay et al., 2018) and model-based RL (Qu et al., 2023), are proposed to
mitigate fake news events on social media. Notably, the event-intervention-based approach will fail
to generalize to high frequency and uncontrollable event data like newly infested disease cases and
incoming traffic.
On the other hand, the problem of network intervention, particularly node manipulation (e.g.,
vaccination) to control epidemic processes on graphs has received extensive attention (Hoffmann
et al., 2020; Medlock & Galvani, 2009). Most previous studies have adopted a static setup and
made a single decision. In recent work (Meirom et al., 2021), the agent performs sequential
decision-making to progressively control graph dynamics through node interventions, demonstrating
effectiveness in slowing the spread of infections among different individuals. While existing
network-intervention-based approaches offer a promising solution for individual-level quarantine in
pandemic control, they do not inherently adapt to county- or state-level control, which necessitates
more complex node status considerations than those assumed in (Meirom et al., 2021), as well as a
larger search space incorporating edge interventions. Moreover, it’s worth noting that our approach is
related to, but more comprehensive than, epidemic control problems, as it accommodates various
data distributions, including Poisson, within excitatory point processes.

Model-based Reinforcement Learning. The key to applications within a Reinforcement Learning
(RL) framework lies in enhancing sample efficiency, with Model-Based Reinforcement Learning
(MBRL) serving the role of approximating a target environment for the agent’s interaction. In
environments characterized by unknown dynamics, MBRL can either learn a deterministic mapping

13

Published as a conference paper at ICLR 2024

or a distribution of state transitions, denoted as p(�s|[s, a]). Typically, modeling uncertainty in
dynamic systems involves the evolution of a hidden unit to represent a dynamic world model. Several
auto-regressive neural network structures are prevalent in this domain, including well-known models
such as World Models Ha & Schmidhuber (2018), Decision Transformer (Chen et al., 2021), and
the Dreamer family (Hafner et al., 2019; 2023). On the other hand, the integration of Neural
Networks with Model Predictive Control (MPC) (Nagabandi et al., 2018) has achieved excellent
sample complexity within model-based reinforcement learning algorithms. Our approach closely
aligns with MPC and MBRL techniques, wherein MBRL methods, such as Gradient Descent, can be
leveraged to refine or adapt the model utilized by MPC. This adaptation holds the potential to enhance
performance, especially in scenarios where system dynamics are non-linear, partially unknown, or
subject to change.
Meta Reinforcement Learning. The majority of meta Reinforcement Learning (RL) algorithms
adhere to a model-free approach and introduce task-specific variational parameters to facilitate
learning across various simple locomotion control tasks. Examples of such algorithms include
MAESN (Gupta et al., 2018) and PEARL (Rakelly et al., 2019). Simultaneously, there has been
notable success in recent times by incorporating the inherent sequential structure of off-policy control
into the representation learning process, as demonstrated in works like CURL (Laskin et al., 2020),
Sensory (Tang & Ha, 2021), and PSM (Agarwal et al., 2021) particularly when dealing with more
complex tasks such as those found in the Distracting DM Control Suite (Stone et al., 2021).
In scenarios where data is limited, such as in disease control, researchers are increasingly focusing
on Model-Based Meta Reinforcement Learning (MBMRL), with a specific emphasis on achieving
fast adaptation within dynamics models. Approaches like AdMRL (Lin et al., 2020) and Amortized
Meta Model-based Policy Search (AMBPS) (Wang & Van Hoof, 2022) involve the optimization and
inference of task-specific policies within a parameterized family of tasks, often containing parameters
related to positions and velocities. Importantly, a key distinction between our method and AMBPS
lies in our utilization of network embeddings and the incorporation of inductive bias to facilitate the
learning of a meta-policy without parameterizing individual tasks.

B LIMITATIONS

It should be noted that our approach assumes that decisions made by considering a receding horizon
window size of T for each node provide a reasonably good approximation of the optimal policy.
However, it is important to acknowledge that if long-range correlations exist, this approximation may
result in decreased performance. Consequently, an intriguing question arises regarding the ability of
our approach to effectively tackle the problem of network interventions within long-range correlated
data distributions under the proposed training protocol.

C A COMPARISON BETWEEN NEURAL ODE AND NEURAL PROCESS

In this section, we conduct a comparative analysis of model performance and efficiency between
Neural Ordinary Differential Equations (Neural ODE or NODE) (Chen et al., 2018) and Neural
Process (NP) (Garnelo et al., 2018). To evaluate these models, we utilized a synthetic dataset
consisting of 5-dimensional Multi-Hyperparameter (MHP) data, with each dimension containing 100
sample points in the training set. The results of this comparison are visually presented in Fig. 10.
Our observations reveal notable distinctions between the learned behaviors of NODE and the Neural
Process model. Specifically, the curve learned by NODE exhibits greater diversity, as depicted in
the middle panel of Fig. 10. An important metric to consider is the log-likelihood, where we find
that Neural ODE achieves a log-likelihood of -33, significantly outperforming Neural Process with a
log-likelihood of -180.
It’s essential to consider the computational cost associated with each model. For Neural ODE, a
significant portion of the computational burden arises from the numerical integration process itself.
The runtime complexity of this integration process is denoted as O(NFE), where NFE represents
the number of function evaluations. The worst-case scenario for NFE depends on two factors: the
minimum step size � required by the ODE solver and the maximum integration time of interest,
denoted as �tmax.
In contrast, the runtime complexity of Neural Process, which employs n context points and m

target points, is represented as O(n+m). In our specific experiment, the number of total function

14

Published as a conference paper at ICLR 2024

Figure 10: Temporal Point Process Model learned by different methods. Left: ground truth intensity
function. Middle: Learned intensity function plot by Neural Jump ODE (Log-Likelihood: -33).
Right: Learned intensity function plot by Neural Process. (Log-Likelihood: -183)
evaluations (NFE) for NODE was approximately 5000, while for Neural Process, we selected 50
context points and 100 target points.
It is worth noting that the integration steps, as quantified by �tmax

�
, can potentially result in a

large constant factor, which may be hidden within the big-O notation. However, it is reassuring
to acknowledge that modern ODE solvers, such as dorpi5, are designed with adaptive step size
mechanisms that adjust dynamically to the supplied data. This adaptive behavior mitigates concerns
related to the scalability of the integration process with respect to dataset size and complexity.

D TECHNICAL DETAILS OF A PROBABILISTIC NETWORKED MODEL

Table 3: Table of conditional spike count distributions, their parameterizations, and their properties

Distribution p(x| , �) E(x) Var(x)

Poi(exp()) exp(�exp())(exp())x

x! exp() exp()
Bern(�()) �()x�(�)1�x

�() �()�(�)
Bin(�,�())

�
�

x

�
�()x�(�)��x

��() ��()�(�)
NB(�,�())

�
�+x�1

x

�
�()x�(�)� � · exp() �exp()/�(�)

E TECHNICAL DETAILS OF MEAN FIELD APPROXIMATION FOR REWARD
MODEL

We begin by defining some notation which will be used throughout these results

• Spectrum of a nonlinear operator f : Lf = ||f ||Lip := sup
x 6=y

||f(x)�f(y)||
||x�y|| < 1

E.1 THEORETICAL JUSTIFICATION

Given event sequences Ht� := {(ti, ni)}ti<t, we use xt = {x
t

1, . . . , x
t

N
} to record the incremental

number of events for different nodes starting from within [t+�t). We consider a stochastic dynamic
system based on the nonlinear system (2-4) presented in the manuscript:

8
><

>:

ht0
n

= h0
n
,

dht
n

dt
= f(ht

n
),

lim✏!0 hti+✏ =
P

m2Nn
wm!n · �(hti

m
, x

ti
m
),

(12)

where f : Rd
! Rd and � : Rd

! R are two Lipschitz functions. The emission/intensity function
for the dynamic is defined as ⇤(t|ht�) := g⇤(ht�

·w) = g⇤,w(ht�) where g⇤,w : RN⇥d
! RN

is a Lipschitz activation function, w 2 Rd is a linear layer, and ht�
2 RN⇥d is the left continuous

points before jump. We use �t
m

to denote m-th element of ⇤(t) and thus xti
m

⇠ Poi(�m(ti|hti�
n

)) is
the number of incremental events in [ti, ti +�t) for node m. The ground truth cumulative cost J(t)

15

Published as a conference paper at ICLR 2024

at finite horizon time t is given by the Monte Carlo Estimator, i.e.,

J(t) :=
NX

n=1

tX

i=1

E[xi

n
]. (13)

Instead of extensively performing Monte Carlo simulation to obtain the cost estimator, we introduce
a Mean Field Estimator Ĵ(t) for J(t) by averaging out the interaction effect by x

ti
m

in the dynamic
system (12), i.e.,

Ĵ(t) :=
NX

n=1

tX

i=1

�̂n(i). (14)

where �̂n(t) := �n(t|ĥt�
n
) and ĥt�

n
is the mean field estimator for ht�

n
and is derived from a

deterministic dynamic by replacing the stochastic discrete update term in system (12) with �(hti
m
, �̂

ti
m
).

We let the starting point of ĥt�
n

be the same point as ht�
n

, i.e., ĥ0
n
= h0

n
, 8n 2 {1, 2, · · · , N}.

Proposition 1. Given f and g are Lipschitz in Sys. (12), let h
t
�
i
n be the left continuous point of hti

n
in

the Sys. (12), then it can be recursively expressed by a Lipschitz operator Tn : RN⇥d
⇥ RN

! Rd
:

h
t
�
i
n = Tn(h

t
�
i�1 ,xti�1) (15)

where ht
�
i�1 2 RN⇥d

, and xti�1 2 RN
. More importantly, let �max be the maximum spectrum of

influence matrix W, when Lf , L�, and �w are smaller than 1, we have LTn < 1.

Proof. We define �(hti ,xti) := [�(hti
1 ,x

ti
1),�(h

ti
2 ,x

ti
2), · · · ,�(h

ti
N
,xti

N
)]T 2 RN⇥d as the dis-

crete kernel in System (12), we can represent ht
�
i
n as:

h
t
�
i
n = Tn(h

t
�
i�1 ,xti�1) = wT

n
�(ht

�
i�1 ,xti�1) +

Z
t
�
i

t
+
i�1

f(hs

n
) ds,

where wT is the n-th row of the influence matrix W. Since f and � are Lipschitz and the composition
of Lipschitz functions is also Lipschitz, so Tn is Lipschitz. Since LT  �max · (Lf)m · (L�)N where
m is the number of summation in the intergral term, we have LTn < 1 when Lf , L�, and �w are
smaller than 1.

Proposition 2. Given f and g are Lipschitz in Sys. (12), let ĥ
t
�
i
n be the left continuous point of ĥti

n

in the deterministic version of the presented Sys. (12) by replacing x
ti
m

with �̂m(ti), then it can be

recursively expressed by a Lipschitz operator Tn : RN⇥d
⇥ RN

! Rd
:

ĥ
t
�
i
n = Tn(h

t
�
i�1 , ⇤̂(ti�1)) (16)

where ⇤̂(ti�1) = [�̂1(ti�1), �̂2(ti�1), · · · , �̂N (ti�1)].

Proof. This is a direct result from Prop. 1.

Lemma 1. Let ĥi

n
be the mean field estimator for hi

n
, suppose f and � are Lipshitz , and 8n, t, �n(t)

is bounded by K, we have:

Ehi�
n

h
||hi�

n
� ĥi�

n
||

i
 LTnEhi�1�

n

h
||hi�1�

n
� ĥi�1�

n
||

i
+Mn, (17)

where Mn = LTn(K
1/2 +K). Moreover, when Lf < 1 and L� < 1, we have:

E
h
||hi

n
� ĥi

n
||

i


⇣
1� (LTn)

i

⌘
·

Mn

1� LTn

. (18)

16

Published as a conference paper at ICLR 2024

Proof. For simplicity, we use hi

n
to denote hi�

n
and ĥi

n
to denote ĥi�

n
. Here we prove the first

inequality: By Prop. 1 and Prop. 2, we can decompose hi

n
and ĥi

n
, i.e.,

Ehi
n

h
||hi

n
� ĥi

n
||

i
= Ehi�1

n ,xi�1

h
||Tn(h

i�1
,xi�1)� Tn(ĥ

i�1
, ⇤̂i�1)||

i
(19)

 Ehi�1
n ,xi�1

h
LTn ||(h

i�1
,xi�1)� (ĥi�1

, ⇤̂i�1)||
i

(20)

= Ehi�1
n ,xi�1

h
LTn

q
||hi�1 � ĥi�1||2h + ||xi�1 � ⇤̂i�1||2x

i
(21)

 Ehi�1
n ,xi�1

h
LTn

⇥
||hi�1

� ĥi�1
||h + ||xi�1

� ⇤̂i�1
||x

⇤i
(22)

= Ehi�1
n ,xi�1

h
LTn

⇥
||hi�1

� ĥi�1
||h + ||xi�1

� ⇤i�1 + ⇤i�1
� ⇤̂i�1

||x

⇤i

(23)
 LTnEhi�1

n

h
||hi�1

� ĥi�1
||

i
+ Exi�1

h
LTn ||x

i�1
� ⇤i�1

||

i
+ LTn ||⇤

i�1
� ⇤̂i�1

||

(24)
= LTnEhi�1

n

h
||hi�1

� ĥi�1
||

i
+ LTnExi�1

h
||xi�1

� ⇤i�1
||

i
+ LTn ||⇤

i�1
� ⇤̂i�1

||

(25)
 LTnEhi�1

n

h
||hi�1

� ĥi�1
||

i
+ LTn · (K1/2 +K) (26)

= LTnEhi�1
n

h
||hi�1

� ĥi�1
||

i
+Mn (27)

where the second inequality follows by the Lipschitz property of Tn, the forth inequality follows

triangular inequality, and the last inequality follows by Jensen’s inequality, i.e.,

Exi�1

h
||xi�1

�

⇤i�1
||

i!2

 Exi�1

h
||xi�1

� ⇤i�1
||
2
i
= ⇤i�1

 K and ||⇤i�1
� ⇤̂i�1

||  ||⇤i�1
||  K

Proof. Here we prove the second inequality:
From Eq. (17), we can derive its fixed point x⇤ := Eh⇤

n

h
||h⇤

n
� ĥ⇤

n
||

i
, i.e.,

x
⇤ = LTnx

⇤ +Mn (28)

x
⇤ =

Mn

1� LTn

(29)

Since LTn < 1 given Lf < 1 and Lg < 1 , Eq. (17) is a contraction and thus starting from any
arbitrary point xk will converge to this fixed point x⇤. So we have:

Ehi
n

h
||hi

n
� ĥi

n
||

i
�

Mn

1� LTn

 LTn

Ehi�1

n

h
||hi�1

n
� ĥi�1

n
||

i
�

Mn

1� LTn

!
(30)

 (LTn)
i

Eh0

n

h
||h0

n
� ĥ0

n
||

i
�

Mn

1� LTn

!
, (31)

Ehi
n

h
||hi

n
� ĥi

n
||

i


⇣
1� (LTn)

i

⌘
·

Mn

1� LTn

, (32)

where the last inequality follows by h0
n
= ĥ0

n
. Thus Ehi

n

h
||hi

n
� ĥi

n
||

i
is bounded.

Theorem 1 (Error Bound of Mean Field Estimator). Let J(t) and Ĵ(t) be the Monte Carlo

Estimator and Mean Field Estimator defined in Eq. (13) and (14). Suppose we have N nodes. When

satisfying:

1. The dynamic is Lipschitz, i.e., f and � are Lipschitz. And the Lipschitz constants for f and

� are smaller than 1, i.e., Lf < 1 and L� < 1,

2. The maximum spectrum �w of the influence matrix W is smaller than 1,

3. For any n = {1, 2, · · · , N}, the intensity function g�n,w is Lipschitz and is bounded above

by K.

Then we have:

|J(t)� Ĵ(t)|  N(t+ 1) · Lg�n,w ·
maxn Mn

1�maxn(LTn)
(33)

17

Published as a conference paper at ICLR 2024

where Mn = LTn(K
1/2 +K) and Tn : RN⇥d

⇥ RN
! Rd

is the composite transition function in

Proposition 1.

Proof.

|J(t)� Ĵ(t)| =

�����

NX

n=1

tX

i=0

E[xi

n
]�

NX

n=1

tX

i=0

�̂n(i)

����� (34)

=

�����

NX

n=1

tX

i=0

Ehi
n
Exi

n
[xi

n
|hi

n
]�

NX

n=1

tX

i=0

g�n,w(ĥi

n
)

����� (35)

=

�����

NX

n=1

tX

i=0

Ehi
n
g�n,w(hi

n
)�

NX

n=1

tX

i=0

g�n,w(ĥi

n
)

����� (36)

=

�����

NX

n=1

tX

i=0

Ehi
n

h
g�n,w(hi

n
)� g�n,w(ĥi

n
)
i����� (37)



NX

n=1

tX

i=0

Ehi
n

h
|g�n,w(hi

n
)� g�n,w(ĥi

n
)|
i

(38)



NX

n=1

tX

i=0

Ehi
n

h
Lg�n,w ||h

i

n
� ĥi

n
||

i
(39)

Apply Lemma 1, we have,



NX

n=1

tX

i=0

Lg�n,w ·

⇣
1� (LTn)

i

⌘
·

Mn

1� LTn

(40)



NX

n=1

(t+ 1) · Lg�n,w ·
Mn

1� LTn

(41)

 N(t+ 1) · Lg�n,w ·
maxn Mn

1�maxn(LTn)
(42)

E.2 EMPIRICAL EVALUATION

Figure 11: Empirical Evaluation of Mean Field Approximation
We consider the setting of a simplified linear dynamic model based on the nonlinear system (2-4)
presented in the manuscript. Specifically, the nonlinear ODE drift term f(ht

n
) is replaced by a linear

function Aht

n
+ b where A 2 Rd⇥d and b 2 Rd. The nonlinear discrete jump kernel �(hti

m
, x

ti
m
) is

replaced by a linear kernel Chti
m
+Dx

ti
m

, where C 2 R represents history forgetness and D 2 R
is the scaling factor for the new events. Mathematically, the simplified linear dynamic is given in
System (43).

8
><

>:

ht0
n

= h0
n
,

dht
n

dt
= Aht

n
+ b,

lim✏!0 hti+✏ =
P

m2Nn
wm!n(Chti

m
+Dx

ti
m
).

(43)

18

Published as a conference paper at ICLR 2024

Empirically, we performed a toy experiment on the simplified 2-D linear dynamic and we found the
mean field approximator provides an efficiency and accurate approximation for the rollout means
(Fig. 11).

F DIFFERENCE BETWEEN SIMCLR AND THE PROPOSED METHOD

Given a random sampled minibatch of N examples and the SimCLR contrastive prediction task is
defined on pairs of augmented examples derived from the minibatch, resulting in 2N data points.
SimCLR treats the other 2(N � 1) augmented examples within a minibatch as negative examples.
Then the loss function for a positive pair of examples (i, j) is defined as,

li,j = � log
exp(sim(zi, zj)/⌧)P2N

k=1 1[k 6=i] exp(sim(zi, zk)/⌧)
, (44)

where zi is the projected embedding from augmented samples.
Compared with SimCLR, our proposed loss does not require sampling additional batch data as
negative examples and projecting the augmented sample to one embedding, instead, we only use one
anchor sample (anchor network) and project the sample to two different embeddings (p and m), and
augment the anchor sample by permuting its node orders or adding noise to the node embeddings
such that it can form two negative pairs naturally (as depicted in Fig. 1). Moreover, we augment
our network on its latent embedding space by utilizing the graph augmentation techniques, while
SimCLR directly performs augmentations on the original visual representations.

G ARCHITECTURE AND HYPERPARAMTERS

For the dynamic model, we parameterized the ODE forward function fh in Eq. (3) as a Time-
dependent multilayer perception (MLP) with dimensions [64-64-64]. We used the Softplus activation
function. We first attempted to use MLP to parameterize the instantaneous jump function �h in Eq. (4);
however, it led to unstable results for long sequences. Thus we switched to the GRU parameterization,
which takes an input, the latent state hti , and outputs a new latent state. Importantly, we found letting
fh and �h share all the parameters across different node trajectories will also lead to the failure of
capturing the mode diversity. We therefore created an independent biased term added between the
MLP layers in fh to compensate for diversity loss. Lastly, we use MLP to parameterize the emission
function g�.
We initialized all Neural ODEs (for the hidden state) with zero drift by initializing the weights and
biases of the final layer to zero. All integrals were solved using (Chen et al., 2018) to within a relative
and absolute tolerance of 1E-4 or 1E-6, chosen based on preliminary testing for convergence and
stability. We also use Seminorms (Kidger et al., 2021) to accelerate neural ODE learning and apply
temporal regularization (Ghosh et al., 2020) to mitigate the effect of stiff ODE systems.
For the policy model, we parameterized the policy network by 4 heads, and 128 d-model Transformer
layers. For the synthetic dataset, we used a 2-layer transformer for representation learning and another
2-layer transformer for policy generation. For the real-world dataset, we used a 4-layer transformer
for representation learning and another 4-layer transformer for policy generation.
For the Policy Equivalent Metric presented in Definition 2, we learned a value function parameterized
by a 2-layer transformer by optimizing Least Square Temporal Difference (LSTD).
We trained the dynamic, policy, and PEM-value network by using the ADAM optimizer with a 1E-2
decay rate across 4 RTX3090 GPUs. The initial learning rates for dynamic learning, policy learning,
and PEM-value function learning were set to be 1E-3, 1E-4, and 1E-4 respectively.

H ADDITIONAL DETAILS OF SYNTHETIC DATA EXPERIMENT

H.1 DATASET SETUP

We generated synthetic networked point process data by simulating Multivariate Hawkes processes
(MHP), which are doubly stochastic point processes with self-excitations (Hawkes, 1971). Specif-
ically, the underlying ground truth influence matrix W was generated with n = 10 nodes and the
weights were set as wij ⇠ U [0, 0.5]. We set the graph sparsity to 0.1, i.e., each edge is kept with
probability 0.1. The generated influence matrix was adjusted appropriately so that its maximum
spectral radius was smaller than one, ensuring the stability of the process. We further set the Hawkes
kernel to be an exponential basis kernel, where the parameter was set to � = 4, meaning roughly

19

Published as a conference paper at ICLR 2024

losing 98% of influence after one unit of time. The simulation of MHP was based on a thinning
algorithm (Ogata, 1981) on a T = 100 horizon.

H.2 ADDITIONAL RESULTS AND FIGURES

We additionally trained the amortized policy on a synthetic star graph and a circular graph with
different ground-truth weight matrices and tested the performance on a new star or cycle graph with
random weights. The results are shown in Fig. 12. Surprisingly, we find the amortized policy only
slightly outperforms the non-amortized on both environments. We conjecture this is because we are
adapting the amortized policy to a small local region (only 10 nodes) in this experiment so that the
non-amortized policy already can achieve relatively good results.

Figure 12: Generalization Results over synthetic data

I ADDITIONAL DETAILS OF COVID DATA EXPERIMENT

I.1 DATASET SETUP

We used data released publicly by (NYTimes, 2020) on daily COVID-19 to learn the excitatory point
processes of the pandemic outbreak. The data contains the cumulative counts of coronavirus cases in
the United States, at the state and county level, over time. Specifically, we separated the U.S. COVID-
19 data into state-wise records and further split a state-wise record into different county corpus where
each split is named as “a local region” or “a split”, containing distinct intensity trajectories from no
more than 25 counties.

I.2 ADDITIONAL RESULTS AND FIGURES

Additional Baselines for COVID data We applied two additional baselines SAC and PPO on a
randomly chosen community that contains nine counties. We used the learned NJODE model as the
covid environment simulator and the learned model (Without control) is shown in Fig. 13 along with
the observed ground truth counts. We also attempted to use the plain Hawkes model (only influence
matrix A and baseline b are learnable) to learn the underlying COVID dynamic. As Fig. 13 depicted,
however, plain multivariate Hawkes processes (Purple) fail to distinguish the intensity difference
between different counties while the NJODE model (Black) correctly captures the characteristic
of different counties and also preserves multimodality within each county. We conjecture this is
because the plain multivariate Hawkes process does not have enough parameters to characterize
the individual variation on the complex COVID data dynamic correctly. Regarding the intervention
effect, we observe that ANI has successfully reduced the number of infested people (having a positive
reduced intensity value) in six counties among nine while SAC and PPO struggle to have a positive
intervention effect on the nine counties. We speculate it is caused by the disconnected gradients
between the consecutive latent states (without backpropagating through the learned COVID dynamic
model itself) when using model-free RL algorithms like SAC and PPO.
Fairness constraints and more We also present the results and trade-offs for different policies
under various fairness constraints. Specifically, we use �1 to control the weight of an intervention
budget cost and use �2 to control the weight of a policy smoothing cost. The intervention cost used
here is defined by the distance between two counties when an intervention is implemented and the
smoothing cost is defined by the distance between two consecutive policies. We use the average
reduced intensity and the average lockdown probability for each edge during the total horizon to

20

Published as a conference paper at ICLR 2024

Figure 13: Additional baselines on nine counties

21

Published as a conference paper at ICLR 2024

measure fairness and the result is shown in Table 4. Interestingly, we find imposing heavy constraints
on the policy simultaneously (i.e., �1 = 0.1,�2 = 0.1) does not lead to the lowest lockdown
probability (1.29%) but does give the lowest control effect (0.01). Instead, only enforcing smoothing
constraints (i.e.,�1 = 0.0,�2 = 0.1) gives us a fairer policy, i.e., less effort to intervene (average
lockdown probability: 0.43 %) but achieve fair control effect (average reduced intensity: 0.10). We
conjecture that adding extra intervention cost constraints will discourage the agent from exploring
and thus underperform policy smoothing constraints. We illustrate the detailed lockdown for different
constraints in Fig. 14.

Table 4: Average lockdown probabilities and reduced intensity under different soft constraints.

Fairness / Parameters �1 = 0.0 �1 = 0.1

�2 = 0.0 �2 = 0.1 �2 = 0.0 �2 = 0.1

Average Reduced intensity 0.25(0.06) 0.10(0.04) 0.06(0.05) 0.01(0.03)
Average Lockdown probability (%) 1.31(0.53) 0.43(0.12) 1.29(0.27) 1.29(0.17)

Figure 14: Amortized Networks Interventions in probabilities under different constraints.

J ADDITIONAL DETAILS OF TRAFFIC DATA EXPERIEMENT

J.1 DATASET SETUP

To simulate real-world traffic, based on the road types shown in Fig. 6, we design a road network with
four types: intersections with one or two lanes, and T-Junction with one or two lanes. Specifically,
we let the speed of the road be 8m/s or 11m/s randomly. Then, we generate car trips by the random
generation tool from the SUMO package. We make such a simulation for 1000s at one run. After this
playing, we can get the simulation results including emissions (e.g. CO2, CO), positions, speed, and
lane id (i.e. the car runs in which lane with lanes more than one in a road) of each car at each time
step. Given the generated summary data from SUMO, we then count the congestion event (i.e. the
car speed less than 0.5m/s) for the following analysis.

22

Published as a conference paper at ICLR 2024

J.2 ADDITIONAL RESULTS AND FIGURE

We show the intensity cost of the learning process for four types of roads in our simulation setup in
Fig. 15. For both our model (meta) and our model (train from scratch), the cost trend will converge
after several time steps, which proves that our model has great learning and generalization ability.

Figure 15: Intensity cost of four types road.

J.3 CASE STUDY

We further provide a case study to show the great interpretation capacity of our model. In the
T-junction with single lane scenario, there are 2 discrete actions, corresponding to the following green
phase configurations in Fig. 16. The traffic light is marked as node 10, while the other three lanes are
marked as node 8, node 11, and node 12 in our Sumo simulation setup.
Real-world traffic can be represented as an NJODE model corresponding with the change of traffic
lights. In our simulation, when node 10 (i.e. traffic light) becomes green, the lane controlled by this
traffic signal will connect, which is represented as 1 in Fig. 17; otherwise, the connection between
two lanes is disconnected and is represented as 0. For instance, in the first sub-graph of Fig. 17, the
car can move from node 11 to node 12 under the control of its traffic signal. The learned policy of
our model is exactly consistent with real traffic trips, which demonstrates that our model has great
adaptation ability in uncovering real-world network interventions.

23

Published as a conference paper at ICLR 2024

Node 12 Node 12 Node 12

Node 8 Node 8 Node 8

N
od

e
11

N
od

e
11

N
od

e
11

Figure 16: Discrete actions of the T-junction (single lane).

Figure 17: The learned policy of traffic generated from our model.

24

	Introduction
	Problem Formulation: Model-based RL
	Modeling the Environment: Networked Jump ODE Model
	Gradient-Descent-based Model Predictive Control
	Making Large-Scale Problem Tractable: Amortized Policy
	Experimental Evaluation
	Network Intervention on Synthetic Data
	Evaluating Generalization on Covid Data
	Evaluating Generalization on Traffic Data
	Understanding Gains from PEM: Ablations and Visualizations

	Conclusions
	Related work
	Limitations
	A Comparison Between Neural ODE and Neural Process
	Technical Details of a Probabilistic Networked Model
	Technical Details of Mean Field Approximation for Reward Model
	Theoretical Justification
	Empirical Evaluation

	Difference between SimCLR and the proposed method
	Architecture and Hyperparamters
	Additional Details of Synthetic Data Experiment
	Dataset Setup
	Additional Results and Figures

	Additional Details of Covid Data Experiment
	Dataset Setup
	Additional Results and Figures

	Additional Details of Traffic Data Experiement
	Dataset Setup
	Additional Results and Figure
	Case Study

