
Published as a conference paper at ICLR 2025

CONTROLLABLE GENERATION VIA
LOCALLY CONSTRAINED RESAMPLING

Kareem Ahmed∗, Kai-Wei Chang & Guy Van den Broeck
Department of Computer Science
University of California, Los Angeles
{ahmedk, kwchang, guyvdb}@cs.ucla.edu

ABSTRACT

Autoregressive models have demonstrated an unprecedented ability at modeling
the intricacies of natural language. However, they continue to struggle with gen-
erating complex outputs that adhere to logical constraints. Sampling from a fully-
independent distribution subject to a constraint is hard. Sampling from an autore-
gressive distribution subject to a constraint is doubly hard: We have to contend not
only with the hardness of the constraint but also the distribution’s lack of structure.
We propose a tractable probabilistic approach that performs Bayesian condition-
ing to draw samples subject to a constraint. Our approach considers the entire
sequence, leading to a more globally optimal constrained generation than current
greedy methods. Starting from a model sample, we induce a local, factorized dis-
tribution which we can tractably condition on the constraint. To generate samples
that satisfy the constraint, we sample from the conditional distribution, correct for
biases in the samples and resample. The resulting samples closely approximate the
target distribution and are guaranteed to satisfy the constraints. We evaluate our
approach on several tasks, including LLM detoxification and solving Sudoku puz-
zles. We show that by disallowing a list of toxic expressions our approach is able
to steer the model’s outputs away from toxic generations, outperforming similar
approaches to detoxification. We conclude by showing that our approach achieves
a perfect accuracy on Sudoku compared to < 50% for GPT4-o and Gemini 1.5.

1 INTRODUCTION

The advent of large language models (LLMs) has brought about a paradigm shift towards generating
sequences of tokens that jointly constitute the desired output. Such multi-token outputs exhibit an
amount of structure to them: in free-form generation, the model is expected to generate coherent
paragraphs; in question answering, it is expected to provide answers to the posed questions; and in
summarization, it is expected to condense lengthy documents into concise summaries. And while
current LLMs are remarkably apt at generating fluent sentences, there is a need for generations
that go beyond that, exhibiting more intricate structure (Liu et al., 2024b). Such structure includes,
e.g., API calls and code snippets (Wang et al., 2023), JSON schemas (OpenAI, 2023), logical puz-
zles (Mittal et al., 2024; Pan et al., 2023), all of which LLMs struggle with (Sun et al., 2023).

Consequently, several approaches to constraining LLMs were developed, all bolstering a similar
underlying idea: at every generation step greedily mask the LLM outputs that could lead to the
constraint being violated. That is, the “defacto” recipe (Deutsch et al., 2019; Lundberg et al., 2024;
Willard & Louf, 2023; Koo et al., 2024) for applying constraints to LLMs consists of the following:

1. Based on the current state of the constraint, build a mask of valid next tokens.
2. Mask out logits for invalid tokens, normalize, and sample.
3. Based on the sampled token, update the constraint state for the next time step.

The above recipe is limited in a number of ways. First, the masking process is myopic (Shih et al.,
2023), as the constraint is enforced greedily on a per-token basis rather than jointly across the entire

∗Latter portions of this research were conducted while affiliated with University of California, Irvine.

1

Published as a conference paper at ICLR 2025

[He’s, full, of, sh!t]

llm dist.

mα

y

p(y|x)
[He’s, full, of, sh!t]

approx. dist.

mα

y

p(y|x)

mα

|α

[He’s, full, time, employed]

I
.
W
.

y

p(y|x)

Figure 1: An illustration of our proposed approach. (left) An LLM induces a distribution over
all possible sentences. Autoregressively sampling from the LLM distribution, we obtain a sentence
() ỹ = [He’s, full, of, sh!t]. This sentence ỹ violates a constraint α that disal-
lows toxic words, including the word “sh!t”. The subset of sentences that satisfy the constraint α
() are denoted by ⊢ mα ⊣. (center) The sentence ỹ induces a local, tractable approximation of
the true distribution centered around ỹ. (right) We can efficiently condition this tractable approxi-
mation on the constraint α, trimming away portions of its support that do not satisfy the constraint.
Sampling from the LLM distribution subject to the constraint α then corresponds to sampling from
the conditional approximate distribution and adjusting the sample weights using importance weight-
ing. This yields a sentence () y = [He’s, full, time, employed] that satisfies α.

generation. This is as opposed to Bayesian conditioning, where we consider the entire sequence.
Second, the constraint specification language is typically regular expressions, which can be signifi-
cantly more verbose than their target compilation forms, deterministic finite automata (DFAs) (Gru-
ber & Holzer, 2009; 2014; Koo et al., 2024). Lastly, there exists classes of constraint functions that
can only be described by DFAs whose size grows exponentially in the size of their constraint.

In this work we develop an approach that departs from the previously established recipe for con-
straining LLMs, tackling all the aforementioned shortcomings in the process. Our approach starts
with the observation that an LLM sample induces a local, factorized distribution p̃. We use a
tractable compilation form, constraint circuits (Darwiche, 2011), that subsume DFAs on bounded-
length strings while being more expressive efficient (Choi et al., 2020). That is, there are classes
of functions that we can represent using constraint circuits that we could not otherwise as effi-
ciently represent using DFAs (Bova, 2016). Such constraint circuits can be specified as Boolean
python functions, alleviating the need for writing regular expressions or other domain specific lan-
guages.We show that we can leverage logical circuits to tractably condition p̃, drawing samples that
are biased yet provably satisfy the constraint. Sampling from the LLM subject to a constraint α then
entails conditioning p̃ on α, drawing biased samples from p̃(· | α), which we debias by reweighing
them proportionally to their probability under the LLM and resampling. The returned samples are
distributed according to the conditional LLM distribution while also satisfying the constraint.

We start our evaluation by testing our approach on the toy task of predicting shortest paths under
an autoregressive model, and observe a significant improvement upon the baseline performance.
Next, we evaluate our approach on the task of LLM detoxification where we show that, by virtue
of its probabilistic nature, by simply disallowing a list of toxic expressions, our approach is able to
steer the model away from toxic generations, outperforming previous approaches to detoxification.
Lastly, we show that our approach achieves a perfect accuracy on Sudoku puzzles, compared to an
almost 26% and 45% accuracy achieved by Gemini 1.5 Flash and GPT4-o models, respectively.

2 BACKGROUND

2.1 NOTATION AND PRELIMINARIES

We write uppercase letters (X , Y) for Boolean variables and lowercase letters (x, y) for their instan-
tiation (Y = 0 or Y = 1). Sets of variables are written in bold uppercase (X, Y), and their joint
instantiation in bold lowercase (x, y). A literal is a variable (Y) or its negation (¬Y). A logical

2

Published as a conference paper at ICLR 2025

sentence (α or β) is constructed from variables and logical connectives (∧, ∨, ¬, =⇒), and is also
called a (logical) formula or constraint. A state or world y is an instantiation to all variables Y. A
state y satisfies a constraint α, denoted y |= α, if the sentence evaluates to true in that world. A state
y satisfying a constraint α is said to be a model of α. We denote by m(α) the set of α’s models.
Throughout this paper, in reference to DFAs, we limit our discussion to those defined on bounded-
length inputs, which are equivalent to ordered binary decision diagrams, or OBDDs (Bryant, 1992).

2.2 A PROBABILITY DISTRIBUTION OVER POSSIBLE SENTENCES

Let α be a logical constraint defined over Boolean variables Y = {Y11, . . . , Ynk}, where n denotes
the number of time steps in the sentence, and k denotes the size of the vocabulary, i.e., the number
of possible tokens at each time step. An autoregressive model induces a probability distribution p(·)
over all possible sentences y. At every time step i, the autoregressive model ensures that exactly one
token is predicted; i.e., exactly one Boolean variable {Yi1, . . . , Yik} can be set to true for each time
step i. We will write yi to denote that variable Yij is set to true in sentence y. More precisely, we let
yi ∈ {0, 1}k be the one-hot encoding of Yij being set to 1 among {Yi1, . . . , Yik}. The probability
assigned by the autoregressive model to a sentence y is then defined as

p(y) =

n∏
i=1

p(yi | y<i), (1)

where y<i denotes the sentence prefix, y1, . . . ,yi−1.

2.3 THE STATE OF CONDITIONAL AUTOREGRESSIVE SAMPLING

Sampling from an autoregressive distribution conditioned on a logical constraint α constitutes a
major challenge: computing the exact conditional distribution p(y | α) = p(y,α)

p(α) is intractable even
for the simplest constraints (Roth, 1993), e.g., asserting that the word “dog” appears at the end of
the sentence. Intuitively, conditioning on α requires that we compute the marginal probability of the
constraint p(α), in turn requiring that we enumerate all sentences ending with the word “dog”.

The defacto approach has therefore been to greedily constrain the distribution, at every time step
masking out logits that lead to generations that violate the constraint, followed by re-normalizing
the conditional token distribution (Deutsch et al., 2019; Lundberg et al., 2024; Willard & Louf,
2023; Koo et al., 2024). Let the conditioning of the constraint α on the prefix y<i, which we write
as α|y<i

, be a subconstraint defined on Yi:n that results from setting the variables Y1:i−1 to their
values in y<i. Semantically, α|y<i

denotes the set of yi:n that, taken together with the prefix y<i,
would satisfy the constraint. Moreover, let βi := ∃y>i α|y<i

denote the set of tokens allowed at the
i-th position such that there exists some completion y>i of the sentence that satisfies the constraint
α, given the current prefix y<i. Then we can define the above greedy, or myopic, distribution as

pmyopic(y | α) :=
n∏

i=1

p(yi, βi | y<i)∑
j p(yij , βi | y<i)

=

n∏
i=1

p(yi | y<i)vyi |= βiw∑
j p(yij | y<i)vyij |= βiw

,

Of note here is that since the approximate distribution is modeling the joint probability of the sen-
tence and the constraint, in principle, the logical reasoning is sound, i.e., the constraint is guaranteed
to hold. Rather, the shortcoming is in the way the probabilistic reasoning is performed: instead
of normalizing the joint distribution by the marginal probability of the constraint, we are perform-
ing it token-wise steering us towards sampling sequences that are locally likely rather than globally
likely. To see this, consider an LLM trained to generate one of the eight sentences from the set
{Adam, Poorva} × {loves, hates} × {dogs, cats} uniformly at random. If we condi-
tion the LLM on the fact that Adam loves cats, we reduce the possible outputs to five: Adam
loves cats and all generations starting with Poorva, each now generated with an equal proba-
bility of 1/5. However, since the LLM initially generates each of the eight possible sentences with
equal probability, it must generate a string starting with Adam or Poorva with equal probability
and therefore greedy decoding mistakenly generates the string Adam loves cats half the time.

The second issue lies with the logical constraint along two different axes. First is the lack of concise-
ness of the constraint specification language. The most common language for specifying constraints
is regular expressions which can be significantly more verbose (Gruber & Holzer, 2009; 2014; Koo

3

Published as a conference paper at ICLR 2025

et al., 2024) compared to the equivalent logical form. This is due to the inability to reference and
reuse sub-expressions without introducing additional features such as lookaround operations which
can cause an exponential blowup in the size of the target representations (Mamouras & Chattopad-
hyay, 2024), or backreferences that allow us to describe non-regular languages at the expense of
an exponential runtime due to backtracking. Second is the lack of succinctness of the target rep-
resentation. All of the current approaches compile the specified regular expressions into DFAs.
DFAs represent Boolean functions by recursively performing Shannon-decomposition on the func-
tion: disjointing the value of the sub-function with the value of the current variable chosen to be true
and false, respectively. Consequently, for many constraints of interest, the size of DFA can grow
prohibitively. It turns out there there exists another class of target representation that subsume DFAs
on bounded-length strings: at every step in the function decomposition we can branch not only on
the value of a single variable, but rather that of an entire sentence (Darwiche, 2011). This class
of target representations, which we shall henceforth denote as constraint circuits are not only more
succinct than DFAs in practice, but are provably exponentially more succinct: there are classes of
functions with exponentially-sized DFAs but polynomially-sized constraint circuits (Bova, 2016).

3 LOCALLY CONSTRAINED RESAMPLING: A TALE OF TWO DISTRIBUTIONS

We depart from the established recipe for conditional autoregressive sampling, providing a treatment
of the problem from first principles that tackles all of the shortcomings detailed above. The crux of
our approach is the idea that we can approximate the intractable autoregressive distribution p(y)
using a local, tractable distribution p̃(y). The distribution p̃(y) is amenable to exact and efficient
probabilistic reasoning, allowing us to efficiently condition on the constraint α and draw samples
from the distribution p̃(y | α). We can transform the biased samples drawn from p̃(y | α) into
samples from p(y | α) by considering the discrepancy between the probability of the sample under
the true distribution and the approximate distribution. More formally, we wish to draw samples from

p(y | α) = p(y, α)

p(α)
, (2)

which is intractable. Instead, we design a tractable proposal distribution q such that q(y) > 0
whenever p(y | α) > 0. We associate with a constrained sample y an unconstrained sample ỹ,
where y can be understood as a projection of ỹ onto α s.t. y |= α. We define our proposal as

q(y) =
∑
ỹ

p(ỹ) · pỹ(y | α), (3)

where p(ỹ) is the autoregressive distribution, and pỹ(y | α) is a distribution over projections y of
the unconstrained ỹ given the constraint α. The above definition outlines a two-step procedure for
sampling a sentence y that satisfies a given constraint α. We sample a sentence ỹ autoregressively
from p(ỹ), followed by sampling y from the distribution conditioned on ỹ and the constraint α,
pỹ(y | α). By incorporating the autoregressive distribution p(ỹ), we ensure that we can potentially
generate any sentence. pỹ(y | α) then refines ỹ by projecting it to satisfy the constraint α. It is
straightforward to sample from p(ỹ), but what exactly is pỹ(y), and how do we condition it on α?
Moreover, a proposal distribution typically implies biased samples; how do we correct for this bias?

3.1 A SAMPLE INDUCES A LOCAL, TRACTABLE DISTRIBUTION

Our goal is to design a probability distribution pỹ(y | α) that is first, tractable for conditioning on
the constraint α and likelihood evaluation, and second, assigns high probability mass to sentences
that are close to the model sample y and low probability mass to sentences that are far away, thereby
providing a sample-efficient approximation of the true distribution (Koller & Friedman, 2009).

As noted earlier, the hardness of computing the conditional probability distribution in Equation (2) is
in large part due to the autoregressive nature of the LLM distribution. A logical constraint might have
exponentially-many solutions, yet lend itself to reusing of solutions to sub-problems, and therefore
a tractable computation of the normalizing constant, the denominator in Equation (2). An exam-
ple being the n choose k constraint (Ahmed et al., 2023b), where the conditional distribution can
be computed in quadratic time under the fully-factorized distribution, despite having combinato-
rially many solutions. Moving away from fully-factorized distribution and towards autoregressive
distributions, however, requires that we enumerate all sentences, even for very simple constraints.

4

Published as a conference paper at ICLR 2025

To sidestep the hardness of the autoregressive distribution, we attempt to move towards the tractabil-
ity of fully-factorized distributions, while retaining as much of the contextual information. To that
end, we consider the pseudolikelihood p̃(·) of a sentence ỹ (Besag, 1975; Ahmed et al., 2023a), i.e.,

p(ỹ) ≈ p̃(ỹ) :=
∏
i

p(ỹi | ỹ−i), (4)

where ỹ−i denotes ỹ1, . . . , ỹi−1, ỹi+1, . . . , ỹn. Unfortunately, Equation (4) above would still not
ensure the tractability of Equation (2) since different solutions depend on different sets of condition-
als. Instead, we define the pseudolikelihood of a sentence y in the neighborhood of a sentence ỹ

pỹ(y) :=
∏
i

p(yi | ỹ−i) (5)

which can be understood as the contextualized probability of a sentence y given the context ỹ.
We will next show how, given the structure of the contextualized pseudolikelihood distribution,
we are able to efficiently condition it on a constraint α. Furthermore, Ahmed et al. (2023a) have
shown the contextualized pseudolikelihood distribution to be a local, high-fidelity approximation
of the LLM distribution. That is, the distribution has low entropy, considering only assignments
centered around the model sample, while at the same time having low KL-divergence meaning that
our approximation is faithful to the true distribution in the neighborhood of the model sample.

3.2 CONSTRAINT COMPILATION AND TRACTABLE OPERATIONS

We appeal to knowledge compilation, a class of methods that transform, or compile, a logical
constraint into a tractable target form which represents functions as parameterized computational
graphs, or circuits. Knowledge compilers allow us to programmatically specify constraints as
Python (Meert, 2017) or PyTorch functions (Ahmed et al., 2022a) from which they construct cir-
cuits. By enforcing certain structural properties on the compiled circuits we can enable the tractable
computation of corresponding classes of probabilistic queries over the encoded functions. As such,
circuits provide a language for both constructing and reasoning about tractable representations. An
example of a logical constraint specified as a PyTorch function which gets compiled into a constraint
circuit is shown in the bottom left of Figure 2 with the corresponding circuit in Figure 2, right.

Formally, a logical circuit is a directed, acyclic computational graph representing a logical formula
over variables X. Each node n in the DAG encodes a logical sub-formula, denoted [n]. Each inner
node in the graph is an AND or an OR gate, and each leaf node encodes a Boolean literal (Y or ¬Y).
We denote by in(n) the set of a node n’s children. We associate with every node n a scope function
ϕ(·) such that ϕ(n) ⊆ X evaluates to the subset of variables the subfunction at n is defined over.

A circuit is decomposable if the inputs of every AND gate depend on disjoint sets of variables i.e.
for α = β ∧ γ, vars(β) ∩ vars(γ) = ∅. A circuit is said to be structured-decomposable if every
AND gate is decomposable, and any pair of AND gates sharing the same scope decompose in the
same way. Intuitively, decomposable AND gates encode local factorizations over variables of the
function. We assume that decomposable AND gates always have two inputs, a condition enforceable
on any circuit in exchange for a polynomial size increase (Vergari et al., 2015; Peharz et al., 2020).

A second useful property is smoothness. A circuit is said to be smooth if the children of every OR
gate depend on the same set of variables i.e. for α =

∨
i βi, we have that vars(βi) = vars(βj) ∀i, j.

Decomposability and smoothness are sufficient and necessary for tractable integration over arbitrary
sets of variables in a single pass, as they allow larger integrals to decompose into smaller ones.

Further, a circuit is said to be deterministic if, for any input, at most one child of every OR node
has a non-zero output i.e. for α =

∨
i βi, we have that βi ∧ βj = ⊥ for all i ̸= j. Similar to

decomposability, determinism induces a recursive partitioning of the function, but over the support
of the function. We consider a stronger form of determinism, strong determinism, A circuit is said to
be strongly deterministic if, for every OR node, α =

∨
i(βi∧γi), the βi’s are mutually exclusive i.e.,

βi∧βj = ⊥ for any i ̸= j. Ensuring they are also exhaustive i.e.,
∨

i βi = ⊤, along with structured-
decomposability, we recover sentential decision diagrams (Darwiche, 2011), or constraint circuits.

5

Published as a conference paper at ICLR 2025

Algorithm 1 Compute py(ỹ | α)
1: Input: Constraint α, LLM distribution p(·)
2: Output: pỹ(· | α) defined in Equation (5)
3: ỹ ∼ p(·)
▷ Expand the batch to contain all perturbations
▷ of y that are a Hamming distance of 1 away
4: ỹ = ỹ.expand(n, vocab)
5: ỹ[:, range(n), :, range(n)] = range(vocab)

▷ Evaluate expanded samples through model
6: log p = p(ỹ).log softmax(dim = -1)
▷ Compute log p̃θ[i][j] = log pθ(yj |y−j)
7: log p̃ = log p− log p.logsumexp(dim = -1)
▷ A vector of conditional marginals p̃ỹ(yij | α)
8: return pỹ(· | α)

Algorithm 2 Locally Constrained Resampling

1: Input: Constraint α, LLM distribution p(·)
2: Output: y drawn approximately from p(y | α)
▷ Sample y and ỹ from p(y) and py(ỹ | α) resp.
3: ỹ ∼ p(·)
4: y ∼ pỹ(· | α) ▷ From Algorithm 1
▷ Compute importance weights
5: q w = p(ỹ) · pỹ(y | α)
6: p w = p(y) · vcanonize(y) |= αw · py(ỹ)
7: w = p w/q w

▷ Resample distribution according to weights
8: p∗ = Categorical(weights = w)

9: return p∗.sample()

Given a constraint circuit cα that encodes a logical constraint α we can compute the pseudolikeli-
hood q̃(α) by feeding the probability of each literal at the corresponding leaf node and evaluating
the circuit upwards, taking sums at OR gates and products at AND gates. This defines a distribu-
tion py(ỹ | α). To sample from the distribution, starting from the root node, we trace the circuit
top-down, sampling a child at every OR-gate encountered. Figure 2 (center) shows an example of
computing such a distribution, and Figure 2 (right) demonstrates the process of sampling from it.

3.3 INTERMEZZO: CONSTRAINT CIRCUITS AND DFAS

Constraint circuits can implement decisions of the form
m∨
i=1

βi(X) ∧ γi(Y), (6)

at OR gates, where X and Y are disjoint sets of variables, as opposed to DFAs that are restricted to
Binary (or Shannon) decisions and therefore boil down to very special decisions of the form

(¬x ∧ γ1(Y)) ∨ (x ∧ γ2(Y))

where the variable X is not in the variable set Y. Therefore, constraint circuits are exponen-
tially more succinct than DFAs, i.e., there are families of functions can only be represented by a
exponentially-sized DFAs, but have a polynomially-sized constraint circuit (Bova, 2016). Barring
such families of functions, constraint circuits are also empirically more succinct than DFAs (Xue
et al., 2012). In practice, this also allows us to construct shallower (i.e., less layers) and wider (i.e.,
units per layer) constraint circuits that are more amenable to GPU parallelization (Liu et al., 2024a),
and can therefore exhibit a much lower vectorized computational complexity (Ahmed et al., 2023b).

3.4 CORRECTING SAMPLE BIAS: IMPORTANCE SAMPLING. . . RESAMPLING

We have now sampled y from our proposal distribution q(y), where y is a projection of some latent
unconstrained sample ỹ, and satisfies the constraint α. However, our proposal distribution q(y)
might not align perfectly with our target distribution p(y | α). We therefore need to account for the
mismatch between the two distributions, which we can do by defining importance weights that are a
function of the original y, and its projection ỹ. We start by defining the true augmented distribution

p(y | α) ∝
∑
ỹ

p(y, α) · py(ỹ). (7)

This factorization reflects the process of first generating a constrained sentence y, and marginalizing
over all the unconstrained sentences ỹ that could have given rise to y, and can be therefore be thought
of as reversing the proposal distribution. We calculate the self-normalized importance weights

w =
p(y, α) · py(ỹ)
p(ỹ) · pỹ(y | α)

(8)

6

Published as a conference paper at ICLR 2025

p(y) ∼ I: 0.5 hate: 0.3 dogs: 0.4
He: 0.25 love: 0.5 cats: 0.4
She: 0.25 adore: 0.2 rats: 0.2

p̃(I): 0.6 p̃(hate): 0.4 p̃(dogs): 0.3
p̃(He): 0.2 p̃(love): 0.5 p̃(cats): 0.3

p̃(She): 0.2 p̃(adore): 0.1 p̃(rats): 0.2

idx = Tokenizer.tokenize(" hate")
α = True
for i in range(seq_len):

α = α and not tokens(i, idx)
return α

0.60

0.36 0.12

0.12

I
0.6

He
0.2

She
0.2

loves
0.5

adores
0.1

dogs catsrats
0.3 0.30.2

0.10.5

1

0.6

↓ 0.60

0.36 0.12

0.12

I
0.6

He
0.2

She
0.2

loves
0.5

adores
0.1

dogs catsrats
0.3 0.30.2

0.10.5

1

0.6

Figure 2: Constructing and sampling the proposal distribution. (Top left) We start by sampling
a sentence ỹ from the model p. Our goal is to compute the full conditional probability of every
word in the vocab i.e., p̃(ỹij) := p(ỹij | ỹ−i). We start by expanding the sampled sentence ỹ,
including all sentences that are a Hamming distance of 1 away from the sample y. We proceed by
(batch) evaluating the samples through the model, obtaining the joint probability of each sample.
We then normalize along each column, obtaining the conditionals p(ỹij). (Bottom left) We can
easily specify a logical constraint that prevents the word “ hate” from appearing as a simple python
function that gets compiled in the constraint circuit on the right. (Center) A logical circuit encoding
constraint ¬hates, with a simplified vocab is shown in the figure. To construct the distribution
pỹ(y | α), we feed the computed contextual probabilities at the corresponding literals. We push
the probabilities upwards, taking products at AND nodes and sums at OR nodes. This induces a
distribution pỹ(y | α). (Right) To sample a from this distribution, we start at the root of the circuit,
sampling a child of every OR gate according to the logits of the distribution, and concatenating at
every AND gate. In this case, we sample the sentence “He loves dogs” satisfying the constraint.

These weights quantify the discrepancy between the proposal and target distributions, allowing us
to correct for the biased sampling. Note, however, that the importance sampling does not generate
samples from the target distribution p(y | α), only a set of weighted particles. Rather, to transform
our weighted particles into samples drawn from p(y | α) we need to apply a resampling step ac-
cording to the importance weights. That is, given particles si with their corresponding importance
weights wi, if we resample si with replacement from {s1, . . . , sn} with probabilities proportional
to the importance weights i.e.,

p∗(si) =
wi∑n
j=1 wj

then si is drawn from the true the distribution in the limit of a large sample size n. Our full algorithm
is shown in Algorithm 2, and follows PyTorch syntax (Paszke et al., 2019). One thing to note is the
use of the canonize function on line 6 in Algorithm 2, where canonize returns the canonical
tokenization of an expression (Geh et al., 2024). This ensures that, e.g., in the case of language
detoxification, we are banning all the possible ways of generating a given expression.1 We can now
prove that Algorithm 2 is guaranteed to return samples that satisfy the constraint α. Our algorithm
is implemented in log-space to preserve numerical stability while handling very small probabilities.
Theorem 1. LOCALLY CONSTRAINED RESAMPLING in Algorithm 2 returns a sample y s.t. y |= α.

4 RELATED WORK

There has been a long line of work tackling constrained generation with LLMs. One of the ear-
lier approaches was to use search-based decoding algorithms, such as NeuroLogic Decoding (Lu
et al., 2021; 2022). While these methods explicitly search for high-probability sequences that sat-
isfy the constraint, they face scalability issues due to the exponential growth of the search space as
the sequence length increases. Another set of techniques that include GeDi (Krause et al., 2021),

1This issue has received an amount of attention in the past https://github.com/huggingface/
transformers/issues/17504

7

https://github.com/huggingface/transformers/issues/17504
https://github.com/huggingface/transformers/issues/17504

Published as a conference paper at ICLR 2025

Test accuracy % Exact Consistent

CNN-LSTM 62.00 76.60

+ oversampling 69.10% 84.50%
+ GEN-C (Ours) 78.13% 100%

Table 1: Experimental results on Warcraft.

Test accuracy % Exact Consistent

Gemini 1.5 Flash 31.00%± 4.19 31.00%± 4.19
GPT-4o mini 40.90%± 7.90 40.90%± 7.90

GEN-C (Ours) 100% 100%

Table 2: Results on Sudoku across 3 runs.

FUDGE (Yang & Klein, 2021), and NADO (Meng et al., 2022) employ auxiliary neural classifiers
to approximate the intractable conditional distribution, but do not guarantee that the constraint is sat-
isfied and require that a classifier be trained for every new constraint type. Approximate inference
methods attempt to approximate the intractable conditional distributions (Qin et al., 2022; Hu et al.,
2023; Lew et al., 2023) but suffer from high variance and do not guarantee constraint satisfaction.

Recently Outlines (Willard & Louf, 2023) and Guidance (Lundberg et al., 2024), and along similar
lines SGLang (Zheng et al., 2024), were proposed, also guaranteeing that the constraint is satisfied.
Outlines employs a precompilation step where constraints specified in regular expressions are com-
piled into DFAs that are “indexed” to create a token-based overlay. This overlay guides the decoding
process, ensuring adherence to the constraints. Koo et al. (2024) recently recast the entire process
in an automata-theoretic framework. Similar to Outlines, Guidance utilizes a trie to efficiently store
and search through valid token continuations based on the grammar. This allows for dynamic vo-
cabulary matching at each decoding step, offering flexibility potentially at the cost of impacting
efficiency. These approaches are considered the “defacto” approaches for constrained generation.

More recently, GeLaTo (Zhang et al., 2023) and subsequently CTRL-G (Zhang et al., 2024) have
utilized Hidden Markov Models (HMMs) to guide the generation from LLMs towards constraint
satisfaction, but requires training a new HMM for every target model. The very recently proposed
ASAp (Park et al., 2024) aims to debias the greedy approach through repeated sampling and discov-
ery of mass assigned to non-grammatical completions, reducing each overapproximation to make it
more accurate. While similar in intention, our approach relies on a closed-form tractable approxi-
mation of the target distribution to correct for the bias, avoiding the need to oversample the LLM.

Finally, some other approaches no longer predictively mask logits, but instead sample unconstrained
continuations and reject invalid ones post-hoc. For example, PICARD (Scholak et al., 2021) converts
the top-k tokens to text and performs various levels of validation. While such approaches are very
simple in principle, and in fact perform exact Bayesian conditioning, the number of samples required
can be prohibitive, especially when the constraint requires selecting very low probability tokens.

5 EXPERIMENTAL EVALUATION

We evaluate our approach GEN-C on several tasks spanning a number of domains. We start by
evaluating on Warcraft shortest-path finding, where we are given an image of a Warcraft tilemap,
and are tasked with autoregressively generating one of the potentially many minimum-cost paths
between two end points conditioned on the map, where the cost is determined by the underlying
cost of the tiles spanned by the path. We move on to evaluating on the classic, yet challenging, task
of solving a 9 × 9 Sudoku puzzle where an LLM is presented with an incomplete Sudoku puzzle
and asked to provide the solved puzzle without extraneous text. We also evaluate on the task of
LLM detoxification. In this task, we are interested in the generations produced by an LLM when
presented with a prompt input by the user. More specifically, we are interested not only in how good
these models are at the modeling aspect, but also how toxic their outputs might be, a measure which
includes sexual explicitness, identity attacks, and profanity, among others. Our goal in this task is
then to shift the model’s distribution away from toxic generations, and toward nontoxic ones, all
while maintaining its original ability to model text. We believe this to be a timely and important
problem due to the prevalence and widespread usage of LLMs coupled with the fact that previous
work (Gehman et al., 2020) has found non-negligible amounts of toxic, harmful, and abusive text in
the corpora used to train LLMs. Experimental details, hardware specifications, and training details
are provided in the appendix. The implementation of our approach will be made publicly available.

8

Published as a conference paper at ICLR 2025

Table 3: Evaluation of LLM toxicity and quality across different detoxification methods on Llama3-
8b. Model toxicity is evaluated on the REALTOXICITYPROMPTS benchmark through Perspective
API. Full, Toxic and Nontoxic refer to the full, toxic and nontoxic subsets of the prompts, respec-
tively. PPL refers to the perplexity of Llama3-70B on the model generations using 5 different seeds.
In line with Gehman et al. (2020); Wang et al. (2022), we characterize toxicity using two metrics:
the Expected Maximum Toxicity over 5 generations, and the Toxicity Probability of a completion
at least once over 5 generations.

Models How toxic is the model? (↓) How often is it toxic? (↓) PPL (↓)to toxic to nontoxic to toxic to nontoxic
LLAMA3-8B 0.43 0.20 38.30% 7.60% 14.45

+ Greedy Decoding 0.40 0.19 32.43% 6.93% 14.50
+ GEN-C (ours) 0.37 0.19 28.00% 6.35% 14.50

Warcraft Shortest Path For this task, we follow the experimental setting set forth by Pogančić
et al. (2020), where our training set consists of 10, 000 terrain maps curated using Warcraft II tileset.
Each map encodes a 12 × 12 grid superimposed on a Warcraft terrain map, where each vertex is
weighted according to the cost of the tile, which in turn depends on type of terrain it represents
e.g., earth has lower cost than water. These costs are not presented to the network. The task is
then to generate a minimum-cost path from the upper left to the lower right vertices, where the cost
of a path is defined as the sum of costs of the vertices visted by the edges along the path, and the
minimum-cost path is not unique, i.e., there exists many correct paths with the minimum cost.

We use a CNN-LSTM model, where, presented with an image of a terrain map, we use a ResNet18
(He et al., 2016) to obtain a 128 image embedding, which is then passed on to an LSTM with a single
layer, a hidden dim of size 512, and at every time step predicts the next edge in the path conditioned
on the image embedding and previous edges. The constraint used in this task is that the predicted
edges form a valid simple path from the upper left vertex to the lower right corner of the map.

As has been established in previous work (Xu et al., 2018; Ahmed et al., 2022b;c), the accuracy
of predicting individual labels is often a poor indicator of the performance of the neural network
in neuro-symbolic settings, where we are rather more interested in the accuracy of our predicted
structured object exactly matching the groundtruth label , e.g., is the prediction a shortest path?, a
metric which we denote “Exact” in our experiments, as well as the accuracy of predicting objects that
are consistent with the constraint, e.g., is the prediction a valid path?, a metric denoted “Consistent”.
Our results are shown in Table 1. We compare against two different baselines: the baseline model
trained on the task, and oversampling, whereby we draw many samples conditioned on the input
image, and then resample this distribution, a variant of our approach where the proposal distribution
is the autoregressive model itself. We find that our approach improves the exact match from 62.00%
and 69.10% to 78.13% while guaranteeing the sampled sequences of edges constitute valid paths, as

Sudoku Next, we consider the task of predicting a solution to a given Sudoku puzzle. Here the
task is, given a 9×9 partially-filled grid of numbers to fill in the remaining cells such that the entries
each row, column, and 3 × 3 square are unique i.e., each number from 1 to 9 appears exactly once.
We use the dataset provided by Wang et al. (2019), consisting of 10K Sudoku puzzles, split into 9K
training examples, and 1K test samples, all puzzles having 10 missing entries.

Each LLM is prompted with the string “Give me the solution of the following Sudoku without
any extra text or quotes” followed by the Sudoku Puzzle. As baselines, we used Gemini 1.5 Flash
and GPT-4o mini, and post-process the responses to remove any extraneous text returned by the
LLM. We compare the baselines against Llama3-8B constrained using our approach GEN-C, with
the constraint that the elements of every row, column and 3 × 3 square are unique. Our results are
shown in Table 2. We see that where as Gemini and GPT4o are able solve only 26% and 45% of the
Sudoku puzzles, our approach consistently manages to recover the correct Sudoku Puzzle solution.

LLM detoxification Lastly, we consider the task of LLM detoxification. That is, we investigate
the effectiveness of logical constraints, enforced using GEN-C, at steering the model away from
toxic prompted-generations. We choose a very simple constraint to be enforced by GEN-C through-

9

Published as a conference paper at ICLR 2025

out this task, namely we ban any of a list of “bad words”, including profanity, slurs, and swear
words2 from appearing as part of the model’s generations. Similar to previous work (Gehman et al.,
2020; Wang et al., 2022), we evaluate on the REALTOXICITYPROMPTS, a dataset of almost 100k
prompts ranging from nontoxic, assigned a toxicity score of 0, to very toxic, assigned a toxicity
score of 1. We focus on LLAMA3-8B (Radford et al., 2019) as a base model for detoxification.
As customary (Gehman et al., 2020; Wang et al., 2022), we use Perspective API, an API for toxic
language and hate speech detection, to score the toxicity of our predictions. It returns scores in the
range 0 to 1.0, corresponding to nontoxic on the one end, and extremely toxic on the other. The
toxicity score can be interpreted as the likelihood of the text being perceived as toxic and have been
shown to be strongly correlated with human evaluations (Wang et al., 2022; Welbl et al., 2021).

We compare LLAMA3-8B against WORD BANNING, which for this simple constraint functions
very similarly to Outlines (Willard & Louf, 2023) and Guidance (Lundberg et al., 2024). It keeps
track of the words generated so far, and prevents the banned expression from appearing by setting
its probability to 0. Word Banning could therefore be seen of as a greedy approximation of what
we might hope to achieve using GEN-C: intuitively, it might not be able to recover from generating
a sentence associated with a toxic intent as a result of making greedy decision at every step of the
generaton. We report the Expected Maximum Toxicity and the Toxicity Probability. The Expected
Maximum Toxicity measures the worst-case toxicity by calculating the maximum toxicity over 25
generations under the same prompt with different random seeds, and averaging the maximum toxic-
ity over all prompts. This metric can be seen as a measure of how intensely offensive a generation is.
Toxicity Probability estimates the empirical probability of generating toxic language by evaluating
the fraction of times a toxic continuation is generated at least once over 25 generations with different
random seeds for all prompts. This metric can be seen as a measure of how likely the LLM is to be
offensive. Both of the above metrics are computed for the full set of prompts, only the toxic subset
of the prompts, and only the nontoxic subset of the prompts. To understand the impact of detoxifica-
tion, we evaluate the quality of the LLM generations by measuring the perplexity of the generations
according to LLAMA3-70B averaged across 5 different runs. Our results are seen in Table 3.

We can see that word banning lowers the toxicity of the generations produced by LLAMA3-8B at
a negligible decrease in perplexity. More specifically, we observe that it reduces the average worst-
case toxicity as well as the probability of producing a toxic generation when prompted with nontoxic
prompts by a modest 1%, but when prompted with nontoxic prompts the reduction in toxicity is
much higher at 3% and almost 6% for the expected maximum toxicity and toxicity probability,
respectively. Moving on to constraining our LLAMA3-8B with our approach GEN-C attains the
same perplexity as using word banning, but greatly reduces the toxicity of LLAMA3-8B, especially
on toxic prompts where it results in almost twice as much the reduction in toxicity affected by word
banning, both in terms of the expected maximum toxcity as well as the toxicity probability.

6 CONCLUSION AND FUTURE WORK

We proposed a new approach for constraining LLMs which we called GEN-C. Given a logical con-
straint, GEN-C guarantees that an autoregressive model’s generations satisfy the constraint. GEN-C
is probabilistically sound, while providing a concise constraint specification language as well as an
exponentially more succinct compilation form compared to current defacto approaches to controlled
generation. We have showed that GEN-C can be applied to autoregressive models such as LSTMs
as well as large scale LLMs, outperforming the baselines on the tasks of minimum-cost paths pre-
diction, language as well as solving Sudoku puzzles, where we achieved a perfect accuracy, beating
both GPT-4o and Gemini 1.5 by a large margin. We have also shown that by virtue of its proba-
bilistic nature, GEN-C is able to outperform current approaches for constrained generation on LLM
detoxification using only a list of toxic expressions as a constraint, relying on probabilistic inference.

We envision extending and building upon GEN-C in a multitude of ways. First, on the systems
side since GEN-C extensively uses the language of tractable circuits, we plan on a tight integration
with circuits libraries, such as pyjuice (Liu et al., 2024a) to greatly improve the efficiency of our
approach, as well as open the door for many potentially interesting probabilistic queries. Second,
we hope to explore more applications of constrained generation, with one alluring possibility being
the use of constraints to improve the factual accuracy of current LLMs.

2List downloaded from here.

10

https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENTS

The work is supported by the DARPA ANSR program FA8750-23-2-0004. The views and conclu-
sions are those of the authors and should not reflect the official policy or position of DARPA or the
U.S. Government.

REFERENCES

Kareem Ahmed, Tao Li, Thy Ton, Quan Guo, Kai-Wei Chang, Parisa Kordjamshidi, Vivek Sriku-
mar, Guy Van den Broeck, and Sameer Singh. Pylon: A pytorch framework for learning with
constraints. In Proceedings of the 36th AAAI Conference on Artificial Intelligence (Demo Track),
feb 2022a.

Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck, and Antonio Vergari. Seman-
tic probabilistic layers for neuro-symbolic learning. In NeurIPS, 2022b.

Kareem Ahmed, Eric Wang, Kai-Wei Chang, and Guy Van den Broeck. Neuro-symbolic entropy
regularization. In The 38th Conference on Uncertainty in Artificial Intelligence, 2022c.

Kareem Ahmed, Kai-Wei Chang, and Guy Van den Broeck. A pseudo-semantic loss for deep gen-
erative models with logical constraints. In NeurIPS, 2023a.

Kareem Ahmed, Zhe Zeng, Mathias Niepert, and Guy Van den Broeck. Simple: A gradient estimator
for k-subset sampling. In Proceedings of the International Conference on Learning Representa-
tions (ICLR), may 2023b.

Julian Besag. Statistical analysis of non-lattice data. Journal of the Royal Statistical Society. Series
D (The Statistician), pp. pp. 179–195, 1975.

Simone Bova. Sdds are exponentially more succinct than obdds. In AAAI Conference on Artificial
Intelligence, 2016.

Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams. ACM
Computing Surveys, 1992.

YooJung Choi, Antonio Vergari, and Guy Van den Broeck. Probabilistic circuits: A unifying frame-
work for tractable probabilistic modeling. 2020.

Adnan Darwiche. Sdd: A new canonical representation of propositional knowledge bases. In IJCAI,
2011.

Daniel Deutsch, Shyam Upadhyay, and Dan Roth. A general-purpose algorithm for constrained
sequential inference. In Proceedings of the 23rd Conference on Computational Natural Language
Learning (CoNLL), 2019.

Renato Lui Geh, Honghua Zhang, Kareem Ahmed, Benjie Wang, and Guy Van den Broeck. Where
is the signal in tokenization space? In Empirical Methods in Natural Language Processing 2024,
2024.

Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A. Smith. Realtoxic-
ityprompts: Evaluating neural toxic degeneration in language models. ArXiv, abs/2009.11462,
2020.

Hermann Gruber and Markus Holzer. Tight bounds on the descriptional complexity of reg-
ular expressions. In Proceedings of the 13th International Conference on Developments in
Language Theory, DLT ’09, pp. 276–287, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN
9783642027369. doi: 10.1007/978-3-642-02737-6 22.

Hermann Gruber and Markus Holzer. From finite automata to regular expressions and back–a sum-
mary on descriptional complexity. Electronic Proceedings in Theoretical Computer Science, 151,
05 2014. doi: 10.4204/EPTCS.151.2.

11

Published as a conference paper at ICLR 2025

Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp Schmid, Zachary Mueller, and Sourab Man-
grulkar. Accelerate: Training and inference at scale made simple, efficient and adaptable., 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, June 2016.

Edward J Hu, Moksh Jain, Eric Elmoznino, Younesse Kaddar, Guillaume Lajoie, Yoshua Bengio,
and Nikolay Malkin. Amortizing intractable inference in large language models. In The Twelfth
International Conference on Learning Representations, 2023.

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT
press, 2009.

Terry Koo, Frederick Liu, and Luheng He. Automata-based constraints for language model decod-
ing, 2024.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar, Shafiq Joty, Richard
Socher, and Nazneen Fatema Rajani. Gedi: Generative discriminator guided sequence generation.
In Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 4929–4952,
2021.

Alexander K Lew, Tan Zhi-Xuan, Gabriel Grand, and Vikash K Mansinghka. Sequential monte carlo
steering of large language models using probabilistic programs. arXiv preprint arXiv:2306.03081,
2023.

Anji Liu, Kareem Ahmed, and Guy Van den Broeck. Scaling tractable probabilistic circuits: A sys-
tems perspective. In International Conference on Machine Learning (ICML), July 2024, 2024a.

Michael Xieyang Liu, Frederick Liu, Alex Fiannaca, Terry Koo, Lucas Dixon, Michael Terry, and
Carrie Cai. “we need structured output”’: Towards user-centered constraints on large language
model output. pp. 9, 2024b.

Ximing Lu, Peter West, Rowan Zellers, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi.
Neurologic decoding:(un) supervised neural text generation with predicate logic constraints. In
Proceedings of the 2021 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies (NAACL), 2021.

Ximing Lu, Sean Welleck, Peter West, Liwei Jiang, Jungo Kasai, Daniel Khashabi, Ronan Le Bras,
Lianhui Qin, Youngjae Yu, Rowan Zellers, et al. Neurologic a* esque decoding: Constrained text
generation with lookahead heuristics. In Proceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies,
pp. 780–799, 2022.

Scott Lundberg, Marco Ribeiro, Richard Edgar, and Harsha-Nori. Guidance: a guidance language
for controlling large language models., 2024.

Konstantinos Mamouras and Agnishom Chattopadhyay. determining the validity of a given isbn
matching of regular expressions with lookaround assertions. Proc. ACM Program. Lang., 2024.

Wannes Meert. Pysdd. In Recent Trends in Knowledge Compilation, sep 2017.

Tao Meng, Sidi Lu, Nanyun Peng, and Kai-Wei Chang. Controllable text generation with neurally-
decomposed oracle. In Advances in Neural Information Processing Systems 35 (NeurIPS), 2022.

Chinmay Mittal, Krishna Kartik, Mausam, and Parag Singla. Puzzlebench: Can llms solve chal-
lenging first-order combinatorial reasoning problems?, 2024.

OpenAI. Introducing structured outputs in the api. https://openai.com/index/
introducing-structured-outputs-in-the-api/, June 2023. Accessed: 2023-09-
24.

Liangming Pan, Alon Albalak, Xinyi Wang, and William Wang. Logic-LM: Empowering large lan-
guage models with symbolic solvers for faithful logical reasoning. In Findings of the Association
for Computational Linguistics: EMNLP 2023, 2023.

12

https://openai.com/index/introducing-structured-outputs-in-the-api/
https://openai.com/index/introducing-structured-outputs-in-the-api/

Published as a conference paper at ICLR 2025

Kanghee Park, Jiayu Wang, Taylor Berg-Kirkpatrick, Nadia Polikarpova, and Loris D’Antoni.
Grammar-aligned decoding. In NeurIPS, 2024.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp, Guy
Van den Broeck, Kristian Kersting, and Zoubin Ghahramani. Einsum networks: Fast and scalable
learning of tractable probabilistic circuits. In International Conference of Machine Learning,
2020.

Marin Vlastelica Pogančić, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolinek. Differ-
entiation of blackbox combinatorial solvers. In ICLR, 2020.

Lianhui Qin, Sean Welleck, Daniel Khashabi, and Yejin Choi. Cold decoding: Energy-based con-
strained text generation with langevin dynamics. Advances in Neural Information Processing
Systems, 35:9538–9551, 2022.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Dan Roth. On the hardness of approximate reasoning. In IJCAI, pp. 613–619. Morgan Kaufmann,
1993.

Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language models. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Processing, 2021.

Andy Shih, Dorsa Sadigh, and Stefano Ermon. Long horizon temperature scaling. In Proceedings
of the 40th International Conference on Machine Learning (ICML), 2023.

Jiao Sun, Yufei Tian, Wangchunshu Zhou, Nan Xu, Qian Hu, Rahul Gupta, John Wieting, Nanyun
Peng, and Xuezhe Ma. Evaluating large language models on controlled generation tasks. In
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
2023.

Antonio Vergari, Nicola Di Mauro, and Floriana Esposito. Simplifying, regularizing and strengthen-
ing sum-product network structure learning. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pp. 343–358. Springer, 2015.

Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso, and Guy Van den Broeck. A compositional
atlas of tractable circuit operations for probabilistic inference. Advances in Neural Information
Processing Systems, 34, 2021.

Bailin Wang, Zi Wang, Xuezhi Wang, Yuan Cao, Rif A. Saurous, and Yoon Kim. Grammar prompt-
ing for domain-specific language generation with large language models. In Thirty-seventh Con-
ference on Neural Information Processing Systems, 2023.

Boxin Wang, Wei Ping, Chaowei Xiao, Peng Xu, Mostofa Patwary, Mohammad Shoeybi, Bo Li,
Anima Anandkumar, and Bryan Catanzaro. Exploring the limits of domain-adaptive training for
detoxifying large-scale language models. In Neurips, 2022.

Po-Wei Wang, Priya L. Donti, Bryan Wilder, and J. Zico Kolter. Satnet: Bridging deep learning and
logical reasoning using a differentiable satisfiability solver. In ICML, volume 97 of Proceedings
of Machine Learning Research, pp. 6545–6554. PMLR, 2019.

Johannes Welbl, Amelia Glaese, Jonathan Uesato, Sumanth Dathathri, John F. J. Mellor, Lisa Anne
Hendricks, Kirsty Anderson, Pushmeet Kohli, Ben Coppin, and Po-Sen Huang. Challenges in
detoxifying language models. ArXiv, abs/2109.07445, 2021.

13

Published as a conference paper at ICLR 2025

Brandon T. Willard and Rémi Louf. Efficient guided generation for large language models. ArXiv,
abs/2307.09702, 2023.

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. A semantic loss
function for deep learning with symbolic knowledge. In International conference on machine
learning, pp. 5502–5511. PMLR, 2018.

Yexiang Xue, Arthur Choi, and Adnan Darwiche. Basing decisions on sentences in decision dia-
grams. Proceedings of the AAAI Conference on Artificial Intelligence, 2012.

Kevin Yang and Dan Klein. Fudge: Controlled text generation with future discriminators. In Pro-
ceedings of the 2021 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies (NAACL), 2021.

Honghua Zhang, Meihua Dang, Nanyun Peng, and Guy Van den Broeck. Tractable control for
autoregressive language generation. In Proceedings of the 40th International Conference on Ma-
chine Learning (ICML), jul 2023.

Honghua Zhang, Po-Nien Kung, , Masahiro Yoshida, Nanyun Peng, and Guy Van den Broeck.
Adaptable logical control for large language models. In NeurIPS, 2024.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying Sheng. Sglang:
Efficient execution of structured language model programs. NeurIPS 2024, 2024.

14

Published as a conference paper at ICLR 2025

A PROOFS

Theorem 1. LOCALLY CONSTRAINED RESAMPLING in Algorithm 2 returns a sample y s.t. y |= α.

Proof. Let y = (y1, . . . ,yn) denote a string. Let vocabulary V denote a set of subwords, or tokens.
A tokenization of a string y w.r.t. a vocabulary V is a sequence of tokens v = (v1, . . . , vn) , such
that each vi ∈ V and the concatenation of all tokens vi constitutes the string y, i.e., v1 ◦· · ·◦vn = y.

An autoregressive distribution p(·) defines a conditional probability distribution over tokens, and
therefore, induces a distribution over tokenizations of a given string y (Geh et al., 2024)

p(v,y) =

{∏|v|
i=1 p (vi|v1, . . . , vi−1) if v |= y,

0 otherwise,

where v |= y denotes that v is a tokenization of y.

We start by showing that, if the canonical tokenization of a string y does not satisfy α, then Al-
gorithm 2 precludes any non-canonical tokenizations of the string y. To see that, observe that
a non-canonical tokenization of a sentence y generated by Algorithm 2 is subsequently cast into a
canonical tokenization by invoking the canonize function. It is then assigned an importance weight
of 0, and assigned zero probability in the resampling distribution on line 9 in Algorithm 2.

During the resampling step, the set of candidate samples are only those sampled from py(· | α)
We will now show that we can always construct py(· | α) given a constraint α defined over variables
{Y11, . . . , Ynk} and a contextualized psuedolikelihood distribution p̃y(·). Recall from Section 3.1
that the contextualized pseudolikelihood distribution is fully-factorized. We can therefore construct
a deterministic and decomposable circuit representing the contextualized pseudolikelihood distribu-
tion where with a slight abuse of notation, we use p̃y(·) to refer to both the distribution as well as its
circuit representation. Such a construction proceeds by introducing a Bernoulli distribution unit for
each variable, and connecting the Bernoulli distribution units using a singular product node.

Given a constraint α, we can compile it into a constraint circuit cα. The simplest construction is as
follows. Order the variables lexicographically. Alternate OR and AND nodes. An OR node branches
on the current variable being true or false, and has two children: a left (right) AND node whose
children are the positive (negative) literal and the subtree corresponding to substituting the positive
(negative) literal into the constraint. Repeat the above process till exhausting all the variables.

Given a constraint circuit cα, a deterministic and omnicompatible circuit (Vergari et al., 2021) p̃y(·),
we can compute the product of the two circuits p̃y(·, α) in time O(|p||c|), following from Theorem
3.2 in Vergari et al. (2021). Furthermore, the resulting product circuit p̃y(·, α) can be normalized in
time O(|p̃|) to obtain p̃y(· | α), following from Proposition 2.1 in Vergari et al. (2021)

B LANGUAGE DETOXIFICATION

The experiments were run on a server with an AMD EPYC 7313P 16-Core Processor @ 3.7GHz, 3
NVIDIA RTX A6000, and 252 GB RAM. Our LLM detoxification experiments utilized both GPUs
using the Huggingface Accelerate (Gugger et al., 2022) library.

In order to construct our constraint, we start with the list of bad words3 and their space-prefixed
variants4. We then tokenize this list of augment bad words, yielding 871 unique possibly-bad tokens
(some tokens are only bad when considered in context with other tokens), in addition to an extra
catch-all good token to which remaining tokens map to. Our constraint then disallows all sentences
containing any of the words on the augmented list, starting at any of the sentence locations 0 through
len(sentence) - len(word). The code to process the list of words, the code to create the constraint as
well as the constraint itself will be made publicly available upon paper acceptance.

3List downloaded from here.
4A word will be encoded differently whether it is space-prefixed or not.

15

https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words

Published as a conference paper at ICLR 2025

Figure 3: Example inputs and groundtruth labels for two of the three tasks considered in
our experimental evaluation. (Left) Example Warcraft terrain map and a possible (non-unique)
minimum-cost shortest path. (Right) Example Sudoku puzzle and corresponding (unique) solution.

We use a batch size of 10 during generation, and only sample every sentence 5 times. The model
sentence y was generated using nucleus sampling with p = 0.9 and a temperature of 1. We experi-
mented with tempering the contextualized pseudo-likelihood distribution on a random set of prompts
of size 1000 using τ = {0.1, 0.3, 0.5, 0.7, 0.9, 1.0}. Our final results are reported on a random sub-
set of the RealToxicityPrompts dataset of size 10k, average over 5 different runs using 5 different
seeds. For only this task, our implementation makes use of top-k to construct the pseudo-likelihood
distribution (lines 7-12 in Algorithm 1) due to the lack of computational resources. Generations
from all methods were limited to a maximum of 20 new tokens.

C SUDOKU

The experiments were run on a server with an AMD EPYC 7313P 16-Core Processor @ 3.7GHz,
2 NVIDIA RTX A6000, and 252 GB RAM. We use the dataset provided by Wang et al. (2019),
consisting of 10K Sudoku puzzles, split into 9K training examples, and 1K test samples, all puzzles
having 10 missing entries. Our constraint disallows any solution in which the rows, columns and
square are not unique.

D WARCRAFT SHORTEST PATH

The experiments were run on a server with an AMD EPYC 7313P 16-Core Processor @ 3.7GHz, 2
NVIDIA RTX A6000, and 252 GB RAM. We used the best model trained by (Ahmed et al., 2023a).
The model uses a CNN-LSTM model for this task. Precisely, a ResNet-18 encodes the map to an
embedding of dimension 128. An LSTM with 1 layer, and a hidden size of 512 then predicts the
next edge in the shortest path conditioned on the input map and all previous edges. The constraint
disallows any prediction not a valid path connecting the upper left and lower right vertices.

E BROADER IMPACT

The work presented in this paper has a significant potential for positive societal impact. Neuro-
symbolic AI moves us closer to models whose behavior is trustworthy, explainable and fair. This
extends to critical domains such as autonomous driving, medical diagnosis and financial planning
to name a few. Large language models have recently seen an exponential increase in popularity,
crossing the threshold of being mere research tools into products that are utilized by the general
public. Unfortunately, the same expressivity that renders these models so powerful also makes it
hard to reason about their behavior. We believe our proposed approach is a step in right direction:
it expands the class of logical constraints we can tackle while account for and acknowledging the
underlying probability distribution. And we have shown the merits of our approach when applied to
LLM detoxification. We must, however, also be cognizant of the potential negative societal impacts:
In very much the same way that our approach can be used to output non-toxic generations, it can be
used to output toxic and harmful generations.

16

	Introduction
	Background
	Notation and Preliminaries
	A Probability Distribution over Possible Sentences
	The State of Conditional Autoregressive Sampling

	Locally Constrained Resampling: A Tale of Two Distributions
	A Sample Induces a Local, Tractable distribution
	Constraint Compilation and Tractable Operations
	Intermezzo: Constraint Circuits and DFAs
	Correcting Sample Bias: Importance Sampling…Resampling

	Related work
	Experimental Evaluation
	Conclusion and Future Work
	Proofs
	Language Detoxification
	Sudoku
	Warcraft Shortest Path
	Broader Impact

