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1 APPENDIX A: DATASETS INFORMATION

For training and evaluating our RAG system, we select eight datasets (five for training and three for
evaluation). All the datasets we used are downloaded from the Hugging Face website1.

1.1 FINE-TUNING DATASETS

We choose five datasets to fine-tune our two-stage architecture. Specifically, in the retrieval stage,
we choose two Open-domain Question Answering (ODQA) datasets, i.e., FreebaseQA Yao et al.
(2014) and MS-MARCO Bajaj et al. (2016), to fine-tune our model for returning more relevant
documents leveraging the powerful semantic understanding capability of LLM while avoiding the
variance that happened in the practical situation.

• FreebaseQA2: This dataset is designed for open-domain factoid question answering using
the Freebase knowledge graph. It contains 28,348 trivia-style questions and over 54,000
question-answer matches from TriviaQA and trivia website.

• MS-MARCO3: The MS-MARCO (Microsoft MAchine Reading Comprehension) is a
large-scale dataset for machine reading comprehension, featuring real-world queries from
Bing users and over 1 million passages with query-answer pairs, supporting tasks like ques-
tion answering and passage ranking.

By using both FreebaseQA and MS-MARCO to fine-tune our retriever, we improve the retrieval
part of our Invar-RAG more comprehensively. FreebaseQA provides complex, linguistically diverse
queries matched with structured knowledge graph data, enhancing our model’s ability to retrieve
fact-based answers. MS-MARCO, with its real-world user queries and passage ranking, improves
performance in understanding and ranking everyday information. Together, they enhance the re-
triever’s precision, relevance, and ability to handle a variety of natural language queries. To fine-
tune our model for the generation task, we select three other datasets (two ODQA datasets and one
reading comprehension dataset).

• Wiki QA4: This dataset, introduced by Microsoft, consists of question and sentence pairs
collected from Bing search logs. It is designed for research in open-domain question an-
swering. The dataset contains 3,047 questions linked to Wikipedia articles, with 29,258
sentences, 1,473 of which are labeled as correct answers to the questions.

• Web Question5: Released as part of research on semantic parsing, the WebQuestions
dataset contains 5,810 question-answer pairs where the answers are entities from Free-
base. The dataset is used to train and evaluate models for answering factual questions
using structured data from Freebase.

• SQuAD v26: The Stanford Question Answering Dataset (SQuAD) v2 builds upon the
original SQuAD dataset by adding over 50,000 unanswerable questions that are similar to
answerable ones, totaling 130,319 questions. This dataset challenges models to not only
answer questions but also to determine when no answer is available in the context.

1.2 EVALUATION DATASETS

To evaluate both the retrieval and generation performance of Invar-RAG, we import three more
ODQA datasets, i.e., TriviaQA, Natural Question, and PopQA, which are all large-scale public
datasets that have been widely used as benchmarks in the retrieval or generation tasks Fan et al.
(2024).

1https://huggingface.co/datasets
2https://huggingface.co/datasets/microsoft/freebase_qa
3https://huggingface.co/datasets/microsoft/ms_marco
4https://huggingface.co/datasets/microsoft/wiki_qa
5https://huggingface.co/datasets/Stanford/web_questions
6https://huggingface.co/datasets/rajpurkar/squad_v2
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• TriviaQA7: TriviaQA is a reading comprehension dataset that comprises more than
650,000 question-answer-evidence triples. It includes 95,000 question-answer pairs gen-
erated by trivia experts, with independent evidence documents provided—around six per
question on average—offering distant supervision of high quality for answering the ques-
tions.

• Natural Question8: The NQ dataset consists of questions sourced from real users, requir-
ing QA systems to process and understand full Wikipedia articles that may or may not
contain the answer. The use of actual user queries and the need to examine entire pages
make this dataset more realistic and challenging compared to earlier QA datasets.

• PopQA9: PopQA is a large-scale, open-domain QA dataset with 14,000 entity-centric
question-answer pairs. The questions are generated by applying templates to knowledge
tuples retrieved from Wikidata.

2 APPENDIX B: EVALUATION

In this section, we will detail the information of our evaluation metrics and the implementation of
our evaluation process. For retrieval, to provide a comprehensive view of performance, we leverage
Accuracy both truncated at five and twenty, to assess the proportion of questions where the correct
answers appear in the top 5 or top 20 retrieval results, respectively. For generations, we choose the
Exact Match Wongsuphasawat et al. (2012) to evaluate the difference between our prediction and the
ground truth. Moreover, in our evaluation process, we adopt 8-shot examples which are randomly
selected from the chosen datasets following previous work Izacard & Grave (2020).

3 APPENDIX C: HYPERPARAMETER ILLUSTRATION

In this section, we will present the prime hyperparameter we used and the values we set in our fine-
tuning and inferencing progress. Tab.1 shows the hyperparameter for fine-tuning our retrieval stage
and generation stage.

Table 1: Hyperparameter for Fine-tuning (Retrieval and Generation)
Stage lr scheduler batch size seq len LoRA rank LoRA alpha LoRA dropout

Retrieval Stage cosine 64 4096 16 32 0.05

Generation Stage cosine 64 4096 16 32 0.05

4 APPENDIX D: BASELINES DESCRIPTION

(a) BM25 Ram et al. (2023): A classical, sparse information retrieval method based on term fre-
quency and inverse document frequency (TF-IDF). It ranks documents based on the occurrence of
query terms, emphasizing exact term matches, making it effective in domains with well-structured
data but limited in understanding semantic similarities. (b) BGE Izacard et al. (2021): A family
of pre-trained embedding models designed for general Chinese text embedding. It achieves supe-
rior performance across diverse tasks by using massive datasets and advanced training techniques
like contrastive learning, supporting retrieval, ranking, and classification. (c) Contriever Xiao et al.
(2024): Contriever is an unsupervised dense information retriever based on contrastive learning.
It is designed to overcome limitations in traditional sparse retrieval methods like BM25, particu-
larly in zero-shot and multilingual settings. Contriever demonstrates state-of-the-art performance
on multiple retrieval benchmarks, such as BEIR, and excels in cross-lingual retrieval. Its archi-
tecture relies on a bi-encoder model, which encodes queries and documents independently, and

7https://huggingface.co/datasets/mandarjoshi/trivia_qa
8https://huggingface.co/datasets/google-research-datasets/natural_

questions
9https://huggingface.co/datasets/akariasai/PopQA

2

https://huggingface.co/datasets/mandarjoshi/trivia_qa
https://huggingface.co/datasets/google-research-datasets/natural_questions
https://huggingface.co/datasets/google-research-datasets/natural_questions
https://huggingface.co/datasets/akariasai/PopQA


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Table 2: Ablation Study on Natural Question and PopQA.

Model Variants
Nature Question PopQA

Retrieval Generation Retrieval Generation
Acc@5 Acc@20 Exact Match Acc@5 Acc@20 Exact Match

Default 80.5 88.0 56.2 73.5 82.5 53.6
w/o representation learning 69.0 80.5 54.7 59.5 70.0 51.7
w/o invariance loss 77.5 86.0 55.4 69.5 81.0 52.4
w/o generative fine-tuning / / 53.9 / / 50.7

uses unsupervised contrastive learning to optimize retrieval, even without labeled data. (d) LLM-
embedder Zhang et al. (2023): A unified embedding model optimized for retrieval augmentation
in large language models (LLMs). It leverages multi-task fine-tuning and LLM feedback to retrieve
relevant knowledge, tools, and memory, enhancing LLMs’ capabilities in knowledge-intensive tasks.
(e) RepLLaMA Ma et al. (2024): RepLLaMA is a dense retriever fine-tuned from the LLaMA-2
language model, part of a multi-stage retrieval pipeline that includes rankLLaMA as a reranker.
RepLLaMA improves the effectiveness of retrieval tasks, particularly in passage and document re-
trieval. It outperforms smaller models, showcasing strong generalization and effectiveness in both
in-domain and zero-shot settings. The model leverages both hard negatives and in-batch negatives
during training.

5 APPENDIX E: ABLATION STUDY

In this section, we will present the ablation study by gradually removing the significant components
of our architecture. Specifically, we follow the variant settings in the main body and perform our
ablation study on the other two evaluation ODQA datasets (Natural Question 10 and PopQA 11),
presented in Tab.2. From the experimental results, we can see that the performance of our Invar-
RAG, no matter for the retrieval and the generation, shows a similar tendency to the one on TriviaQA,
showing the effectiveness of our designed two-stage fine-tuning method, featuring the representation
learning, invariance loss and the generation fine-tuning in one single LLM.
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