
Published as a conference paper at ICLR 2025

In the appendix, we provide additional implementation details, experiments, and discussions of
limitations and future work.

A ADDITIONAL IMPLEMENTATION DETAILS

A.1 MULTI-PROCESSING SERVING

As discussed in Section 2, our approach enables the separation of video modeling and question-
answering across different processes and GPUs, significantly enhancing efficiency in real-world ap-
plications. Specifically, we dedicate a primary process for video stream encoding, utilizing sliding-
window attention to analyze the video and store the computed cache in RAM. If RAM capacity is
exceeded, the data can be offloaded to disk. Additionally, a process pool is maintained, with the
number of processes determined by the frequency of queries and available resources. Each process
loads the same Video-LLM parameters but operates independently. The video processing continues
uninterrupted, without waiting for question-answering tasks to complete. When a query is posed,
we log its timestamp to ensure that video information after this point is excluded from the answer.
An available process from the pool is then activated to retrieve relevant video key-value vectors
using our method, loading them onto its GPU for question-answering. This approach enables effi-
cient StreamingVQA applications, with significant potential in areas such as robotics, surveillance,
augmented reality, and live broadcasting.

A.2 PROMPT TEMPLATES FOR VIDEOQA

We use the same prompt template for all multiple-choice VideoQA benchmarks. Text in red indi-
cates variable inputs.
System:

You are a helpful assistant.

User:

<video>

Question: <question>

Options:

(A) <Option_A>

(B) <Option_B>

(C) <Option_C>

(D) <Option_D>

(E) <Option_E>

Answer with the option’s letter from the given choices directly.

Assistant:

The prompt template for open-ended VideoQA is rather simpler:
System:

You are a helpful assistant.

User:

<video>

<question>

Assistant:

A.3 KV-CACHE SIZE CALCULATION

The size of the KV-Cache can be calculated using the following formula, assuming FP16 precision:

2→ L layers → T frames →M tokens/frame →H heads →D dimension → 2 bytes.

For LLaVA-OV-7B (Li et al., 2024a), with L = 28, M = 196, H = 4, and D = 128, processing a
1-hour video at 0.5 FPS (T = 1800) results in a total KV-Cache size of 18.8 GB.

Similarly, for LLaVA-OV-0.5B (Li et al., 2024a), with L = 24, M = 196, H = 2, and D = 64,
processing a 1-hour video at 0.5 FPS results in a total KV-Cache size of 4.0 GB.

These theoretical calculations are consistent with the experimental results shown in Table 5.

14



Published as a conference paper at ICLR 2025

B ADDITIONAL EXPERIMENTS

B.1 EXPERIMENTS WITH MORE VIDEO-LLMS AND BENCHMARK

To further assess the generalizability of our approach, we tested it on additional Video-
LLMs: Video-LLaVA-7B (Lin et al., 2024), LongVA-7B (Zhang et al., 2024b), and
LLaVA-OV-72B (Li et al., 2024a). We used model sharding for LLaVA-OV-72B, significantly
slowing inference. To mitigate this, we reduced the FPS to 0.1 and the number of retrieved frames
to 32, ensuring efficient evaluation. As shown in Table 6, ReKV consistently improved performance
across various models and benchmarks, highlighting its robustness and adaptability.

Table 6: Additional experiments with more Video-LLMs and benchmark.
“Acc.” denotes accuracy. “X Frames” refers to uniformly sampling X frames from the video. “Y FPS → X
Frames” indicates an input video with a frame rate of Y FPS, from which X frames are retrieved.

Method Sampling MLVU QAEGO4D EgoSchema CGBench

dev Acc. test Acc. Acc. Acc.

Video-LLaVA-7B (Lin et al., 2024) 8 Frames 46.5 37.0 41.4 18.7
+ReKV 0.5 FPS → 8 Frames 47.2 (+0.7) 37.9 (+0.9) 42.2 (+0.8) 19.2 (+0.5)

LongVA-7B (Zhang et al., 2024b) 32 Frames 57.3 42.8 42.5 26.1
+ReKV 0.5 FPS → 32 Frames 58.6 (+1.3) 45.6 (+2.8) 42.7 (+0.2) 26.4 (+0.3)

LLaVA-OV-0.5B (Li et al., 2024a) 64 Frames 53.2 42.6 29.6 21.4
+ReKV 0.5 FPS → 64 Frames 56.1 (+2.9) 50.0 (+7.4) 31.0 (+1.4) 21.7 (+0.3)

LLaVA-OV-7B (Li et al., 2024a) 64 Frames 64.7 52.8 59.8 31.1
+ReKV 0.5 FPS → 64 Frames 68.5 (+3.8) 56.0 (+3.2) 60.7 (+0.9) 33.9 (+2.8)

LLaVA-OV-72B (Li et al., 2024a) 32 Frames 71.9 53.6 59.6 37.2
+ReKV 0.1 FPS → 32 Frames 72.6 (+0.7) 57.0 (+3.4) 62.0 (+2.4) 40.5 (+3.3)

B.2 FAIR COMPARISONS WITH FLASH-VSTREAM

Tables 4 and 5 compared LLaVA-OneVision+ReKV with Flash-VStream. However, these
comparisons may be unfair due to different architecture and training data. Thus, here we con-
duct fair comparisons using the same Video-LLM backbone, including the identical visual en-
coder (CLIP-ViT-L/14), projector (2-layer MLP), LLM (Vicuna-7B-v1.5), training data,
and train/eval pipelines.

Due to the inaccessibility of WebVid videos3 used in Flash-VStream’s original training, we use
232K randomly sampled InternVid videos4 as a substitute. This ensures comparable experimen-
tal settings. We train a baseline Video-LLM model (Base) and a Flash-VStream-enhanced ver-
sion (Base+Flash). Similarly, we integrate ReKV into the same baseline (Base+ReKV) for fair
comparisons. To maintain parity, the baseline uniformly samples 16 frames per video, resized to
224 → 224. Visual features of shape (T, 16, 16, D) are average-pooled to (T, 8, 8, D) before being
passed through the MLP projector and into the LLM. Both Flash-VStream and ReKV process video
at 0.5 FPS, with ReKV retrieving 16 frames.

Table 7: Fair comparisons with Flash-VStream. “Original Flash” is the checkpoint officially published by
Flash-VStream while “Base+Flash” is our reproduced version.

Method MLVUdev-mc QAEGO4Dtest-mc EgoSchema RVS-Movie RVS-Ego

Base 49.8 39.0 42.6 47.2 54.1
Base+Flash 51.0 37.4 41.2 50.1 55.4
Base+ReKV 51.9 (+0.9) 40.5 (+3.1) 43.7 (+2.5) 51.9 (+1.8) 54.7 (-0.7)
Original Flash 50.2 38.2 38.1 53.1 57.3

As shown in Table 7, Base+ReKV consistently outperforms the base Video-LLM Base and sur-
passes Base+Flash in most cases, highlighting its superiority under fair comparative conditions.
Additionally, ReKV offers enhanced usability, seamlessly integrating with existing Video-LLMs
without requiring extensive retraining.
3https://github.com/m-bain/webvid
4https://huggingface.co/datasets/OpenGVLab/InternVid

15



Published as a conference paper at ICLR 2025

On the contrary, the reproduced Base+Flash does not consistently outperform Base. It excels
on StreamingVQA (RVS-Movie and RVS-Ego) and MLVU but underperforms on QAEGO4D and
EgoSchema. This discrepancy is likely due to significant visual information loss: the Base model
processes 1024 visual tokens (16→ 64), while Base+Flash uses only 681 memory tokens.

For additional context, we include results from the original Flash-VStream (Original Flash)
using checkpoints from its official repository5. Our reproduced Base+Flash shows performance
deviations, likely due to differences in training data and potential environmental factors.

B.3 COMPUTATIONAL COMPLEXITY

We ensure fair comparisons by using the identical Video-LLM backbone (Sec. B.2) under con-
trolled streaming conditions (Sec. 4.5). Specifically, we measured the FLOPs and MACs of the base
Video-LLM, Flash-VStream, and our external and internal retrieval methods. We analyzed average
TFLOPs and TMACs per QA over various question frequencies in a 1-hour video, leveraging
the calflops library (Ye, 2023).

As shown in Tables 8 and 9, ReKV’s efficiency improves significantly with increasing QA frequency.
The video stream is encoded only once, and computed results are reused across QAs, leading to
reduced per-query complexity as QA frequency rises. Flash-VStream outperforms ReKV at low QA
frequencies (e.g., 100 QAs). However, ReKV’s complexity decreases more rapidly with increased
QA frequency, primarily due to Flash-VStream’s high memory update overhead. ReKV is thus better
suited for high-concurrency scenarios such as live streaming and requires no additional training.

Furthermore, Internal retrieval consistently outperforms external retrieval, reducing average FLOPs
by 15.5% and MACs by 15.2%. These results underscore ReKV’s ability to balance computa-
tional efficiency and effectiveness, particularly in dynamic, high-query environments. This positions
ReKV as a practical and scalable solution for streaming video understanding.

Table 8: TFLOPs / QA.

#QAs Baseline Flash-VStream ReKV (External) ReKV (Internal)

100 22.4 15.5 21.7 18.5
200 12.7 14.1 11.4 9.6
360 8.5 13.8 6.8 5.6

Table 9: TMACs / QA.

#QAs Baseline Flash-VStream ReKV (External) ReKV (Internal)

100 11.2 7.8 10.8 9.2
200 6.4 7.1 5.7 4.8
360 4.3 6.8 3.3 2.8

C LIMITATIONS AND FUTURE WORK

While ReKV improves the accuracy and efficiency of Video-LLMs in the StreamingVQA task, it still
has several limitations that deserves future investigation: First, although the KV-Cache offloading
to RAM or disk is manageable, as shown in Table 5, handling extremely long video streams, such
as those in surveillance, may lead to an unsustainable increase in cache size. This issue can be
mitigated by integrating techniques such as quantization, token pruning, and compression. Second,
the use of a constant block size for grouping consecutive frames during retrieval can disrupt video
continuity. A more refined solution would involve segmenting videos into semantically coherent
blocks. Third, our method retrieves a fixed number of frames. Future work could explore dynamic
retrieval strategies that adjust the number of frames based on video context and query requirements.
Finally, StreamingVQA remains an under-explored task with few available benchmarks. Developing
high-quality benchmarks with precise temporal annotations is crucial for advancing future research.

5https://github.com/IVGSZ/Flash-VStream

16


	Introduction
	StreamingVQA: Task Definition and Discussion
	 ReKV: Retrieve In-context Video KV-Cache 
	Experiments
	Benchmark and Metrics
	Implementation Details
	Ablations
	Offline Video Question-answering
	Streaming Video Question-answering

	Related Work
	Conclusion
	Additional Implementation Details
	Multi-processing Serving
	Prompt Templates for VideoQA
	KV-Cache Size Calculation

	Additional Experiments
	Experiments with more Video-LLMs and Benchmark
	Fair comparisons with Flash-VStream
	Computational Complexity

	Limitations and Future Work

