
Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [No]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

12

A Pseudocode of IMPROVISEDE

Algorithm 1 IMPROVISEDE

Definitions:
• b: common public belief of player P1 and player P2

• Ai: action space of Pi

• si: information state of Pi

• b(s1): belief of P2 given P1’s information state s1

• ⇡: joint blueprint policy
• R(s1, s2, ⇡, [a1, a2]): reset current game state with s1, s2, rollout until termination following
(the optional [a1, a2] and then) ⇡, and return the total reward.
Method:
initialize q⇡(a1, a2, b) = 0 for (a1, a2) 2 A1 ⇥A2

sample M private state for P1, s(1)1 , . . . , s
(M)
1 ⇠ b

P⇡(a1) =
1
M

PM
i=1 ⇡(a1|b(s

(i)
1)) for a1 2 A1

for s
(i)
1 2 s

(1)
1 , . . . , s

(M)
1 do

sample N private state for P2, s(1)2 , . . . , s
(N)
2 ⇠ b(s(i)1)

q⇡(b, s
(i)
1) = 1

N

P
j R(s(i)1 , s

(j)
2 ,⇡)

for (a1, a2) 2 A1 ⇥A2 do
if P⇡(a1) � ✏p then
q⇡(a1, a2, b, s

(i)
1) = �1

else
q⇡(a1, a2, b, s

(i)
1) = 1

N

P
j R(s(i)1 , s

(j)
2 ,⇡, a1, a2)

end if
end for

end for
for (a1, a2) 2 A1 ⇥A2 do
q⇡(a1, a2, b) =

1
M

P
i max

h
q⇡(a1, a2, b, s

(i)
1), q⇡(b, s

(i)
1)

i

end for
for a1 2 A1 do
f(b, a1) = softmaxa2 [q⇡(a1, a2, b)/t]
q⇡(b, s1, a1) = Es02⇠b(s1),a2⇠f(b,a1)R(s1, s02,⇡, a1, a2)

end for
if max q⇡(b, s1, a1) � q⇡(b, s1) + ✏q then

return argmaxa1
q⇡(b, s1, a1)

else
return a

bp
1 // the action under blueprint

end if

B Experimental Details for Tiger-Trampoline

Hyper-parameter Values

learning rate 0.0005, 0.0001
batch size 16, 32

" annealing period 20000, 10000
RNN hidden dimension 64, 32, 16

Table 2: Hyper-parameters of QMIX in the Tiger-Trampoline Experiment

In Section 5.1, we show the results of MAPPO and QMIX on the Tiger-Trampoline game. For the
MAPPO we use the default parameters from the open sourced implementation4 used for Hanabi,

4https://github. com/marlbenchmark/on-policy

13

except with a hidden size of 128, reducing the episode length cap, and reducing the number of threads
by a factor of 2. For QMIX, we use the open sourced implementation5 of the algorithm provided as
part of the PyMARL framework [13]. We used the default agent and training configuration, except for
the four hyper-parameters listed in table 2. For those, we tried all combinations of the corresponding
values, producing a total of 24 runs, each training for 500k steps, or 250k episodes.

C Experimental Details for Finesse in Hanabi

In the Hanabi experiments, we implement IMPROVISED as follows (better viewed together with
the pseudocode). The belief b is the common public belief shared by player 1 and player 2 based
on common knowledge available to all players and their common private knowledge of player 3’s
hand. We first draw M Player 2 hands s

0
1 from b and compute blueprint actions a⇡ = ⇡(b(s01))

and P⇡(a). We then consider joint actions A1 ⇥ A2 = {(a1, a2)|P⇡(a1)  0} for player 1 and
player 2. Since our goal is to find finesse style joint deviations, we further restrict a1 to be a hint
move to player 3 and a2 to be a play move. Given s

0
1, player 1 can further induce the private

belief b(s01) over their own hand. For each of s01, player 1 calculates Monte Carlo estimations of
q(a1, a2, b, s01,) for (a1, a2) 2 A1 ⇥A2 and q⇡(b, s01) with N samples drawn from b(s01). So far we
have collected all the quantities required to compute the mapping f for IMPROVISEDP and for
IMPROVISEDE . Finally, we draw another K samples from the true b(s1) where s1 now is the real
hand of player 2 to estimate � = maxa1 Ea2⇠f(b,a1)q⇡(b, s1, a1)� q⇡(b, s1). Player 1 will deviate to
argmaxa1

Ea2⇠a⇤
2(a1)q⇡(b, s1, a1, a2) if � � 0.05. In the next turn, player 2 can carry out the same

computation process to get P⇡(a1) and f(b, a1) to figure out whether player 1 has deviated and if so
what is the correct response. Player 1 and player 2 do not share the random seed beforehand.

In the experiments where we run IMPROVISED on finesse-complete situations only, we set M =
1000, N = 100 and K = 10000/|A1|. It takes roughly 2 hours in total for both player 1 and player
2 to compute the deviations independently using 5 CPU cores and 1 GPU.

In the experiments where we run IMPROVISED on the full game of Hanabi, we reduce M to 400 and
share the result of f(b, a1) between Player 1 and Player 2 instead of computing it twice independently
as we empirically find that the statistic is stable enough against random seeds. A full game then takes
around 10-12 hours using 20 CPU cores and 2 GPUs.

D Societal Impact

We do not anticipate any immediate negative impact from this work.

5https://github.com/oxwhirl/pymarl

14

	Introduction
	Background
	Self-Explaining Deviations
	Examining Self-Explaining Deviations

	IMPROVISED
	Defining the Optimization Problem
	An Easier Special Case
	Coordination by Extending Conventions
	Taking Alice's Information State Into Account

	Experiments
	Trampoline Tiger
	Hanabi
	What is a Finesse?
	IMPROVISED in Hanabi

	Related Work
	Conclusions
	Pseudocode of IMPROVISEDE
	Experimental Details for Tiger-Trampoline
	Experimental Details for Finesse in Hanabi
	Societal Impact

