
A Appendix

We now prove the main result about the vulnerability of mean based algorithms (Theorem 1). That is,
for any mean based bandit algorithm that achieves sub-linear regret in the absence of data-corruptions,
there always exists an instance where an adversarial data corruption attack with o(T ) corruption level
can make the algorithm suffer linear regret R(T ) = Ω(T ) in expectation.

A.1 Proof for Theorem 1

Proof. Denote the two arms in instances with two arms as a1 and a2. Given an instance where the
means of both arms are 0. For any constant C1, there is always at least one arm such that it gets at
least C1/2 picks with probability at least 1/2, denote such arm as a1. We consider an instance (1)
where a1 is the optimal arm:

µ(1)
a2 = µ,

µ(1)
a1 > µ(1)

a2 .

We will perform the observation free attack on instance (1). In the first phase of attack, the rewards
are always 0 for any arm. By the end of the first case, for instance (1), from the way we set a1, we
have with probability at least 1/2, the following will happen:

n(1)a1 ≥
C1

2
, µ̂(1)
a1 = 0,

n(1)a2 ≤
C1

2
, µ̂(1)
a2 = 0.

Let G1 be the event that the above is true in instance (1), we know that Pr{G1} ≥ 1/2.

Next, consider another instance (2) where the mean reward of a2 is 1, and the mean reward of other
arm is 0:

µ(2)
a1 = 0,

µ(2)
a2 = 1.

For instance (2), we corrupt the first C1 rounds and set the rewards to be 0 for all arms, then stop
corruption. Let N (2)

1 be the number of rounds when the algorithm pick arm 1 after the corruption
ends. Let f1 be the value such that Pr{N (2)

1 ≥ f1} = 1/2. The expected regret of the algorithm is at
least R(2)(T ) ≥ 1/2f1. So f1 ≤ 2R(2)(T ), which has to be sublinear or otherwise the algorithm has
linear expected regret in instance (2).

Next we focus on the second phase of attack in instance (1). Let C2 = f1 + αC1 where α is a
parameter to be specified later. Up the end of this phase, what happened in (1) is the same as that in
(2). So with probability 1/2, a1 is picked for less than f1 rounds in this phase. Denote such Event as
G2, then Pr{G2} = 1/2. If both G1 and G2 are true, by the end of the second phase of attack, the
following is true :

n(1)a1 ≥
C1

2
, µ̂(1)
a1 = 0,

n(1)a2 ≥ αC1, µ̂
(1)
a2 ≥

2α

2α+ 1
.

Next we focus on the last phase of attack in instance (1) where the corruption is ended. For any
value of n, if a2 get picked for n times in this phase, then by Hoeffding inequality inequality, with
probability at least 1 − 1/T , the reward from these n rounds is at least µn −

√
log(T )n for any

n ≤ T . Set α =
log(T )
2µC1

+µ
4

1−µ/2 , the corresponding empirical mean of a2 satisfies

µ̄ =
C1 · α+ nµ−

√
n log(T )

C1(α+ 1/2) + n
≥ µ/2.

That is, in the last phase, with probability at least 1− 1/T , the empirical mean of a2 is always greater
than µ/2. Let G3 denote the event where the above happens, so Pr{G3} ≥ 1− 1/T .
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Before proceeding, we introduce an instance (3) where the reward of arm a1 is always µ/4 and
the reward of a2 is always µ/2. Let nt1 and nt2 be the number of rounds a1 and a2 get selected by
round t. Define random variables {Y1, . . . , YT/2} where Yn is nt1 if exists a t such that nt2 = n, and
T − n if such t doesn’t exists. It is clear that Pr{Yn < 0} = 0, Pr{Yn < T} = 1, and Pr{Yn <
x} ≤ Pr{Yn < x} + 1. So we could always find an integer k such that Pr{YT/2 < k} = 1/2,
and such k must be sublinear in T or otherwise the regret in instance (3) will be linear. Yn also
satisfies Yn ∈ [Yn−1, Yn−1 + 1, . . . , T − n], and Pr{Yn = Yn−1 + i|Yn−1 = yn−1} ≥ Pr{Yn =
Yn−1 + j|Yn−1 = yn−1} for all 0 ≤ i ≤ j and yn−1. The purpose of introducing instance (3) is
to show that if the algorithm have sublinear regret in this instance, then with probability 1/2, it
won’t pick a1 for more than k times. Then in stance (1), by choosing big enough C1 and C2, with
probability at least 1/2, it won’t pick a1 for more than k times, so the algorithm will have linear
regret in instance (1).

Now back to instance (1) and set C1 = (8/µ − 2)k, so at the beginning of the last phase, a1
has already been picked for at least (4/µ − 1)k rounds. Then the empirical mean of a1 will not
exceed µ/4 before it get at least k picks from this phase. Then by the definition of mean based
algorithm, we know that before a1 get its kth pick, the probability a1 get picked in instance (1)
is always less than that in instance (3) for the same number of rounds a2 get picked. Let nt1 and
nt2 as the number of rounds arm a1 and a2 get picked in the last phase by round t. Define random
variables {Z1, . . . , ZT/2} in the same way as Yn where Zn = nt1 if exists t such that nt2 = n and
Zn = T − n if such t doesn’t exists. Zn also satisfies Zn ∈ [Zn−1, Zn−1 + 1, . . . , T − n], and
Pr{Zn = Zn−1 + i|Zn−1 = zn−1} ≥ Pr{Zn = Zn−1 + j|Zn−1 = zn−1} for all 0 ≤ i ≤ j and
zn−1. The relation between Zn and Yn satisfies: Pr{Zn = x|Zn−1 = x} ≥ Pr{Yn = x|Yn−1 = x}
for all x ≤ k and Pr{Zn = x + i|Zn−1 = x} ≤ Pr{Yn = x + i|Yn−1 = x} for all i > 0 and
x+ i ≤ k. Intuitively, Zn “grows” slower than Yn before it exceeds k, so Yn is more likely to reach
k than Zn. Next are we going to strictly prove that Pr{YT/2 ≤ k} ≤ Pr{ZT/2 ≤ k}.

Note that Pr{Yn ≤ k} depends on Pr{Ym|Ym−1} for all m ≤ n. The idea of the proof is to show
that by substituting each Pr{Ym|Ym−1} by Pr{Zm|Zm−1}, the probability of Pr{Yn ≤ k} will
increase. We introduce another series of random variables {F 1

1 , . . . , F
1
T/2} where {F 1

n} is almost
the same as {Yn} except that Pr{F 1

m|F 1
m−1} = Pr{Zm|Zm−1} for a specific m. We want to show

that Pr{YT/2 ≤ k} ≤ Pr{F 1
T/2 ≤ k}. After that, we can construct {F 2

n} which is almost the same
as {F 1

n} except for Pr{F 2
m′ |F 1

m′−1} = Pr{Zm′ |Zm′−1} where m′ 6= m. For the same reason we
will have Pr{F 1

T/2 ≤ k} ≤ Pr{F 2
T/2 ≤ k}. Repeat this process until {FT/2n } which is the same

as {Zn}, then we have Pr{YT/2 ≤ k} ≤ Pr{F 1
T/2 ≤ k} ≤ Pr{F 2

T/2 ≤ k} ≤ . . . ≤ Pr{FT/2T/2 ≤
k} = Pr{ZT/2 ≤ k}. Next we will prove that Pr{YT/2 ≤ k} ≤ Pr{F 1

T/2 ≤ k}.

First, we can write Pr{YT/2 ≤ k} as

Pr{YT/2 ≤ k}

=

k∑
x=0

Pr{YT/2 ≤ k|Ym−1 = x} · Pr{Ym−1 = x}

=

k∑
x=0

Pr{Ym−1 = x} ·
k∑
y=x

Pr{Yn ≤ k|Ym = y, Ym−1 = x} · Pr{Ym = y|Ym−1 = x}

=

k∑
x=0

Pr{F 1
m−1 = x} ·

k∑
y=x

Pr{F 1
n ≤ k|F 1

m = y} · Pr{Ym = y|Ym−1 = x}
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The difference between Pr{YT/2 ≤ k} and Pr{F 1
T/2 ≤ k} can be written as

Pr{YT/2 ≤ k} − Pr{F 1
T/2 ≤ k}

=

k∑
x=0

Pr{F 1
m−1 = x} ·

k∑
y=x

Pr{F 1
n ≤ k|F 1

m = y} · (Pr{Ym = y|Ym−1 = x} − Pr{F 1
m = y|F 1

m−1 = x})

k∑
y=x

Pr{F 1
n ≤ k|F 1

m = y} · (Pr{Ym = y|Ym−1 = x} − Pr{F 1
m = y|F 1

m−1 = x})

= Pr{Yn ≤ k|Ym = y} · (Pr{Ym = x|Ym−1 = x} − Pr{F 1
m = x|F 1

m−1 = x})

+

k∑
y=x+1

Pr{F 1
n ≤ k|F 1

m = y} · (Pr{Ym = y|Ym−1 = x} − Pr{F 1
m = y|F 1

m−1 = x})

= Pr{Yn ≤ k|Ym = y} ·
T−m∑
z=x+1

(Pr{F 1
m = z|F 1

m−1 = x} − Pr{Ym = z|Ym−1 = x})

+

k∑
y=x+1

Pr{F 1
n ≤ k|F 1

m = y} · (Pr{Ym = y|Ym−1 = x} − Pr{F 1
m = y|F 1

m−1 = x})

≤ Pr{Yn ≤ k|Ym = y} ·
y∑

z=x+1

(Pr{F 1
m = z|F 1

m−1 = x} − Pr{Ym = z|Ym−1 = x})

+

k∑
y=x+1

Pr{F 1
n ≤ k|F 1

m = y} · (Pr{Ym = y|Ym−1 = x} − Pr{F 1
m = y|F 1

m−1 = x})

=

k∑
y=x+1

(Pr{F 1
n ≤ k|F 1

m = x} − Pr{F 1
n ≤ k|F 1

m = y})(Pr{F 1
m = y|F 1

m−1 = x} − Pr{Ym = y|Ym−1 = x})

We can directly have Pr{F 1
m = y|F 1

m−1 = x} − Pr{F 1
m = y|F 1

m−1 = x} ≤ 0, for the other term,
we have:

Pr{F 1
n ≤ k|F 1

m = x}
= Pr{F 1

n ≤ k|F 1
m+1 ≤ k, F 1

m = x} · Pr{F 1
m+1 ≤ k|F 1

m = x}
= Pr{F 1

n ≤ k|F 1
m+1 ≤ k} · Pr{F 1

m+1 ≤ k|F 1
m = x}

≥ Pr{F 1
n ≤ k|F 1

m+1 ≤ k} · Pr{F 1
m+1 ≤ k|F 1

m = y}
= Pr{F 1

n ≤ k|F 1
m = y}

So eventually we have

Pr{YT/2 ≤ k} − Pr{F 1
T/2 ≤ k}

=

k∑
x=0

Pr{F 1
m−1 = x} ·

k∑
y=x

Pr{F 1
n ≤ k|F 1

m = y} · (Pr{Ym = y|Ym−1 = x} − Pr{F 1
m = y|F 1

m−1 = x})

≤
k∑
x=0

Pr{F 1
m−1 = x} ·

k∑
y=x+1

(Pr{F 1
n ≤ k|F 1

m = x}

− Pr{F 1
n ≤ k|F 1

m = y})(Pr{F 1
m = y|F 1

m−1 = x} − Pr{Ym = y|Ym−1 = x})
≤ 0
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As discussed before, by the same process we have Pr{F 1
T/2 ≤ k} − Pr{F 2

T/2 ≤ k} ≤ 0 and so on.

So Pr{YT/2 ≤ k} ≤ Pr{F 1
T/2 ≤ k} ≤ Pr{F 2

T/2 ≤ k} ≤ . . . ≤ Pr{FT/2T/2 ≤ k} = Pr{ZT/2 ≤ k}.
Next we will prove that Pr{YT/2 ≤ k} ≤ Pr{F 1

T/2 ≤ k}. That is, with probability at least 1/2, in
instance (1), a2 will be picked for more than T/2 rounds and by that time a1 is picked for less than k
rounds.

Suppose the algorithm guarantee sublinear regret in instances (2) and (3). Let µ = 1/2 and the mean
reward of the optimal arm as 1, set C1 = 14k and C2 = f1 + 3

4 log(T ) + 7
3k, the expected regret for

the algorithm in instance (1) is at least T/16.

A.2 Proof for Theorem 2

Proof. Let 1 as the index of the target arm. Under the adversarial attack, in the first phase of attack
when t ≤ C1, the empirical mean of any arm will always be 0, so the empirical upper confidence for
each arm j satisfies

UCBtj = µ̂tj +

√
log T

ntj
=

√
log T

ntj
.

It is clear that argmaxj UCBtj = argminj n
t
j . So an arm could get its n+1th pick only after all other

arms get selected at least n times. That is, arms will be selected in turn. Hence, when t = C1 + 1, all
arms will be selected for C1/K times.

In the second phase of attack When C1 < t ≤ C1 + C2, the empirical mean of the target arm is
increasing whenever it get selected while that of the others remain 0. If we choose C1 ≥ 4 log T

K , then
the upper confidence bound of the target arm 1 when it gets n picks at this period satisfies:

UCBt1 = µ̂t1 +

√
log T

nt1

=
n

n+ 4 log T/K2
+

√
log T

C1/K + n

≥

√
log T

C1/K
= UCBti 6=1

So the target arm will get all the C2 picks at this period. We choose C1 = max{K log(T )
µ2
1

, 4 log T
K },

so that the upper bound of other arms at the end of the second phase will be no greater than µ1.
Considering the fact thatK ≥ 2 and µ1 ≤ 1, we have C1 = K log(T )

µ2
1

. Then we choose C2 = µ1

1−µ1
C1

so that at the end of the second phase, the empirical mean of the second arm is its true mean µ1

In the last phase of attack when t > C1 + C2, we will show that the target arm will be picked for all
rounds with a high probability. When the target arm get n picks in this phase, by Hoeffding inequality,
with probability at least 1 − 1/T , the total reward generated from these n rounds is greater than
µ1n −

√
n log T for any value of n < T . Denote the number of rounds the target arm get picked

before t = C1 + C2 as m, then the upper bound of the target arm satisfies

UCBtj = µ̂t1 +

√
log T

nt1
≥ µ1 −

√
n log T

n+m
+

√
log T

n+m
> µ1.

Therefore the target arm’s upper confidence bound is always the highest no matter how many times it
get picks in the last phase, which means it will always get picked with probability at least 1− 1/T .

In conclusion, to defeat UCB algorithm, the observation free attack corrupt the first
max{K log(T )

µ2
1

, 4 log T
K }/(1 − µ1) rounds, and the number of rounds arm other than the target get

selected is less than (K−1) log(T )
µ2
1

with probability at least 1− 1
T .
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A.3 Proof for Theorem 3

Proof. We refer to the rounds where the algorithm randomly pick an arm from all arms as “explore”
rounds. Under the corruption from adversary algorithm, in the first phase of attack when t < C1, all
arms have the same probability to get picked because their empirical means are all 0. So each arm
will get picked no less than

n1 = C1/K −
√
C1 log T

rounds and no more than
n2 = C1/K +

√
C1 log T

with probability at least 1− K
T given by Hoeffding inequality. Next we will discuss the case where

the above is true.

In the second phase of attack when C1 < t ≤ C1 +C2, once the target arm get one pick, its empirical
mean will be the highest, and it will be selected with probability at least 1− ε. With probability at
least 1− 1/T , the target arm will get its first pick after K log(T ) rounds. After that, with probability
at least 1− 1/T , the target arm will get picked for at least

n(C2) = (C2 −K log(T ))(1− ε)−
√
C2 log(T )

times. Denote µ as the empirical mean of the target arm, to simplify the analysis, we choose C2 big
enough such that the target arm can get picked at least n3 = max{ log Tµ2 , n2

µ
1−µ} times during this

period. The reason we choose this n3 is to make sure that the empirical mean of target arm is high
enough when t > C1 + C2, which will be shown later. To make sure n(C2) ≥ n3, we can choose

C2 = K log T +
2n3

1− ε
.

In the last phase of attack when t > C1 + C2, we want to find a lower bound on empirical mean of
the target arm. Note that n3 ≥ 4 log T

µ2 , so that empirical mean of the target arm at the beginning of
this phase t = C1 +C2 + 1 is greater than µ. Denote the number of rounds the target arm get picked
after t = C1 + C2 as m, the empirical mean of the target arm satisfies:

µ̂ ≥ µn3 + µm−
√
m log T

n3 +m

= µ−
√
m log T

n3 +m

≥ µ− 0.5

√
log T

n3
= 0.5µ

Therefore, before an arm other than the target arm has its empirical mean greater than 0.5µ, the
probability it get picked is ε/K. We want C1 to be big enough such that the empirical means of other
arm are always less than µ/2 in the last phase. From Hoeffding inequality, with probability at least
1 − 1/T , an arm will get picked from explore rounds for at most T log Tε/K rounds. If the arm
never get picked from the exploit rounds, its empirical mean satisfies:

µ̂i ≤
T log Tε/K

T log Tε/K + n1
.

Set
C1 = T log Tε(4/µ− 2),

such that
n1 = (T log Tε/K)(2/µ− 1),

then we have µ̂i ≤ µ/2. So with this C1, with probability at least 1−K/T , the empirical mean of
other arms never exceed that of the target arm hence get not picks from the explore rounds. Based on
such C1, the corresponding C2 is
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C2 = K log T +
2

1− ε
(max{ log T

µ2
,

µ

1− µ
(C1/K +

√
C1 log T )})

With such C1 and C2, the ε-greedy algorithm will pick arms other than the target arm by at most
C1 + Tε+

√
C2 log T times with probability at least 1− (2K + 2)/T .

A.4 Proof for Theorem 4

Proof. Let 1 be the index of the target arm. When t < C1, we want to show that all arms will get
picked for around C1/K rounds. Let’s start with the case where K = 2. Denote ∆t as the difference
of number of rounds the other get picked, and ∆t+1−∆t as δt. The probability that the arm which get
more picked before get picked this round is no greater than 1/2. That is, if ∆t ≥ 0, Pr{δt = 1} ≤ 1/2
and Pr{δt = −1} ≥ 1/2; if ∆t ≤ 0, Pr{δt = 1} ≥ 1/2 and Pr{δt = −1} ≤ 1/2. Since
∆t=C1+1 =

∑C1

t=1 δ
t, with probability at least 1− 1/T , ∆t=C1+1 ≤

√
C1 log T . In the case where

K > 2, we can define ∆t
i,j and δti,j as the ∆t and δti,j arm i and j, and by similar argument we have

with probability at least 1 − 1/T , ∆t=C1+1
i,j ≤

√
C1 log T . This means at round t = C1 + 1, with

probability at least 1−K/T , the number of rounds any arm get picked is no less than

n1 =
C1 − (K − 1)

√
C1 log T

K

, and no greater than

n2 =
C1 + (K − 1)

√
C1 log T

K
.

When C1 < t ≤ C1 +C2, denoteXj as the number of rounds between the target arm get its (j−1)th

and jth pick. After the target arm get its (j − 1)th pick before its jth pick, in the worst case, its
beta distribution is B(j, 1 + n2), and that of any other arm is B(1, 1 + n1). By simple arithmetic
calculation, we have when j = 1, Pr{θ1 < θi} = β

1+β , and when j ≥ 2, Pr{θ1 < θi} ≤ 1
jβ where

β = n1+1
n2+1 , so Pr{θ1 > θi6=1} ≥ (1− 1

jβ )K−1. When j = 1, we have Pr{θ1 > θi 6=1} ≥ ( β
1+β )K−1.

The probability that the target arm be selected is at least 1/2K−1, When j < 1
β(1−21−K)

:= n3, and
at least 1/2K−1. when j ≥ n3. With probability at least 1− 1/T , the target arm will be picked for at
least (C2 − n3( β

1+β )1−K log T )/2−
√
C2 log T rounds.

We select C1 and C2 to be large enough such that with high probability, when t > C1 + C2,
θ1 > µ/2 and θi 6=1 < µ/2, so that the target arm will get all the picks. We set C1 = 4 log T

µ2 , and

C2 = n3( β
1+β )1−K log T + 2 µ

1−µC1, then by t = C1 + C2, arms other than the target arm is picked
for at least n1 times, and the target arm’s is picked for at least n2 times with mean no less than µ.
By result from Agrawal and Goyal [2012], this can ensure that with probability at least 1−K/T ,
θti 6=1 < µ/2 and θt1 > µ/2 true for all rounds. So with probability at least 1− (2K+ 1)/T , the target
arm will get all picks when t > C1 + C2, with C1 and C2 as given above.

A.5 Additional Experiments

Here we run both attack methods with or without knowing the mean reward µ of the target arm
against UCB, Thompson sampling, and ε-greedy bandit algorithms in different instances, where ε is
set to be T 2/3 in ε-greedy algorithm. For each pair of attack method and bandit algorithm, we run the
experiments in three instances where there are two arms, and the mean reward for the optimal arm is
always 1 while the mean reward for the target arm is µ = 0.3, 0.5, 0.7 respectively. First we verify
that our main attack algorithm 2 indeed manipulates the behavior of the bandit algorithms as the
theory suggests. The parameters for this attack method is given by theorem 2 when attacking UCB
algorithm, theorem 3 when attacking ε-greedy algorithm, and theorem 4 when attacking Thompson
sampling algorithm. In figure 3, for this attack method, we plot the number of rounds n when the
non-target arm get selected versus the total number of rounds T for UCB algorithm in subfigure (a1),
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Thompson sampling algorithm in subfigure (a2), and ε-greedy algorithm in subfigure (a3). The plots
show that there is a linear dependence between n and log(T ) in (a1) and (b1), and between n and
T 2/3 in (c1), which agrees with our theoretical guarantee. Each experiment is repeated for 100 times.

Next we show that the modified attack which needs to estimate µ can also manipulate the algorithms
without using a high corruption budget. In figure 4, in subfigures a1), b1) and c1), we plot the number
of corruption rounds needed by the algorithm vs the total number of rounds T in the case when the
algorithm doesn’t know the true mean µ for the bandit algorithms UCB, Thompson Sampling, and
ε-Greedy respectively. In subfigures a2), b2) and c2), we plot the corresponding number of times
the non target arm was pulled for the corresponding corruption levels in the plots a1), b1) and c1)
respectively. The plots show that even when the algorithm doesn’t the mean reward, there is still a
linear dependence between the corruption level C and log(T ) in (a1) and (b1), and between C and
T 2/3 in (c1), and similarly a linear dependence between the number of times the non-target arm is
pulled n and log(T ) in (a2) and (b2), and between n and T 2/3 in (c2). These results show that, along
with strong theoretical guarantees, our attack methodologically also perform well empirically.

Figure 3: The attack which knows the mean reward of the target arm against (a) UCB algorithm, (b)
Thompson sampling algorithm, and (c) ε-greedy algorithm.

Figure 4: The modified attack which knows the mean reward of the target arm against (a1),(a2) UCB
algorithm, (b1),(b2) Thompson sampling algorithm, and (c1),(c2) ε-greedy algorithm.
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