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A More visualization of the sample-wise discrimination power

Figure 1 shows the projected sample features g and each category direction µc, based on the COCO
2014 dataset and the CUB-200-2011 dataset1. The visualization results revealed the semantic
similarity between categories. For example, dining table features were similar to pizza features,
and black footed albatross features were similar to laysan albatross features. Furthermore, Figure
2 shows the projected sample feature g at different iterations of training. This illustrated how the
discrimination power of sample features gradually increased through the training process.
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Figure 1: Visualization of sample features learned by (left) ResNet-50 in the coordinate system of visualizing
the COCO 2014 categories, and by (right) ResNet-34 in the coordinate system of visualizing the CUB-200-2011
categories1.
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Figure 2: The increasing discrimination power of sample features in VGG-16 during the training process in the
coordinate system of visualizing the Tiny ImageNet categories1.

∗Corresponding author. This work was done under the supervison of Dr. Quanshi Zhang. He is with the
John Hopcroft Center and the MoE Key Lab of Artificial Intelligence, AI Institute, at the Shanghai Jiao Tong
University, China.

1Please see Section G for details of the dataset, and the selection of sample features and regional features.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



B Discussions about the revised vMF distribution

The vMF distribution is a kind of distribution for modeling data on a sphere [5, 4, 9]. It is one of
the simplest distributions for directional data. Specifically, a vMF distribution on the (d− 1)-sphere
Sd−1 in Rd is parameterized by the mean direction µ ∈ Rd, and the concentration parameter κ ≥ 0.
Suppose f ∈ Rd follows the vMF distribution. Then, the probability density function of f is given by

pvMF(f |µ, κ) = Cd(κ) · exp[κ · cos(µ, f)], (1)

where Cd(κ) = κd/2−1

(2π)d/2Id/2−1(κ)
is the normalization constant and Id/2−1(·) denotes the modified

Bessel function of the first kind at order d/2− 1 [1]. Actually, the vMF distribution can be considered
as a spherical analogue to the Gaussian distribution on the unit sphere. µ measures the mean direction.
κ controls the variance of f’s orientation w.r.t. the mean direction µ. A large value of κ implies a low
variance w.r.t. µ. In particular, when κ = 0, the distribution reduces to a uniform distribution on Sd−1;
when κ→∞, the distribution reduces to a point density. In this way, the probability density of f only
depends on its orientation.

The revised vMF distribution mentioned in Section 3.1 of the paper takes into account the noise
in f , i.e. f = f? + ε, ε ∼ N (0, σ2Id). In this case, all features f of a specific strength l = ‖f‖2 have
similar vulnerabilities to noises. Features of different strengths have different vulnerabilities to noises.
Therefore, the probability density of f not only depends on its orientation but also its strength. In
Eq. (3) of the paper, we assume that all features f of a specific strength l follow a vMF distribution
with a specific κ(l). The concentration parameter κ(l) is determined based on statistics of all features
of the same strength l. Specifically, to quantify κ(l), we first sample {f?i }Ni=1 from pvMF(µ, κ). Then,
the noise ε ∼ N (0, σ2Id) is added to each sample f?i , i.e. fi = f?i + ε. Since we assume that fi also
follows a vMF distribution, we can estimate κ(l) via maximum likelihood estimation (MLE) [13], as
follows.

κ(l) = arg max
κ̂

N∏
i=1

pvMF(fi|µ, κ̂) ⇒ κ(l) =
‖f̄‖2(d− ‖f̄‖22)

1− ‖f̄‖22
, (2)

where f̄ = 1
N

∑
i fi/‖fi‖2. In the calculation of κ(l), the sample number N was set to 10000, and σ

was set to 1.

C Derivations on the learning of the mixture model in sample feature
visualization via the EM algorithm

This section provides detailed derivations on the learning of the mixture model in Section 3.2 of the
paper. In the learning of mixture-model parameters {π, µ} = {πy, µy}y∈Y , we used the EM algorithm
to maximize the likelihood max{π,µ}

∏
g p(g). In this way, {π, µ} were updated via the following

E-step and the M-step.

(E-step) p(y|g) =
πy · exp [κ(lg) · cos(og, µy)]∑
y′ πy′ · exp [κ(lg) · cos(og, µy′)]

(M-step) µy ∝ E [κ(lg) · p(y|g) · og]given x , πy = Ex[p(y|g)]given x,

(3)

where lg = ‖g‖2 and og = g/lg denote the strength and orientation of g, respectively. The derivation
is similar to that in [3, 2].

D Additional verification of the effectiveness of sample-feature visualization

In this section, we further verify the effectiveness of sample-feature visualization by showing a
contour map of the classification probability of the sample feature g. In Figure 3, we consider a toy
example for the classification of six classes. The red arrow represents the mean direction of the target
category, while blue arrows are mean directions of other categories. Figure 3 shows the classification
probability towards the target category. We found that sample features g with large strength were
more confident towards classification, which further verified the conclusion in Paragraph visualization
and verification of sample features’ discrimination power, Section 4.
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Figure 3: Classification probability towards the target category. The mean direction of the target category is
illustrated as the red arrow. We found that sample features g with large strength were usually more confident
towards classification.

E Derivations of the equivalent form of the loss Lalign

This section gives detailed derivations of Lalign = −Ex[
∑
r w

(r) · cos(g, h(r))] in Section 3.3 of the
paper. According to Eq. (10) in the paper, the optimization of Lalign can be written as follows.

∂Lalign

∂Λ
=

∂

∂Λ

[
EQΛ(h) (logQΛ(h))− EQΛ(h,g) (logQΛ(h|g))

]
, (4)

where QΛ(h) is the prior distribution of regional features h. For simplicity, we treat QΛ(h) as a
constant. Therefore, the optimization can be derived as follows.

∂Lalign

∂Λ
= −EQΛ(h,g)

[
∂ logQΛ(h|g)

∂Λ

]
= −Ex

[∑
r
w(r) · ∂ logQΛ(h(r)|g)

∂Λ

]
given x

= −Ex
[∑

r
w(r) · ∂ log pvMF(h(r)|µ = g, κ′)

∂Λ

]
given x

= −Ex

[∑
r
w(r) ·

∂ log 1
Cd′ (κ

′) exp[κ′ · cos(g, h(r))]

∂Λ

]
given x

= −Ex
[∑

r
w(r) · ∂κ

′ · cos(g, h(r))

∂Λ

]
given x

= −κ′ · ∂
∂Λ

Ex
[∑

r
w(r) · cos(g, h(r))

]
given x

(5)

κ′ is a positive constant, which does not essentially affect the convergence of Λ. Therefore, the loss
Lalign can be equivalently written as Lalign = −Ex[

∑
r w

(r) · cos(g, h(r))].

F Discussions about the quantification of knowledge points

This section provides more discussions on the quantification of knowledge points. According to
Section 3.4 of the paper, a regional feature is a knowledge point if it is discriminative enough for
classification, i.e. maxc p(y = c|h(r)) > τ . Actually, there is a trade off between the value of τ and
the number of knowledge points. If the value of τ is large, then only a few regional features that are
discriminative enough will be quantified as knowledge points. On the other hand, if the value of τ
is small, then a large number of regional features will be quantified as knowledge points. Some of
them are not so discriminative. Therefore, we chose τ = 0.4 to balance the trade-off between the
discrimination power and the number of knowledge points.

Besides, setting the same value of τ enables fair comparisons of the discrimination power between
features in different layers. First, for each layer, all the HW regional features in h were learned
to mimic the sample-wise distribution P (x2|x1) inferred by the DNN. Second, for each layer, we
uniformly sampled and analyzed the same number of regions. In this way, for each layer, our method
used the same number of regional features to mimic the same sample-wise distribution P (x2|x1),
making the learned regional feature h(r) fairly represent the relative discrimination power of each
region, and enabling fair comparisons between regional features through different layers. Furthermore,
when quantifying knowledge points in different layers of the DNN, we also normalized the average
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strength of regional features Ex,r[‖h(r)‖2 given x] in each layer to the same value. This also ensures the
fair comparison between regional features in each layer.

G Settings of additional experiments in the supplementary material

Datasets. We conducted experiments on the task of object classification using the Tiny ImageNet
dataset [7], the MS COCO 2014 dataset [8], and the CUB-200-2011 dataset [14]. To clarify the
visualization result, we randomly selected ten categories from each dataset. For the Tiny ImageNet
dataset, we selected steel arch bridge (bridge), school bus (bus), sports car (car), tabby cat (cat),
desk, golden retriever (dog), tailed frog (frog), iPod, lifeboat, and orange for classification. For the
MS COCO 2014 dataset, we selected airplane, bed, bus, cat, couch, dining table, giraffe, person,
pizza, and train for classification. For the CUB-200-2011 dataset, we selected black footed albatross,
laysan albatross, groove billed ani, red winged blackbird, rusty blackbird, bobolink, indigo bunting,
eastern towhee, pelagic cormorant, and bronzed cowbird for classification. We used images cropped
by the annotated bounding boxes in the MS COCO 2014 dataset and the CUB-200-2011 dataset.

DNNs, and the selection of sample features and regional features. We analyzed intermediate-
layer features in VGG-16 [12], ResNet-34/50 [6], MobileNet-V2 [11]. We slightly modified the
ResNets by changing the stride in conv_5x layers to 1. For each of the DNNs, we used the feature
before the last fully-connected layer as the raw sample feature. We analyzed regional features in
different layers for each DNN. For the VGG-16, we selected the output feature of the conv_12,
conv_22, conv_33, conv_43, and conv_53 layers as the raw regional feature. For ResNets, we
selected the output feature of the conv_1, conv_2x, conv_3x, conv_4x, and conv_5x layers as
the raw regional feature (denoted as conv_1, conv_2, conv_3, conv_4, and conv_5). For the
MobileNet-V2, we selected the output feature of the 4, 7, 11, 14, 18 layers as the raw regional feature
(denoted as layer_4, layer_7, layer_11, layer_14, and layer_18). For fair comparisons, we
downsampled feature maps in different layers of each DNN to the height and width of the output
feature at the last convolutional layer. E.g., for intermediate features in VGG-16, feature maps at
different layers were downsampled to the size of 14× 14. This makes the learned regional feature
h(r) fairly represent the relative discrimination power of each region, thus enabling fair comparisons
between regional features through different layers. All our experiments were run using PyTorch
1.7.1 [10] on Ubuntu 18.04, with the Intel(R) Xeon(R) CPU E5-2637 v4 @ 3.50GHz and one
NVIDIA(R) GeForce(R) RTX 2080 Ti GPU.
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