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Abstract
Multiclass learnability is known to exhibit a properness barrier: there are learnable classes which
cannot be learned by any proper learner. Binary classification faces no such barrier for learnability,
but a similar one for optimal learning, which can in general only be achieved by improper learn-
ers. Fortunately, recent advances in binary classification have demonstrated that this requirement
can be satisfied using aggregations of proper learners, some of which are strikingly simple. This
raises a natural question: to what extent can simple aggregations of proper learners overcome the
properness barrier in multiclass classification?

We give a positive answer to this question for classes which have finite Graph dimension, dG.
Namely, we demonstrate that the optimal binary learners of Hanneke, Larsen, and Aden-Ali et al.
(appropriately generalized to the multiclass setting) achieve sample complexity O

(
dG+ln(1/δ)

ϵ

)
.

This forms a strict improvement upon the sample complexity of ERM. We complement this with a
lower bound demonstrating that for certain classes of Graph dimension dG, majorities of ERM
learners require Ω

(
dG+ln(1/δ)

ϵ

)
samples. Furthermore, we show that a single ERM requires

Ω
(

dG ln(1/ϵ)+ln(1/δ)
ϵ

)
samples on such classes, exceeding the lower bound of Daniely et al. (2015)

by a factor of ln(1/ϵ). For multiclass learning in full generality — i.e., for classes of finite DS
dimension but possibly infinite Graph dimension — we give a strong refutation to these learning
strategies, by exhibiting a learnable class which cannot be learned to constant error by any aggre-
gation of a finite number of proper learners.
Keywords: Multiclass classification, proper learning, ERM, majority voting.

1. Introduction

Multiclass classification, the task of learning to classify data into different categories, is one of
the archetypal problems of machine learning (ML), rich with real-world applications. Perhaps the
best-known such application is image recognition, the task of learning a mapping from images —
represented by a matrix of pixels — to their respective classes, whose number may be very large. On
the practical side, a landmark result of Krizhevsky et al. (2012) illustrated the capabilities of neural
networks on this problem and sparked the modern neural-network-based ML revolution, which has
recently culminated in the advent of large language models.

Despite impressive progress from practitioners, however, our theoretical understanding of mul-
ticlass classification remains relatively limited. In fact, even for the simple case of binary classi-
fication — in which there are only two possible labels for the data — the problem of designing
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an optimal learner in Valiant’s Probably Approximately Correct (PAC) framework (Valiant, 1984)
was only recently resolved by a breakthrough result of Hanneke (2016). In the (realizable) PAC
model, there is an underlying data-generating process, modeled as a distribution D, a hypothesis
class H which contains a perfect classifier h∗, and a learner which uses i.i.d. samples drawn from D
in order to output a classifier. The goal of the learner is to emit a classifier with a low probability of
misclassifying a fresh training point drawn from D. Notably, the fundamental theorem of statistical
learning theory asserts that the simple principle of Empirical Risk Minimization (ERM), defined
as simply outputting any of the hypotheses in H with best performance on the training sample,
is nearly-optimal. Hanneke (2016), however, improved upon the performance of ERM in binary
classification by designing an algorithm with provably smaller error.

Roughly speaking, Hanneke’s algorithm operates by building ≈ n0.79 sub-samples from the
training set S (where |S| = n), calling ERM on each such sub-sample, and outputting the majority
vote of these classifiers. Notably, the sub-samples are designed to leave out certain portions of
the original sample, and a sophisticated inductive argument which leverages this structure is used
to prove optimality. More recently, Larsen (2023) demonstrated that this sub-sampling strategy
may be replaced with the simpler technique of drawing samples from S with replacement, and
furthermore establishes optimality using only O(log(n/δ)) sub-samples. Strikingly, this strategy
of drawing from S with replacement, calling ERM on each such sub-sample, and combining the
resulting classifiers via majority vote is precisely the celebrated classical technique of bagging, or
bootstrap aggregation, introduced by Breiman (1996). Yet another advancement in optimal binary
classification was recently made by Aden-Ali et al. (2024), who demonstrated that a majority of
just three ERMs trained on disjoint 1/3 fractions of the training set also achieves optimality in
expectation, as well as in the high-probability regime for a certain range of parameters. (We will
formalize the distinction between the high-probability and in-expectation models shortly.)

It is worth remarking that these three optimal learners share a great deal of structure: they act
by drawing sub-samples of the training set S, calling an ERM learner on each subsample, and
aggregating the resulting classifiers with a majority vote. Furthermore, ERM is an example of a
proper learner, i.e., a learner which always emits a classifier that lies in the underlying hypothesis
class H. It has been demonstrated that proper learners are in general unable to achieve optimal
error rates in binary classification (Bousquet et al., 2020), and it thus may come as a surprise that
an aggregation of a small number of proper learners (only 3!) is able to achieve optimality.

Let us return now to the general multiclass classification setting, in which the number of possible
labels is permitted to be arbitrarily large, even infinite. To what extent does the landscape of learn-
ing differ from the binary case? Perhaps more than one may expect. A long and beautiful line of
work has demonstrated that the multiclass setting exhibits several fundamental differences from that
of binary classification (Natarajan and Tadepalli, 1988; Natarajan, 1989b; Ben-David et al., 1992;
Haussler and Long, 1995; Rubinstein et al., 2006; Daniely et al., 2012; Daniely and Shalev-Shwartz,
2014; Daniely et al., 2015; Brukhim et al., 2022). In particular, it was demonstrated by Daniely and
Shalev-Shwartz (2014) that there exist learnable multiclass problems which can only be learned by
improper learners, i.e., those which may emit hypotheses outside of H. Consequently, ERM fails
on some learnable multiclass classification problems, in contrast to the binary case. Daniely et al.
(2015) showed that a hypothesis class is learnable by the ERM rule precisely when its graph dimen-
sion is finite. (Finiteness of the graph dimension, then, is a sufficient but not necessary condition
for learnability.) The problem of characterizing improper multiclass learnability via a dimension
remained a foremost open question for several decades, and was recently resolved by the break-
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through work of Brukhim et al. (2022). There, they demonstrated that learnability is characterized
by the finiteness of the Daniely-Shwartz (DS) dimension (Daniely and Shalev-Shwartz, 2014), and
provided a learning strategy that achieves learnability when this dimension is finite. At its heart,
their algorithm is based upon a careful extension of the one-inclusion graph (OIG) predictor of
Haussler et al. (1994) to the multiclass setting, and introduces several beautiful theoretical ideas,
such as list PAC learning. Interestingly, the algorithmic approach of Brukhim et al. (2022) is strik-
ingly different from — and more complex than — ERM and related algorithmic approaches from
binary classification.

In light of this recent breakthrough in multiclass classification, along with the recent advances in
optimal binary classification, it is natural to ask: Can the algorithmic approaches that lead to optimal
learners for binary classification problems be extended to the multiclass setting? More precisely,
we ask:

When do simple aggregations of proper learners perform well in multiclass
classification? Can any such learner succeed on all multiclass problems possible?

1.1. Results

Our main results give a fairly complete understanding to the previous question and can be summa-
rized as follows:

• Upper bound on majorities of ERMs for Graph classes. Our first set of main results con-
cerns majorities of ERMs for classes with finite Graph dimension, following the natural gener-
alization of the algorithms from Hanneke (2016); Larsen (2023); Aden-Ali et al. (2024) to the
multiclass setting. For both Hanneke’s algorithm and bagging, we show that for confidence
parameter δ and error rate ε, the number of training samples needed to achieve this guaran-
tee is O

(
dG+ln(1/δ)

ε

)
(cf. Theorem 5), where dG denotes the Graph dimension of the class.

Recall that Daniely et al. (2012) had shown that ERM needs at most O
(
dG ln(1/ε)+ln(1/δ)

ε

)
samples, so this result shaves off a logarithmic factor in the upper bound. Subsequently, we
also show that the majority of three ERMs algorithm of Aden-Ali et al. (2024) requires at
most O

(
dG
ε

)
number of samples to obtain error ε, in expectation.

• Lower bound on ERMs and majorities of ERMs. It is natural to ask whether the upper
bounds we establish are tight, or whether they may be room for improvement in their analysis.
Theorem 10 demonstrates that for any dG, there indeed exists a class with Graph dimension
dG and constant DS dimension (hence learnable), for which taking majorities over ERMs
requires at least Ω

(
dG+ln(1/δ)

ε

)
samples to achieve error ε with confidence δ. Moreover, we

also show that using simple ERMs for this class requires at least Ω
(
dG ln(1/ε)+ln(1/δ)

ε

)
sam-

ples, exceeding the lower bound of Daniely et al. (2015, Theorem 9) by a factor of ln(1/ε).
(Notably, however, their lower bound holds for all classes of finite Graph dimension, whereas
ours holds for a particular family of classes.)

• Lower bound on combinations of proper learners. Given our negative result about majori-
ties of ERMs, it is natural to ask whether arbitrary combinations of arbitrary proper learners
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could lead to learning algorithms for all classes with finite DS dimension. Theorem 13 pro-
vides a strong negative result: there exists a hypothesis class of DS dimension 1 for which any
learner achieving error below 1/2 cannot be expressed as any aggregation of finitely many
proper learners.

1.2. Techniques

We now give a high-level overview of the techniques we use to establish our results. For the upper
bound on majorities of ERMs, our analysis begins by relating the multiclass hypothesis class H to
an induced binary hypothesis class H̄ whose VC dimension is bounded by the Graph dimension of
the original class. This connection was also utilized by Daniely et al. (2015) and can be traced back
to Natarajan (1989a); Ben-David et al. (1995). Subsequently, we show that the sample complexities
of the algorithms that are used to learn H can be upper bounded by their sample complexities
for learning H̄. Our argument makes use of the particular structure of these algorithms, i.e., that
the manner in which they generate sub-training sequences is oblivious to the datapoints’ values,
instead using only their indices. See Section 3.1 for detail, including the index-splitting property of
Definition 4. One interesting aspect of our approach is that in the analysis of the upper bound, we
only count the prediction as being correct if a 1/2-majority of the learners predicts correctly. (E.g.,
any test point on which the predictions do not reach a majority vote is automatically treated as a
misclassification.) Our matching lower bound illustrates that this seemingly wasteful analysis is in
fact tight.

Moving on to the sample complexity lower bound for ERMs and their majorities, our con-
struction is inspired by the first Cantor class lower bound of Daniely and Shalev-Shwartz (2014),
combined with a coupon collector argument of Auer and Ortner (2007). The latter is what allows us
to get an improved lower bound for ERMs compared to that of Daniely and Shalev-Shwartz (2014).
See Section 3.2 for detail. It is worth highlighting that we can immediately get lower bounds for
a family of classes with DS dimension equal to their Graph dimension, by trivially extending the
binary classification lower bounds to the multiclass caser. However, in our construction, the fam-
ily that witnesses the lower bound has constant DS dimension, hence every class is learnable with
Õ(1/ε) many samples (Brukhim et al., 2022).

Lastly, we move on to the lower bound regarding arbitrary aggregations of proper learners.
By carefully modifying the first Cantor classs of Daniely and Shalev-Shwartz (2014) and Daniely
et al. (2015), we exhibit a class of DS dimension which cannot be learned to constant error by
any aggregation of a finite number of proper learners — regardless of the aggregation strategy or
the complexities of the constituent proper learners. Furthermore, our results are articulated using
properness numbers, which measure the “extent” to which a classifier f : X → Y or learner A is
improper, and may be of independent interest to the community.

1.3. Related Work

Binary Classification. The pioneering work of Valiant (1984) proposed the PAC learning frame-
work for binary classification, which has since been perhaps the most well-studied notion of learn-
ing. Subsequently, Blumer et al. (1989a) showed that a combinatorial measure previously intro-
duced by Vapnik and Chervonenkis (1971) precisely captures learnability in this setting and that
ERM is an (almost) optimal learner. Building upon the work of Simon (2015), Hanneke (2016) de-
signed the first optimal PAC learner for binary classification, based on running ERMs on different
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carefuly chosen sub-samples of the training data, thereby resolving a decades-long open problem.
Two more optimal learners have since been introduced; Aden-Ali et al. (2023) designed an optimal
PAC learner based on the one-inclusion graph predictor of Haussler et al. (1994), and Larsen (2023)
proved that the well-known bagging algorithm of Breiman (1996) is also optimal. Very recently,
Aden-Ali et al. (2024) showed that taking a majority vote of three ERMs trained on non-overlapping
sub-samples of the training data is optimal in expectation.

Multiclass Classification. Moving on to the general multiclass classification setting, early at-
tempts characterize learnability focused on the case where the number of labels is finite. In this
setting, Natarajan and Tadepalli (1988), Natarajan (1989b) and Ben-David et al. (1995) identi-
fied natural generalization of the VC dimension, such as the Natarajan dimension, whose finite-
ness characterizes learnability. For the setting of infinitely many labels, it long remained an open
problem whether finiteness of the Natarajan dimension continues to characterize learnablity. The
breakthrough result of Brukhim et al. (2022) demonstrated that this is not the case, and that learn-
ability is instead characterized by the finiteness of the DS dimension (Daniely and Shalev-Shwartz,
2014). Surprisingly, Daniely and Shalev-Shwartz (2014) showed that optimal learners for multi-
class classification cannot in general be proper, i.e., they may have to output hypotheses outside
of the underlying class. Regarding strategies for optimal multiclass learning, Daniely and Shalev-
Shwartz (2014) demonstrated that certain orientations of one-inclusion graphs are optimal in the
transductive model of learning, and nearly-optimal in the high-probability regime. (Detailing the
transductive model is slightly beyond the scope of this paper; see Vapnik and Chervonenkis (1974),
Vapnik (1982), or Haussler et al. (1994) for some of its seminal work.) More recently, Asilis et al.
(2024b) demonstrated that multiclass classification problems always admit optimal learners gov-
erned by a relaxed form of regularization which they term unsupervised local regularization, and
conjectured that their results can be improved to hold for local regularization (Asilis et al., 2024a).
Neither form of learner can be seen as an aggregation of proper learners, however, and thus does
not directly address our primary question.

2. Preliminaries

2.1. Notation

For a natural number n ∈ N, we let [n] := {1, . . . , n}. We will denote random variables with
bold-faced letters (e.g., x) and realizations of them using non-bold typeface (e.g., x). For a set Z,
we let Z∗ denote the set of all finite sequences in Z, i.e., Z∗ =

⋃
i∈N Zi. We define

−→
1 as the

all-ones vector, whose length will always be clear from context. When A and B are sequences,
we use A ⊕ B to denote their concatenation. If f : X → Y is a function and X ⊆ X a subset,
f |X : X → Y denotes the restriction of f to X . Likewise, if F ⊆ YX is a collection of functions,
F|X = {f |X : f ∈ F} denotes the set of F’s restrictions to X .

2.2. Learning Theory

We let X denote the feature space and Y the label space. An element of (X × Y) is referred to as
an example. In accordance with the above, we let (X × Y)∗ denote the set of all possible training
sequences. For a training sequence S ∈ (X × Y)∗, we sometimes write S = (SX , SY) for the part
of the training examples in X ,Y , respectively, i.e., such that SX ∈ X ∗ and SY ∈ Y∗. For a training
sequence S, we say that S′ is a sub-training sequence of S if (x, y) ∈ S′ implies that (x, y) ∈ S.
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Note that this does not imply that S′ has the same multiplicity of a given training example (x, y) as
S does; we will in fact permit S′ to contain examples with greater multiplicity than S.

We refer to a function f : X → Y as a hypothesis or classifier, and to a collection of such
functions H ⊆ YX as a hypothesis class. For a distribution D over X×Y and a hypothesis h ∈ YX ,
we write LD(h) = E(x,y)∼D [h(x) ̸= y] for the error, or true error, of h under D. For a distribution
D over the feature space X and a classifier c, we let Dc denote the distribution over X × Y which
draws unlabeled data according to D and labels it using c. That is, Dc(A) = Px∼D((x, c(x)) ∈ A).

We say that a hypothesis h is consistent with a training sequence S ∈ (X × Y)∗ if for all
(x, y) ∈ S we have that h(x) = y. A training sequence S is said to be realizable by H if there
exists an h ∈ H which is consistent with S. Similarly, a distribution D over X × Y is realizable
by a class H if for all training sequences S in the support of S ∼ Dm, we have that S is realizable
by H. A learner is a function from training sequences to classifiers, e.g., A : (X × Y)∗ → YX .
Such a learner is said to be proper with respect to an underlying hypothesis class H if the image of
A lies in H, meaning A(S) ∈ H for all training sequences S. Otherwise, A is improper. If for all
realizable training sequence S, A has the property of emitting a hypothesis in H which is consistent
with S, then A is an ERM learner for H.

Let the label ⊥ denote the act of deliberately making an error when performing classification
over any label space Y . (Semantically, this can be thought of as forfeiting one’s prediction at a
feature point, or as an “I don’t know” label.) For a set of classifiers f1, . . . , fn ∈ YX , we define
their majority Maj (f1, . . . , fn) as follows:

Maj (f1, . . . , fn) (x) =


y if ∃y ∈ Y s.t. ∀y′ ̸= y,

|{fi : fi(x) = y}| > |{fi : fi(x) = y′}|;
ŷ ∈ {⊥, f1(x), . . . , fn(x)} otherwise.

In short, Maj (f1, . . . , fn) outputs the strictly most popular label for the point x if such a label
exists, and otherwise is permitted to arbitrarily agree with a classifier fi or to emit the ⊥ label.
(Strictly speaking, it would be more accurate to refer to refer to it as a plurality classifier, but we
retain language from the binary case for the sake of simplicity.) In some cases we use Maj⊥ to
denote the majority voter which always predicts ⊥ in the latter case, a kind of worst-case majority
voter. Notably, all our results — both lower- and upper-bounds — hold for any majority learner
following the above the structure. Thus, our flexibility in defining majority voting has the effect of
strengthening our results, relative to a more narrow definition.

We now recall Valiant’s celebrated Probably Approximately Correct (PAC) learning model, also
known as the high-probability model of learning (Valiant, 1984).

Definition 1 A learner A is said to be a PAC learner for a hypothesis class H ⊆ YX if there exists
a function m : (0, 1)2 → N with the following property: for any distribution D over X ×Y which is
realizable with respect to H, and for any ϵ, δ ∈ (0, 1), when A is trained on a sample S of m(ϵ, δ)
many points drawn i.i.d. from D, then

LD
(
A(S)

)
≤ ϵ

with probability at least 1− δ over the random draw of S.

We note that the minimal function m for which Definition 1 holds is referred to as the sample
complexity of the learner A. Similarly, the sample complexity of a hypothesis class H is the minimal
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sample complexity attained by any of its PAC learners. Any learner attaining this sample complexity
— up to a multiplicative constant — is said to be optimal for H in the PAC model (also referred to
as the high-probability model). The expected error model, meanwhile, is that in which one instead
requires ES

[
LD A(S))

]
≤ ϵ, and considers the sample complexity of achieving this only as a

function of ϵ, the error parameter.
Many of our results reference the Graph dimension of a hypothesis class.

Definition 2 A hypothesis class H ⊆ YX Graph shatters a set of points (x1, y1), . . . , (xd, yd) ∈
(X × Y) if for all b ∈ {0, 1}d, there exists h ∈ H such that h(xi) = yi if bi = 1 and h(xi) ̸= yi if
bi = 0. The Graph dimension of H, denoted dG = dG(H), is the size of the largest set shattered by
H (or ∞ if arbitrarily large sets are shattered).

Note that for the case of binary classification, in which |Y| = 2, the Graph dimension equals
precisely the VC dimension, for any hypothesis class. It will also be useful to define the DS dimen-
sion (Daniely and Shalev-Shwartz, 2014; Brukhim et al., 2022).

Definition 3 A hypothesis class H ⊆ YX DS shatters a set of points (x1, . . . , xd) ∈ X if there
exists a finite non-empty subset F ⊆ H such that for each h ∈ F and i ∈ [d], there exists a g ∈ F
such that g(i) ̸= h(i) and g(j) = h(j) for all j ̸= i. Such a g is referred to as an i-neighbor of h.
The DS dimension of H, denoted dDS = dDS(H), is the size of the largest set DS shattered by H
(or ∞ if arbitrarily large sets are shattered).

We briefly remark that we assume standard measurability assumptions on X and H throughout
the remainder of the paper; see e.g. Shalev-Shwartz and Ben-David (2014), Blumer et al. (1989b),
or (Pollard, 2012, Appendix C).

3. Learning with Simple Majorities (of ERM)

This section is devoted to our results — both positive and negative — for ERM learners and their
majorities in the multiclass setting. We commence with positive results in Section 3.1 and proceed
to negative results in Section 3.2.

3.1. Upper Bound

We now demonstrate how one can translate upper bounds on majority voters in the binary case to
the multiclass case. To this end, we draw inspiration from the multiclass to binary classification
reduction as it appears in (Daniely et al., 2015, p. 6), which is due to Natarajan (1989a) and Ben-
David et al. (1995). We begin by describing the central ideas and definitions of the reduction.

For a hypothesis h ∈ H, define h̄ as the mapping from X × Y to {0, 1}, which on input
(x1, x2) ∈ X × Y outputs h̄(x1, x2) = 1{h(x1) = x2}. Furthermore, let H̄ = {h̄}h∈H. We first
claim that VC(H̄) = dG(H). To see this, let (x1, y1), . . . , (xd, yd) be a sequence shattered by H̄,
meaning that for each b ∈ {0, 1}d, there exists h̄ ∈ H̄ with bi = h̄(xi, yi) = 1{h(xi) = yi}. Then
for all b ∈ {0, 1}d, there exists a h ∈ H such that h(xi) = yi if bi = 1 and h(xi) ̸= yi if bi = 0.
Thus (x1, y1), . . . , (xd, yd) is Graph shattered by H, as desired. Conversely, if (x1, y1), . . . , (xd, yd)
is Graph shattered by H, then for every b ∈ {0, 1}d there exists a h ∈ H such that h(xi) = yi if and
only if bi = 1. Then bi = 1{h(xi) = yi} = h̄(xi, yi), and thus each b ∈ {0, 1}d can be witnessed
as a behavior of H̄ on (x1, . . . , xd), completing the argument.
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Note that if a distribution D over X × Y is realizable by H, then the distribution D1 over
X ×Y×{1} defined by D1(A×{1}) = D(A) is likewise realizable by H̄. This follows essentially
immediately from the definition of h as the characteristic function of the graph of h. For a learner
A for H, define the learner Ā for H̄ that on input S = (SX , SY , S{0,1}) ∈ (X × Y × {0, 1})∗

outputs A(SX , SY). (I.e., Ā does not use the information of S{0,1}.) We note that if a distribution
D is realizable by H and A is an ERM-learner for H, then Ā is also an ERM-learner for D1 and
H̄. In particular, for a training sequence S = (SX ,SY ,S{0,1}) ∼ D1, we have that Ā(S) ∈ H̄ and
furthermore for any (x, y, b) ∈ S,

Ā(SX ,SY ,S{0,1})(x, y) = 1 {A(SX ,SY)(x) = y} = 1 = b,

where the final equality uses the definition of D1. We now define a splitting algorithm, which
takes as input a single training sequence and outputs a family of training sequences. The following
definition captures the bagging routine used in Larsen (2023), the deterministic splitting scheme of
Hanneke (2016), and the very simple splitting scheme used by Aden-Ali et al. (2024) which splits
the input training sequence into 3 disjoint equal-sized parts.

Definition 4 We say that S is a splitting algorithm if, for any input space X , label space Y ,
and training sequence S ∈ (X × Y)∗, the output of S on S is a family of training sequences
S(S) = (S1, S2 . . . , Sm) such that every Si is a sub-training sequence of S. Further, each such
splitting algorithm must satisfy the index splitting property: For any input sequence S, the sub-
training sequences S1, . . . , Sm are constructed so as to only depend upon the indices of elements
in S, not their values.1

Intuitively, the index splitting property requires that the splitting algorithm generate the sub-
training sequences by only using the indices in S, and is oblivious to the information within the
training examples (i.e., their features and labels). Thus, a splitting algorithm is essentially indepen-
dent of the input space X and label space Y . We will permit splitting algorithms to be randomized,
in which case we write them as Sr, where r denotes the source of randomness (e.g., a random bi-
nary string). We note that randomization is employed by Larsen (2023), where each Si is a sequence
drawn with replacement from S (and r controls the randomness of the draw). To adapt Definition 4,
we would require that the index splitting property hold for each realization of r.

We will often consider one sequence of examples in X ×Y and another sequence of examples in
X ×Y×{1}, as outlined at the beginning of the section. We may denote the former as (SX , SY) and
the latter as (SX , SY ,

−→
1 ), with SX ∈ X ∗, SY ∈ Y∗, and

−→
1 the all-ones vector. Note that the index

splitting property implies that the number of sub-training sequences in Sr(SX , SY ,
−→
1 ) is the same

as Sr(S1, SY), i.e. |Sr(SX , SY ,
−→
1 )| = |Sr(S1, SY)|. We further note that if S′ = (S′

1, S
′
2) ∈ Sr(S)

is realizable by H then (S′
1, S

′
2,
−→
1 ) ∈ Sr((S,

−→
1 )) is realizable by H̄. We now present the splitting

schemes of Hanneke (2016), Larsen (2023), and Aden-Ali et al. (2024), for which we will derive
upper bounds over the course of this section.

The splitting scheme of Hanneke (2016) is deterministic; as such, we denote it by SH , omitting
dependence upon any random string r. With a slight abuse of notation, we define a function of two

1. More precisely, a splitting algorithm S with the index splitting property amounts to a choice of value Sn ∈
([n]∗)∗ for each n ∈ N. Letting S = (s1, . . . , sn) be a sequence of length n and denoting Sn =(
(i11, . . . , i

1
m1

), . . . , (ik1 , . . . , i
k
mk

)
)
, one then defines S(S) =

(
(si11

, . . . , si1m1
), . . . , (sik1

, . . . , sikmk
)
)
.
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arguments SH(S, T ) in Algorithm 1. Hanneke’s splitting algorithm is then defined as SH(S) =
SH(S, ∅). The splitting algorithm has a recursive structure, as we now describe. (Recall that A⊕B
denotes the concatenation of sequences A and B.)

Algorithm 1 SH(S, T )

1: Input: Training sequences S, T ∈ (X ,Y)∗

2: Output: Family of sub training sequences of S ⊕ T
3: If |S| ≤ 3
4: return S ⊕ T
5: Let S0 denote the first |S| − 3⌊|S|/4⌋ elements of S
6: Let S1, S2, S3 denote the first, second and third next ⌊|S|/4⌋ elements of S, respectively, fol-

lowing the elements S0

7: return [SH(S0, S2 ⊕ S3 ⊕ T ),SH(S0, S1 ⊕ S3 ⊕ T ),SH(S0, S1 ⊕ S2 ⊕ T )]

We now define the splitting scheme of Larsen (2023), which — in contrast to Hanneke’s method
— employs randomness. Furthermore, it takes as input a failure parameter δ and a bagging size
parameter ρ ∈ [0.02, 1]. We denote this bagging splitting scheme by SB

r , and emphasize that the
randomness r ∼ r it employs is independent of S, in accordance with the index splitting property.

Algorithm 2 SB
r (S, T )

1: Input: Training sequence S ∈ (X ,Y)∗, bagging size parameter ρ and failure probability δ
2: Output: Family of sub training sequences of S
3: For i in [⌈18 ln(2|S|/δ)⌉]
4: Let Si denote a sample of size ρ · |S| drawn with replacement from S
5: return [S1, . . . , S⌈18 ln(2|S|/δ)⌉]

Lastly, the splitting algorithm of Aden-Ali et al. (2024) is deterministic; we denote it ST .

Algorithm 3 ST (S)

1: Input: Training sequence S ∈ (X ,Y)∗

2: Output: Family of sub training sequences of S
3: Let S1, S2, S3 denote the first, second and third sequence of ⌊|S|/3⌋ elements, respectively
4: return [S1, S2, S3]

With the above algorithms introduced, we are now equipped to present the main theorem of this
section, which gives generalization bounds for the above splitting schemes in the multiclass setting.

Theorem 5 Let aB, aH , aT denote universal constants. Let H ⊆ YX be a hypothesis class, D a
distribution over X × Y which is realizable with respect to H, and A an ERM-learner for H. Let
H have Graph dimension dG, and let SH , SB

r , ST be the previously defined splitting algorithms.
Then each of the following hold.

9
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• For any δ ∈ (0, 1), with probability at least 1− δ over S ∼ Dm one has that

LD
(
Maj

(
A(SH(S))

))
≤ aH

dG + ln (1/δ)

m
.

• For any δ ∈ (0, 1) and bagging size parameter ρ ∈ [0.02, 1], with probability at least 1 − δ
over S ∼ Dm and the randomness r employed in bagging, one has that

LD
(
Maj

(
A(SB

r (S))
))

≤ aB
dG + ln (1/δ)

m
.

• The expected error incurred by A’s majority vote over the splitting algorithm ST is (at most)
linear in each of dG and m−1, i.e.,

E
S∼Dm

[
LD
(
Maj

(
A(ST (S))

)) ]
≤ aT

dG
m

.

We now move on to prove the above theorem. To this end, we require the following lemma,
which establishes that the error of the majority vote of a learner A can be upper bounded by that of
Ā. Recall that when D is a distribution over X ×Y , D1 denotes the distribution over X ×Y × {1}
with D1(A× {1}) = D(A).

Lemma 6 Let H ⊆ YX be a hypothesis class and D a realizable distribution over X ×Y . Further,
let A be a learner for H and let Sr be a (possibly randomized) splitting algorithm. Then for any
possible source of randomness r ∈ R, we have

E
S∼Dm

[
LD
(
Maj(A(Sr(S)))

)]
≤ E

S∼Dm
1

[
LD1

(
Maj⊥(Ā(Sr(S)))

)]
,

and moreover for any ϵ > 0,

P
S∼Dm

[
LD
(
Maj(A(Sr(S)))

)
> ϵ
]
≤ P

S∼Dm
1

[
LD1

(
Maj⊥(Ā(Sr(S)))

)
> ϵ
]
.

The above lemma upper bounds the error of a majority vote in the multiclass setting by that of
its induced binary classifier. We postpone its proof for the moment, as it is slightly involved, and
proceed with the proof of Theorem 5. Let us recall the guarantees of Hanneke (2016), Larsen (2023)
and Aden-Ali et al. (2024) for optimal binary classification, which we will employ in the course of
generalizing their results to the multiclass case (for classes of finite Graph dimension).

Theorem 7 (Hanneke (2016, Theorem 2)) There is a universal constant aH > 0 such that for
every binary hypothesis class H̄, realizable distribution D, ERM-learner Ā, and value δ ∈ (0, 1),
then with probability at least 1− δ over the choice of training set S ∼ Dm, one has

LDc

(
Maj⊥

(
Ā(SH(S))

))
≤ aH

d+ ln (1/δ)

m
,

where d = VC(H̄) denotes the VC dimension of H̄.

10
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Theorem 8 (Larsen (2023, Theorem 1)) There is a universal constant aB > 0 such that for every
binary hypothesis class H̄, realizable distribution D, ERM-learner Ā, value δ ∈ (0, 1), and bag-
ging size parameter ρ ∈ [0.02, 1], then with probability at least 1 − δ over the random choice of
training set S ∼ Dm and random string r used to generate the bootstrap training sequences,

LDc

(
Maj⊥

(
Ā(SB

r (S))
))

≤ aB
d+ ln (1/δ)

m
,

where d = VC(H̄) denotes the VC dimension of H̄.

Theorem 9 (Aden-Ali et al. (2024, Theorem 1.1)) There is a universal constant aT > 0 such that
for every binary hypothesis class H̄, realizable distribution D, and ERM-learner Ā,

E
S∼Dm

[
LDc

(
Maj⊥

(
Ā(ST

r (S))
))]

≤ aT
d+ ln (1/δ)

m
,

where d = VC(H̄) denotes the VC dimension of H̄.

With the above theorems in place, we are now equipped to prove Theorem 5.

Proof of Theorem 5 Recall from the beginning of the section that for any hypothesis class H ⊆ YX

in multiclass classification, the Graph dimension dG of H is equal to the VC dimension of H̄, where
H̄ = {h̄ : h ∈ H} ⊆ {0, 1}X×Y and h̄(x, y) = 1{h(x) = y}. Further, we established that when
D is an H-realizable distribution over X × Y and D1 is the distribution over X × Y × {1} defined
by D1(A × {1}) = D(A), then D1 is likewise H̄-realizable. Lastly, recall that if A is an ERM-
learner for H, then Ā is an ERM-learner for H̄ on samples drawn from any distribution of the form
{D1 : D is H-realizable}, where Ā(SX , SY , S{0,1}) = A(SX , SY).

We now prove the claim of the theorem for SB
r ; the other results follow in a similar fashion.

Let r be any realization of the randomness of r. By invoking Theorem 6 with SB
r and ε = aB(d+

ln (1/δ))/m, we have that

P
S∼Dm

[
LD
(
Maj(A(SB

r (S)))
)
> ε
]
≤ P

S∼Dm
1

[
LD1

(
Maj⊥(Ā(SB

r (S)))
)
> aB

d+ ln (1/δ)

m

]
.

As this holds for any realization r of r, and r and S are independent, we have by Theorem 8 that

P
S∼Dm,

r

[
LD
(
Maj(A(SB

r (S)))
)
> ε
]
≤ P

S∼Dm
1

r

[
LD1

(
Maj⊥(Ā(SB

r (S)))
)
> aB

d+ ln (1/δ)

m

]
≤ δ.

It remains only to complete the proof of Theorem 6, with which we conclude the section.

Proof of Theorem 6 Let S = (SX , SY) ∈ (X × Y)∗. Since we have for (x, y) ∈ X × Y
that Ā(SX , SY ,

−→
1 )(x, y) = 1{A(SX , SY)(x) = y}, we conclude that 1{A(S)(x) = y} =

1{Ā(SX , SY ,
−→
1 )(x, y) = 1}. Thus, we have that

∑
S∗∈Sr(S)

1{A(S∗)(x) = y}
|Sr(S)|

=
∑

S∗∈Sr(S)

1{Ā(S∗
X , S

∗
Y ,

−→
1 )(x, y) = 1}

|Sr(S)|
.
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By the index splitting property, the sum over S∗ = (S∗
X , S

∗
Y) in Sr(S) = Sr(SX , SY) can be written

as the sum over over S∗ = (S∗
X , S

∗
Y ,

−→
1 ) in Sr(SX , SY ,

−→
1 ). Thus,

∑
S∗∈Sr(S)

1{A(S∗)(x) = y}
|Sr(S)|

=
∑

S∗∈Sr(SX ,SY ,
−→
1 )

1{Ā(S∗
X , S

∗
Y ,

−→
1 )(x, y) = 1}

|Sr(SX , SY ,
−→
1 )|

.

As the above holds for each (x, y) ∈ X × Y , we have that

P
(x,y)∼D

 ∑
S∗∈Sr(S)

1{A(S∗)(x) = y}
|Sr(S)|

≤ 1/2

 = P
(x,y)∼D

 ∑
S∗∈Sr(SX ,SY ,

−→
1 )

1{Ā(S∗
X , S

∗
Y ,

−→
1 )(x,y) = 1}

|Sr(SX , SY ,
−→
1 )|

≤ 1/2


= P

(x,y,1)∼D1

 ∑
S∗∈Sr(SX ,SY )

1{Ā(S∗
X , S

∗
Y ,

−→
1 )(x,y) = 1}

|Sr(SX , SY ,
−→
1 )|

≤ 1/2

 .

Now, let Maj(A(S(S))) denote the majority vote of the classifiers {A(S∗)}S∗∈S(S). Then, by
definition of the majority vote, the event Maj(A(S(S)))(x) ̸= y is disjoint from the event that∑

S∗∈Sr(S)
1{A(S∗)(x) = y} > 1/2 · |Sr(S)| and thus must be a subset of its complement, i.e.,

the event that
∑

S∗∈Sr(S)
1{A(S∗)(x) = y} ≤ 1/2|Sr(S)|. Using the above, we have that

P
(x,y)∼D

[
Maj(A(S(S)))(x) ̸= y

]
= P

(x,y)∼D

Maj(A(S(S)))(x) ̸= y,
∑

S∗∈Sr(S)

1{A(S∗)(x) = y}
|Sr(S)|

≤ 1/2


+ P

(x,y)∼D

Maj(A(S(S)))(x) ̸= y,
∑

S∗∈Sr(S)

1{A(S∗)(x) = y}
|Sr(S)|

> 1/2


≤ P

(x,y)∼D

 ∑
S∗∈Sr(S)

1{A(S∗)(x) = y}
|Sr(S)|

≤ 1/2


= P

(x,y,1)∼D1

 ∑
S∗∈Sr(SX ,SY ,

−→
1 )

1{Ā(S∗
X , S

∗
Y ,

−→
1 )(x,y) = 1}

|Sr(SX , SY ,
−→
1 )|

≤ 1/2

 .

As this holds for each choice of S ∈ (X × Y)∗, we further have that

E
S∼Dm

[
P

(x,y)∼D
[Maj(A(S(S)))(x) ̸= y]

]

≤ E
S∼Dm

 P
(x,y,1)∼D1

 ∑
S∗∈Sr(SX ,SY ,

−→
1 )

1{Ā(S∗
X ,S

∗
Y ,

−→
1 )(x,y) = 1}

|Sr(SX ,SY ,
−→
1 )|

≤ 1/2


= E

S∼Dm
1

 P
(x,y,1)∼D1

 ∑
S∗∈Sr(S)

1{Ā(S∗)(x,y) = 1}
|Sr(S)|

≤ 1/2


≤ E

S∼Dm
1

[LD1 (Maj⊥(A(Sr(S))))] ,

12
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where we recall that the Maj⊥ denotes the decision rule which outputs ⊥ (i.e., deliberately chooses
to fail) when there is no strictly most-popular label. Then for any ϵ > 0,

P
S∼Dm

[
P

(x,y)∼D
[Maj(A(S(S)))(x) ̸= y] > ϵ

]

≤ P
S∼Dm

 P
(x,y,1)∼D1

 ∑
S∗∈Sr(SX ,SY ,

−→
1 )

1{Ā(S∗
X ,S

∗
Y ,

−→
1 )(x,y) = 1}

|Sr(SX ,SY ,
−→
1 )|

≤ 1/2

 > ϵ


= P

S∼Dm
1

 P
(x,y,1)∼D1

 ∑
S∗∈Sr(S)

1{Ā(S∗)(x,y) = 1}
|Sr(S)|

≤ 1/2

 > ϵ


≤ P

S∼Dm
1

[
LD1

(
Maj⊥(A(Sr(S)))

)
> ϵ
]
,

which concludes the proof of the lemma.

3.2. Lower Bound

We now turn our attention to negative results which underscore the limits of majorities in learning
classes of large Graph dimension yet small DS dimension. The following lower bound borrows
ideas from the first Cantor class construction of Daniely et al. (2015) and the coupon collector
lower bound of Auer and Ortner (2007). Let us briefly describe each of these lower bounds and how
our approach differs from them.

The lower bound of Auer and Ortner (2007) considers a universe of size d/ε and defines a bi-
nary hypotheses class containing all functions which output the 1 label on at most d many points.
As target hypothesis, they choose the constant all-zeroes function, and they set the marginal dis-
tribution over unlabeled datapoints to be the uniform one. It is not difficult to see that this class
has VC dimension d. Furthermore, by a coupon collector’s argument, the learner upon observing
Θ(d ln (1/ε)/ε) draws has still not seen d of the elements in the universe with probability 1/2. From
this, one can define a bad ERM learner which outputs the 1 label on as many non-training points as
possible. By the previous reasoning, one can conclude that this bad ERM learner in general requires
Ω(d ln (1/ε)/ε) samples in order to attain error ≤ ϵ, in contrast to the above majority voters d

ε .
As binary classification is technically a special case of multiclass classification, in which |Y| = 2,
this result trivially gives a lower bound for the multiclass setting. However, when |Y| = 2 the DS
dimension and Graph dimension are equal to each other (and to the VC dimension), and thus the
previous construction yields problems which are arbitrarily difficult to learn as d → ∞. In order to
describe the limits of ERM’s majorities, it would be more insightful to instead design a sequence of
classes {Hd}d∈N with Graph dimension d and constant DS dimension, for which the performance
of ERM’s majorities can be lower bounded using d. Notably, this would yield a separation between
the sample complexities of learning with one ERM, learning with ERM’s majorities, and of learning
with arbitrary learners.

To this end, we draw inspiration from the first Cantor class of (Daniely and Shalev-Shwartz,
2014; Daniely et al., 2015), for which each hypothesis hA is identified by a subset A ⊆ X and h(x)
equals A if x ∈ A and ∗ otherwise. Thus, we can show that dDS = 1 and dG = d, and it is still
the case that there exists a bad ERM learner that needs d ln (1/ε)/ε samples to get ε error when

13
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we set the target hypothesis to be the all ∗ function. Interestingly, the fact that the labels for each
hypothesis/subset are unique outside ∗ also allows us to show a lower bound for this same instance
of Graph dimension dG, for any majority voter which is a combination of the bad ERM learner
on any partitioning of the input sample S. This rules out the possibility that the positive results
from binary classification of majority voters of any ERM-learner on smartly chosen sub-training
sequences can be generalized to the multiclass setting, where learnability is characterized by the
finiteness of dDS ; in the above construction dDS = 1 and we can make the Graph dimension as
large as we desire. We now give the formal statement of the result.

Theorem 10 For any d ∈ N, ε ≤ 1/100, and δ ≤ 1/2, there exists a domain X , label set Y ,
hypothesis class H with Graph-dimension dG(H) = d and DS-dimension dDS(H) = 1, a hard
distribution D and a bad ERM-algorithm Abad such that for a training sequence S ∼ Dm and any
number n of sub-training sequences S1, . . . ,Sn of S in order to attain

P
S∼Dm

[
LD

(
Maj

(
Abad(S1), . . . ,Abad(Sn)

))
≤ ε
]
≥ 1− δ ,

it must be that

m = Ω

(
d+ ln (1/δ)

ε

)
.

Moreover, attaining
P

S∼Dm

[
LD
(
Abad

)
≤ ε
]
≥ 1− δ

requires that

m = Ω

(
d ln (1/ε) + ln (1/δ)

ε

)
.

Before giving the proof of Theorem 10 we make a small remark. In the proof of the above, we in
fact demonstrate that when Maj(Abad(S1), . . . ,Abad(Sn)) fails, it is the case that Abad(S1), . . . ,Abad(Sn)
does not contain the correct label. That is, the lower bound shows that if we instead were to view
Abad(S1), . . . ,Abad(Sn) as a list of candidate labels, and to only require that the correct label should
be among this list, we would arrive at the same lower bound. This problem of learning a list that
contains the correct label is known as list learning (Brukhim et al., 2022) – thus our lower bound
also implies a lower bound of Ω((dG + ln(1/δ))/m) for Abad(S1), . . . ,Abad(Sn) as a list learner,
independently of the number n.

Proof of Theorem 10 Consider the universe X = [⌈d/(4ε)⌉] for ε ≤ 1/(8·exp(
√
(2)+1)), integer

d ≥ 1 and δ ≤ 1/2. Let
( X
≤d

)
denote all subsets of size at most d from X , i.e., {A|A ⊆ X , |A| ≤ d}

and consider the label space Y =
( X
≤d

)
∪ {∗}. Now for A ∈

( X
≤d

)
define hA to be the hypothesis

which given input point x outputs A if x ∈ A and ∗ else. Let H be the hypothesis class consisting
of all such hA for A ∈

( X
≤d

)
, i.e., H = {hA}A∈( X

≤d)
. Furthermore, let f∗ be the all ∗’s (f∗ = ∗) and

notice that this hypothesis is in H as the empty set.
We notice that the DS-dimension of this hypothesis class is 1. To see this assume that two points

x1 and x2 are DS-shattered by H, then it is the case that there exists some non-empty H ′ ⊆ H such

14
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that for every h ∈ H ′ and i ∈ 1, 2, there exists g ∈ H ′ such that h(xi) ̸= g(xi) and h(xj) = g(xj)
for j ̸= i. Thus, for h ∈ H ′ and i = 1, there exists g ∈ H ′ such that h(x1) ̸= g(x1) and
h(x2) = g(x2). Hence, the first condition implies that either h or g is not ∗ on x1; assume with
out loss of generality it is h. Now for h, there also exists some g′ ∈ H ′ such that h(x1) = g′(x1)
and h(x2) ̸= g′(x2) but this cannot be the case as we had that g′(x1) = h(x1) ̸= ∗, which since
the label of a function in H uniquely characterize the function implies that g′ = h, thus contradicts
h(x2) ̸= g′(x2). We thus conclude that the DS-dimension must be strictly less than 2. It is also at
least 1 since any point x1 ∈ X can be DS-shattered by H ′ = {f∗, fx1}.

We now notice that the Graph-dimension of this class is d. To see this we first notice that
any d distinct points x1, . . . , xd ∈ X can be Graph-shattered, with f∗ as witness, since for any
b ∈ {0, 1}d, the function fA, with A = {x ∈ X |x = xi and bi = 0}, will for bi = 0 output
A = f(xi) ̸= f∗(xi) and for bi = 1 output ∗ = f(xi) = f∗(xi), thus f∗ can be Graph shattered
on any d distinct points. Further assume there exists f and points x1, . . . , xd+1 where f is Graph
shattered. Then there exists a function h ∈ H which is equal to f on x1, . . . , xd+1. We notice that
this function h must necessarily be all ∗’s on x1 . . . , xd+1. To see this, we first notice that since any
h ∈ H can have at most d non ∗ values there must exist xi ∈ {x1, . . . , xd+1} such that h(xi) = ∗.
Further if h is y ∈ Y\{∗} for some xj ∈ {x1, . . . , xd+1}, this function can not be Graph shattered,
since any b ∈ {0, 1}d+1 with bi = 0 and bj = 1 can not be realized by a function in H, since such
a function because bi = 0, should be ̸= ∗ for xi, so must be some y′ ∈ Y , and by bj = 1 should
be = y, but since the labels of the functions are unique for the function in H such a function in H
must have y′ = y and also be equal to h, however h is not equal to y on xi it is ∗ so we reach a
contradiction. Thus h has to be all ∗’s on x1, . . . , xd+1 but then b = (0, . . . , 0) can not be realized
since no function can output more than d non ∗-values.

We now consider the distribution DU which assigns uniform mass to each element in X , i.e.,
DU (x) = 1/|X | for x ∈ X . We will further use DU,f∗ as the distribution over X × Y that with
DU,f∗ [x, f∗(x)] = 1/|X | for x ∈ X . For a training sequence S we define the points of X not in S
as Xunseen,S = {x ∈ X : x ̸= Sj , ∀j ∈ [|S|]}. Now the bad ERM ERMbad does as follows upon
being given a training sequence S: If |Xunseen,S | is larger than or equal to d it takes the d smallest
integers of Xunseen,S and denotes these points AS and outputs fAS

. If |Xunseen,S | is less than d it
outputs f|Xunseen,S |. That is, formally AS = ∪l

i=1([i] ∩ Xunseen,S) for the smallest l ≤ |X | such
that ∪l

i=1([i] ∩ Xunseen,S) ≤ d and if l + 1 ∈ X then ∪l+1
i=1([i] ∩ Xunseen,S) > d. We notice that

ERMbad is indeed an ERM-learner as it is consistent with f∗ on S and it is proper as it is in H by
the above described A always having size less than or equal to d.

We first consider the lower bound for the majority voter, where the ERMbad is run on n different
sub-training sequences Si of S ∼ Dm

U,f∗ , i.e., each training example in Si is in S, however, it may oc-
cur in Si a different number of times. We consider the classifier Maj(ERMbad(S

1), . . . ,ERMbad(S
n)).

We consider two cases m ≤ d/(16ε) and m ≤ ln (1/δ)/(8ε) and show that in both cases with prob-
ability at least δ the majority voter has error ε, whereby concluding that to have error less than ε it
must be the case that m ≥ max(d/(16ε), ln (1/δ)/(8ε)). We start with the former case.

If m ≤ d/(16ε) we consider the first d elements of the universe X , i.e., [d]. We Notice that
the elements [d] has d/⌈d/4ε⌉ ≤ 4ε mass. Thus if we define X =

∑m
i=1 1{Si ∈ [d]} the ex-

pected number of examples in the training sequence S that lands in [d] is E [X] ≤ 4εm ≤ 4d/16
since we assumed that m ≤ d/(16ε). Thus, by Markov’s inequality we have that P [X ≥ d/2] ≤
2E [X] /d ≤ 8/16 = 1/2.
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Thus, with probability at least 1/2 there are strictly less than d/2 training examples of S in [d],
that is |Xunseen,S ∩ [d]| > d/2. Now, consider any realization S of S such that |Xunseen,S ∩ [d]| >
d/2. Thus, for any such event any ERMbad(S

i) will not output ∗ on points x ∈ Xunseen,S∩[d], since
Si is a sub-training sequence of S so Xunseen,S ∩ [d] ⊆ Xunseen,Si ∩ [d] i.e. d/2 ≤ |Xunseen,Si ∩
[d]| ≤ d, and since ERMbad(S

i) outputs fASi , where ASi = ∪l
i=1([i]∩Xunseen,Si) for the smallest

l ≤ |X | such that ∪l
i=1([i] ∩ Xunseen,Si) ≤ d and if l + 1 ∈ X then ∪l

i=1([i] ∩ Xunseen,Si) > d, it
must be the case that l ≥ d and that Xunseen,S ∩ [d] ⊆ Xunseen,Si ∩ [d] ⊆ ASi .

Thus, for any x ∈ Xunseen,S ∩ [d] and any i = 1, . . . , n we have ERMbad(S
i)(x) ̸= ∗ so

Maj(ERMbad(S
1), . . . ,ERMbad(S

n)) fails for all x ∈ Xunseen,S ∩ [d] as it never sees a ∗ for
x ∈ Xunseen,S ∩ [d] which has size strictly more than d/2. Hence, we conclude that

LDU,f∗ (Maj(ERMbad(S
1), . . . ,ERMbad(S

n))) > (d/2)/⌈d/(4ε)⌉ ≥ (d/2)/(2d/(4ε)) ≥ ε

for any realization S of S such that |Xunseen,S ∩ [d]| > d/2, and since this happens with probability
1/2 ≥ δ, we are done for the case m ≤ d/(16ε).

Now, for the case that m ≤ ln (1/δ)/(8ε) we again have that [d] has d/⌈d/(4ε)⌉ ≤ 4ε mass,
thus

P
S∼Dm

U,f∗
[|S ∩ [d]| = 0] = P

S∼Dm
U,f∗

[∀i ∈ [m] Si ̸∈ [d]] ≥ (1− 4ε)m = exp (ln (1− 4ε)m),

and since ln (1− x) ≥ −2x for x ≤ 1/2, and m ≤ ln (1/δ)/(8ε) and ε ≤ 1/8 we conclude that
PS∼Dm

U,f∗
[|S ∩ [d]| = 0] ≥ exp (−8εm) ≥ δ. But for an outcome S of S such that |S ∩ [d]| =

0 we have that Xunseen,S ∩ [d] = [d] and thus [d] = Xunseen,S ∩ [d] ⊆ Xunseen,Si ∩ [d] for
any i ∈ [n] which implies that ERMbad(S

i) = f[d] for any i and for x ∈ [d], we thus have
Maj(ERMbad(S

1), . . . ,ERMbad(S
n))(x) = [d] ̸= ∗ and as d/⌈d/(4ε)⌉ ≥ d/(2d/(4ε)) ≥ 2ε we

conclude that LDU,f∗ (Maj(ERMbad(S
1), . . . ,ERMbad(S

n))) ≥ 2ε for any realization of S of S
such that |S ∩ [d]| = 0, and since this happens with at least δ probability, we are done and conclude
the claim for the sample complexity of any majority voter of ERMbad on sub-training sequences.

For the lower bound of ERMbad(S), we notice that the above also gives the bound of m ≥
ln (1/δ)/(8ε) as ERM(S) = Maj(ERM(S)).

Now, for the case that m ≤ d ln
(
1/(8 exp (

√
2)ε)

)
/(4ε). We see the above as a coupon collec-

tor’s problem. Define Ni to be the number of draws one should make from DU,f∗ before seeing a
new example in X upon already having seen i − 1 different examples of X for i ≥ 1. We then see
that the Ni’s are geometrically distributed with success probability (|X |−i+1)/|X |. Now, consider
the random variable N =

∑|X |−d
i=1 Ni, which is counting the number of draws from DU,f∗ we need

to make before seeing |X | − d different points in X . Now, using that {|X | − i+1}|X |−d
i=1 is equal to

{i}|X |
i=d+1 in reverse order and for a decreasing function f we have that

∑b
i=a f(i) ≥

∫ b+1
a f(i) di

we get that the expected value of N is

E [N] =

|X |−d∑
i=1

|X |
|X | − i+ 1

= |X |
|X |∑

i=d+1

1

i
≥ |X |

∫ |X |+1

d+1

1

i
di = |X | ln

(
|X |+ 1

d+ 1

)
(1)
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and since Ni and Nj for j > i is such that ENi,Nj [NiNj ] = ENi

[
Ni ENj [Nj |Ni]

]
= ENi [Ni]ENj [Nj ]

so the Cov(Ni,Nj) = 0, we get that

Var(N) =

|X |−d∑
i=1

|X | (i− 1)

(|X | − i+ 1)2
= −|X |

|X |−d∑
i=1

(|X | − i+ 1− |X |)
(|X | − i+ 1)2

= |X |
|X |∑

i=d+1

|X | − i

i2
(2)

≤ |X |2
∫ |X |

i=d

1

i2
di ≤ |X |2

d
. (3)

Thus, we have by Markov’s inequality that

P
[
|N− E [N] | ≥

√
2Var(N)

]
≤ 1

2
,

i.e., with probability at least 1/2 ≥ δ we have that N ≥ E [N] −
√
2Var(N). Using the bounds in

Eq. (1) and Eq. (2), along with |X | = ⌈d/(4ε)⌉, then implies that

E [N]−
√

2Var(N) ≥ |X |

(
ln

(
|X |+ 1

d+ 1

)
−
√

2

d

)
≥ d

4ε

(
ln

(
1

8ε

)
−
√
2

)
=

d

4ε
ln

(
1

8 exp (
√
2)ε

)
.

Thus, we conclude that N > d ln
(
1/8 exp (

√
2)ε
)
/(4ε) with probability at least 1/2 ≥ δ. That

is, if m ≤ d ln
(
1/8 exp (

√
2)ε
)
/(4ε) then with probability at least 1/2 we have that Xunseen,S

is at least of size d thus |AS | is at least d, and thus ERMbad(S) = fAS
will fail on all points

x ∈ AS , so have LDU,f∗ (ERMbad(S)) ≥ d/|X | ≥ d/2d/(4ε) ≥ 2ε which concludes the case
m ≤ d ln

(
1/8 exp (

√
2)ε
)
/(4ε) and the claim in the lemma.

4. Limitations of Aggregating Proper Learners

The results of Section 3 underscore the strength of majorities of ERM’s in learning classes of finite
graph dimension — along with their weakness in learning classes of infinite graph dimension which
are nevertheless learnable (i.e., which have finite DS dimension). It is natural to ask, then, whether
a more sophisticated aggregation of proper learners might have the capacity to learn all classes of
finite DS dimension. Perhaps by using more elaborate proper learners than ERM, or a more subtle
aggregation strategy than majority voting, one can learn any DS class with an aggregation of proper
learners?

We now demonstrate this is not the case: there exist learnable classification problems that cannot
be learned by any combination of a finite number of proper learners. Informally, we demonstrate
that proper learning cannot serve as a foundation for multiclass learning in its full generality, at least
not in the most direct sense. It may be that classification problems, in their most difficult forms,
require techniques that are fundamentally more complex than those offered by the perspective of
proper learning.

Formalizing these notions relies upon the design of properness numbers, which measure the
complexity of a function f : X → Y relative to an underlying hypothesis class H.
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Definition 11 Let H ⊆ YX be a hypothesis class and f : X → Y a function. The properness
number of f with respect to H, denoted propH(f), equals the size of the smallest finite set H ⊆ H
such that

f(x) ∈ {h(x) : h ∈ H} ∀x ∈ X .

In the event that no such finite H ⊆ H exists, we set propH(f) = ∞.

Geometrically, propH(f) measures the number of distinct functions in H which must be “in-
terwoven” or “pieced together” in order to assemble f . Note, however, that propH(f) does not
track the number of different regions on which f alternates between different functions in H. It
may well be that f is a piecewise combination of a relatively small number of functions in H, yet
alternates between them in a highly complex way. (Ultimately, this reflects our agnostic perspective
on the aggregation strategy for combining several proper learners into one improper learner, which
is permitted to be arbitrarily complex.) This point is emphasized by the following example.

Example 1 Let X = N, Y = {0, 1}, and define H to contain only the two constant functions. Then
any function f : X → Y has propH(f) ≤ 2, as the two functions in H span all labels in Y at any
input x ∈ X .

Note too, of course, that a function f : X → Y has propH(f) = 1 if and only if f ∈ H. We
now extend the notion of properness numbers to learners, in the natural way.

Definition 12 Let H ⊆ YX be a hypothesis class and let A be a learner for H. Use SH to denote
the collection of all H-realizable samples, i.e., SH = {S ∈ (X ×Y)∗ : minh∈H LS(h) = 0}. Then

propH(A) = sup
S∈SH

propH
(
A(S)

)
.

We now demonstrate the central result of the section: there exist learnable hypothesis classes H
for which any learner A for H must have propH(A) = ∞. That is, A must emit functions which
cannot be realized as aggregations of a bounded number of hypotheses in H. Consequently, they
cannot be realized as aggregations of outputs from a bounded number of proper learners for H.

Theorem 13 Let X and Y be infinite sets. Then there exists an H ⊆ YX with DS dimension 1
and the property that any PAC learner A for H must have propH(A) = ∞. In fact, learning H to
expected error < 1

2 requires learners with infinite properness number.

Proof It suffices to prove the claim for a choice of countable X and Y . First, let {Xd}d∈N be a
family of disjoint sets with |Xd| = d, and for each such d let Yd = {⋆} ∪ 2Xd , where 2Xd denotes
the power set of Xd. Then, for an A ⊆ Xd, define hA : Xd → Yd by

hA(x) =

{
A x ∈ A,

⋆ x /∈ A.

Further, define Hd ⊆ YXd
d as Hd = {hA : A ⊆ Xd, |A| = d−

√
d}. Now set

X =
⋃
d∈N

Xd, Y = {$} ∪

(⋃
d∈N

Yd

)
.
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As X and Y are countable unions of finite sets, they are countable. Let H =
⋃

d∈NHd, where each
h ∈ Hd is extended to a total function X → Y by outputting the label $ on all x /∈ Xd.

We first demonstrate that H has a DS dimension of 1. Begin by setting S = {x1, x2} ⊆ X , and
suppose that S is DS-shattered by F ⊆ H. Let f ∈ F|S be a behavior on S. Then it must be that
f(x1), f(x2) ∈ {$, ⋆}. Otherwise, we have without loss of generality that f(x1) = A, and thus f
cannot have a 2-neighbor in F|S , as any hypothesis in H which emits the label A must be hA. (I.e,
any g ∈ F|S with g(x1) = f(x1) = A must be g = f .) So we indeed have that f ∈ {$, ⋆}2 and
thus F|S ⊆ {$, ⋆}2. Then in order for F to DS-shatter S, it must be that F|S = {$, ⋆}2. For the
all-⋆ behavior to be expressible, it must be that S ⊆ Xd for some d. (In particular, any hypothesis
in H emits the ⋆ label on only a single Xd ⊆ X .) In this case, however, any behavior in {$, ⋆}2
other than the all-⋆ behavior or the all-$ behavior cannot be expressed by F|S , as any hypothesis in
H either emits the $ label on all points in Xd or on none of its points. Thus dDS(H) = 1.

Now let A be a learner with propH(A) = p < ∞. Select d so that d = ω(p
√
d), i.e., d = ω(p2).

For a hypothesis hA ∈ Hd ⊆ H, let DhA
denote the distribution which draws a point uniformly at

random from AC = Xd \ A and labels it using hA (i.e., labels all points in its support with the ⋆
label). Now consider the process by which an hA ∈ Hd is chosen uniformly at random and DhA

is
chosen to be the true distribution. In order to incur error ≤ ϵ, A must emit a function f outputting
the value ⋆ on all but ϵ ·

√
d many points in AC .

As propH(A) ≤ p, then propH(f) ≤ p and thus f can output at most p ·
√
d = o(d) values of ⋆

on Xd. Furthermore, by taking d to be arbitrarily large, we can assume that |S| ∈ o(
√
d). Together,

we have that A must identify a set of size o(d) points containing a (1− ϵ)-fraction of the points in
AC , given only knowledge of a o(1)-fraction of points in AC . As the posterior distribution of AC

is uniform over all points in Xd, by our uniformly random choice of DhA
, the learner A can do no

better than to predict ⋆ on a random choice of p ·
√
d elements in Xd, i.e., a o(1)-fraction of Xd. As

such, any learner A attains expected error 1− o(1) over the uniformly random choice of hA ∈ Hd.
An invocation of the probabilistic method reveals that there exists a particular “bad” choice of hA
such that A incurs 1− o(1) error on DhA

. This concludes the argument.

Remark 14 Let us briefly summarize the modifications required of Daniely and Shalev-Shwartz
(2014)’s first Cantor class for the proof of Theorem 13. First, we extend each function hA ∈ YXd

d

to a total function X → Y using a dedicated “$” label, rather than using the “⋆” label as in
Daniely and Shalev-Shwartz (2014). Otherwise, a learner can attain the constant ⋆ behavior on
nearly all of X =

⋃
NXd, as each hypothesis in H emits the ⋆ label on all subdomains Xd except

a single one. Strictly speaking, this permits the first Cantor class to be learned with a properness
number of 1 (i.e., using a proper learner). Second, the first Cantor class defines each hA such that
|A| = |Xd|/2 = d/2. This allows for a learner to attain the constant ⋆ behavior on a subdomain
Xd by aggregating only two classifiers, namely hA and hAC . We instead require that the cardinality
of AC be sublinear in d, which in turn guarantees that expressing the constant ⋆ behavior on any
domain Xd requires aggregating ωd(1) hypotheses.

We conclude the section with two brief remarks on properness numbers. First, there is a connec-
tion between properness numbers and the classic principle of boosting, which — roughly speaking
— improves the performance of one or several weak learners by aggregating their outputs over vari-
ous subsamples of the training set (Schapire and Freund, 2012). In the event that one’s weak learners
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are proper (or have finite properness numbers), and if they need only be aggregated a bounded num-
ber of times as |S|, |Y| → ∞, then boosting may serve as an avenue towards learning with finite
properness numbers. Notably, the theory of multiclass boosting is somewhat less developed than
in the binary case, with both negative results describing its limits and promising work exhibiting
boosting rules whose complexities do not depend upon |Y| (see, e.g., Saberian and Vasconcelos
(2011); Brukhim et al. (2021, 2023, 2024)).

Our second remark on properness numbers, related to the first: it may be natural to consider
the properness number of a learner A as a sequence indexed by |S|. That is, a learner A may
have infinite properness number (as defined in Definition 12) yet for each n ∈ N output functions
with bounded properness numbers across all S ∈ (X × Y)n. In this setting, one can ask how the
properness numbers of A scale with |S|, or how they scale with error parameters ϵ and δ. Notably,
Theorem 13 is robust to this form of relaxation, as it demonstrates a problem which requires infinite
properness number merely to attain constant error. Nevertheless, considering properness numbers
which scale with |S| or with ϵ may raise interesting questions concerning the properness complexity
of learning (whenever learning with finite properness numbers is possible).

5. Conclusion

In this work we have studied natural extensions of optimal learners for binary classification to the
multiclass setting. Our results show that these learners have better sample complexity than simple
ERM learners for certain classes with finite Graph dimension. Moreover, we have shown that there
are learnable multiclass problems for which there does not exist a learner that can be expressed as
any combination of finitely many proper learners. One interesting open question is to understand
whether there exists a combinatorial dimension whose finiteness characterizes the existence of op-
timal proper learners for the underlying multiclass problem, in the same way that the Dual-Helly
number characterizes optimality of proper learners for binary classification (Bousquet et al., 2020).
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