A Appendix

In the appendix, we have the following results.

* In Appendix we summarize the main notations used in this paper.
* In Appendix[A.2]-[A.9] we show all the proofs of our theoretical results.

* In Appendix [A.T0, we present the overall training procedures (e.g., pseudo code) of our
proposed DINO-INIT and DINO-TRAIN algorithms, as well as the limitations of our work.

* In Appendix [A.TT] we present additional data description and implementation details.

A.1 Notation

Notation | Definition
X, ), & Input, output and probability distribution space
psre Pt € 2 Source and target joint distributions
P, ]P’[gt Source and target marginal distributions
{xﬁrc7 yfrc}n’“ Labeled source training examples
l
{x;gl, yfl} Pt Labeled target training examples
{x;gl} i Unlabeled target training examples
X Target testing examples
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Labeled source input and output sets

Labeled target input and output sets

All the labeled training inputs, and the corresponding outputs

Basis example of input-oriented distribution representation learning
L-layer fully-connected neural network

Distribution-informed neural network

NNGP kernel over X

Distribution kernel over &

Distribution-informed NNGP kernel

Neural tangent kernel (NTK)

Distribution-informed NTK

A.2  Proof of Lemmal4.1]

Table 5: Notation

Lemma'El. Assume that all the parameters of f (+) follows standard normal distribution, in the limits
as the layer width d — oo, the output function of the distribution-informed neural network f(x) in

Eq (5) at initialization is iid centered Gaussian process, i.e., f(-)
KP4 (2, P), (', P))

-) is the NNGP kernel induced by the neural network f(-) over input space X', and
-) 1s a distribution kernel 1identifying the similarity of the distributions [’ an over distribution
is a distribution k 1 identifying the similarity of the distributi P and P’ distributi

where Cx (-,
IC@(W
space &:

Ko (P, P,2') =Y Bus,Bur 5, Ka(Fi, 7))
=1 j=1

~ N (0,KCP4) where
=Kx(z,2") Ko (P, P|z,z)

(10)

where n (n') is the number of examples in the domain associated with distribution P (P’).

Proof. Following [34], it can be shown that the output function of a fully-connected neural net-
works f(-) is an iid centered Gaussian process with zero mean and variance ICXde,x’ ) (.e.,

NNGP kernel). Using definition of distribution-informed neural network f (z) in Eq
E[f(xz,P)] = 0 (due to E[w] = 0), and KP4((x,P), («/,P')) = El(x)" p(2')] -

5), we have
D, (P)T(I)r/ (IP)/)

(due to E[wTw] = 1). Using the definition of ®,(P) in Eq. (E), we have K gy (P, P'|z,2') =

7
DR D) Baz, B 3 Ko (T, T5).

O
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A.3 Proof of Lemmald.3

Lemma M Given the labeled training data X = X* U X,* and the basis examples {aryir,
(r € {src,tgt}), we let T € R(Metni) X (e ti) denote the coefficient matrix of K 21x (X, X),
where forz, € X (K =1, - ;ngc + nfg[), its K" row [Y]y. = [Bus, FEORER ,5”75757{2“,()7 o, 0]
when 2 € X%, [Y]z. = [0,---,0, ﬁwk,i‘f" o B a2 ] otherwise. Then, the assumption

)

Amin (K 1 x (X, X)) > 0 holds when Y'Y is positive deﬁnlte

Proof. Using the definition of the distribution kernel in Eq. (]g), we have Kpx(X,X) =
TKx(X,X)YT where X denotes all the basis examples. Then, we have Amin(Ka 1 (X, X)) =
Amin (T2 (X, X)YT) > Apin (K (X, X)) - Amin (YT Y). Here Ky (X, X) is the NNGP kernel
matrix of the basis examples induced by the neural network f(-) with infinite width. It is shown [4]
that the key difference between NNGP kernel and NTK is that NTK is generated by a fully-trained
neural network, whereas NNGP kernel is produced by a weakly-trained neural network. That is,
NNGP kernel is a special case of NTK when training only the output layer. Following [18} 3], when

there is no two parallel inputs in X, we have Apin(x (X, X)) > 0. Therefore, when TTY is
positive definite, the assumption )\mm(lC 2|x(X, X)) > 0 can hold. O

A.4 Proof of Theorem 4.4

Theorem For any coefficient /3, ., of the input-oriented distribution representation in Eq. (E),
there exists n* € R, such that for the infinitely-wide distribution-informed neural network f )
trained under gradient flow with learning rate n < n*, the test prediction fgt (X&) of the domain
adaptation regression in Eq. (U) over test target data X' is

Fo, (XI) = Ja,(X1) = ©p4(XE, X)@pa(X, X) 7! (1= e71024¢) (fo,(X) - V)

where ©p 4 (-, -) is the distribution-informed NTK, i.e., Opa(z, ') = O(z,2') - Ko x (P, P'|x, 2)
and C' = diag{a/nge, - -+, /Nge, (1 — a)/nfgt, (1= a)/nfgt} is a diagonal matrix. Moreover,

Msre 1
n
tat

under the assumption when the network width goes to infinity, lim;_, o, fgt (X Lgl) converges to a
Gaussian process with mean y( X:*") and variance X (X', X:#') as follows.

((XE) =Opa (X, X)Opa(X,X)'Y
L(XE, X = P4 (X X)) + Opa (X, X) Opa(X,X) ' KP20pa(X, X)'Opa (X, XE)
— (©pa (X, X) ©pa(X, X) 'K 4 (X, XE) + h.c)

where “+h.c." means “plus the Hermitian conjugate”.

Proof. The objective function of Eq. can be rewritten as follows.

L
Ngre Tt

_ r 5 psre src 2 -« r Iﬁ,t tgt tgt 2 H 2 SIC Ttgt
W)_?"srci:zl(ﬂ ) - ) o ;(ﬂ P~y + EMMDE (PP
71 r o 2 ﬁ 9 2 src  Totgt
= 5 ||CF(x0) Oy ||+ GMMD,,, (B, P*)
where f = vec({f(x )}n“‘+n‘g‘), and C = diag{

Vo Nge, /@ Nge, A/ (1= @) /nlg, -+ /(L —a)/nly} is a constant diagonal matrix.

Tisre

lVl

Then the tangent kernel can be defined as

Opa(X, X) = lim Vg, f(X) Vo, f(X)"
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Moreover, we obtain
Voo f(2,P) = Vo, f(2)  gu, (P|2)

m <v90f(x,19>), vgof(x',zp/)> = 0(2,7') - Ko (P, |z, 2)

d—o0
Opa(X,X)=0(X,X) 0 Kpx (X, X)

where ©(x, 2') = limg—, 00 (Ve, f (), Ve, f(x')) is standard neural tangent kernel [31]] induced by
f(+) with infinite width.

Following [35]], we have the linearized neural network given by its first-order Taylor expansion.
fo; (@) = foo (%) + Vo, fo, () (0: — bo)

and fy,(z) — fi"(x) = O(1/Vd*) — 0 (d* — 0). Then we have fp,(X) = f5,(X) +
Vo, foo (X) (8; — 6) + O(1/+/d*) where d* denotes the network width. Using the linearized

function fi"(X) = fp,(X) + Vo, fo,(X) (0; — 0o). we have the dynamics of linearized neural
network as follows.

b, = —1VoL(0) = —nVo [ (X)TCTC (fin(X) - Y)

= =11V fo, (X)TCTC (Far(X) + Vo, fou (X) (0 — 60) =Y )
Then the ODE has closed form solution as
0, = 0 — Vo o, (X)TOF) (11 - e-n@DACTCt) (fgo (X) — Y)

Then given random initialization 6, the predictions of this neural network over training X and testing
example X' are

Jou(X) % Ji(X) = Jao(X) = (1= e710P4€C1) (fy,(X) — ¥)
Jo (X2 m Fir(XE) = Jo (X) = ©pa(XE, X)Opa(X, X) 7! (1 - 702" €) (fy, (X) Y

with up to an error of O(1/v/d*).

Here, the minimum eigenvalue Apin(©pACTC) > Anin(Opa) Amin(CTC) = Anin(©pa) -
min{a/nge, (1 — a)/niy}. Following [27], using Apin (©(X, X)) > 0 and Apyin (K2 (X, X)) >
0, we have A\pin(©pa) > 0. When a € (0,1), limy o0 limge 00 fo, (X)) = fo,(XE) —
Opa(XE, X)Opa(X, X)7! (feo(X) —Y)'

Over random initialization of 6, f (X:#) converges to a Gaussian distribution, as it is a linear
transformation of fp, (X&) associated with Gaussian distribution. Using E[fg, (X'£')] = 0 and
E[fo, (X) fa, (X1)] = KP4 (X, X1¥'), when o € (0, 1), we have the following results:
1(XE) = Opa (X, X)Opa(X,X)'Y
D(XE XE) = KP4 (X XE) + Opa (X, X) Opa(X, X)'KPAOpA(X, X) 'Opa (X, XE)
— (Opa (X, X) Opa(X, X)L 4 (X, X ) + hec)
which completes the proof. O

A.5 Proof of Theorem

Theorem E Assume for any training example (z,) € X x Y, we have (f(z,P) — y)? < M, for
some constant My > 0. Let F be the hypothesis space induced by infinitely-wide neural networks
f . Then, for any f € Fand § > 0, with probability at least 1 — 0, the expected error in the target
domain can be bounded as follows.

i
Thsre Mgt

i=1 ‘gt j=1
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src o) 1 1/6
+2aR,, (Hse) + 2(1 — a)%nfg (Hug) + M\/(n + nlg;) og(1/0)

where Hye = {(z,y) — (f(z%,P¥¢) — )2 : f € F} is a set of functions, R, (M) is the

Rademacher complexity of Hy, given ng, examples, and M = max{aMy/ngc, (1 — a)My/ nfgt}.

Proof. Let ¥(X) = SUpj Lpe(f) — a - Low(f) = (1 — a) - Lou(f) where Lo (f) =
~ n - 2

n{m Z?icl (f(x’sirc’Psrc) _ ygrc> and L:Plg!( ) — 1 Z tgt ( ( ;gtjptgt) y;gl) )

Then when one point of X is changed, ¥(X) will change at most M = max{aMy/ngc, (1 —
) My /nly}. Using McDiarmid’s inequality, it holds that

Pr[¥(X) — E[¥(X)] > ¢ < exp (—MW)

Thus, for any § > 0, with probability at least 1 — §, we have

»CP f a- /L f + — O 3 sre T £ t 10g 1/6
‘gl(f) < " e (f) (]‘ ) ]Png!(f) [ ( + M\/(n n g2) ( / )
MOI'GOVGI',

E[¥(X)] = E

fer

sup « - Efp,m(f) +(1-a)- ﬁfpugn(f) - E]P"E‘(JE)‘|

<a-E lgup [-‘/ﬁ»src(f) - £]P"g‘(f)
feF

feF

< 20R0,, (He) +2(1 — a)Rpyp (Hige) + @ sup Lpss ( f) — Lpe(f)
fe]—‘

+(1-a)-E [SUP Enmt(f) - L:P‘g‘(f)]

When (f(x,P) — y)a < My for any training example (z,y) € X x ), Lemma 23 of [13] shows that

](f'(g:,nv) —y)? — (F(,P) - y)2‘ < 2Mp ‘f‘(g:,nv) - f’(a:,IP’)'. Therefore, we have (f(z, P) —
y)? < 2M, ‘ f (z,P) — y’ It is shown in [31]] that a infinitely-wide neural network would behave as

its linearization around the initialization and achieves zero training loss under MSE loss. Thus, there
exists a small perturbation Af over parameters for each example (z,y) such that fyag(x,P) = y.

~ ~ ~ 2 ~ 2
sup E]psrc (f) _ [:]P"g‘(f) < sup EPm (f(:l?src,ﬂpsm) _ ysrc> _ ]EIPIE‘ (f(xtgt7 Ptgt) _ ytgt)

feF feF
< 4My - sup ‘EPW ( src ]Psrc) _ yerc — Epa J?( tgt Ptgt) ytgt
feF
S 8M0 - sup ‘E]psrc [ (xsrc Psm) - ysrc] — ]EIEDlgl |: tgl Plgt ytgl:|
feF
< 8M - sup ‘E]psm |:f9( src ]Psrc) f0+A9( src ]P»rc):| — Epe [f(l‘tgl,ﬂmgt) _ f9+Aa($lgt,Ptgt):|‘
AOEH DA, fEF
=8My-  su \Epm [Vefe( P‘“)Ae} Ep [ve Fla® IP"gT)AH} ]
AQEHDAJE]-'
=8M, - MMDg,, (P*,P*¥)
which H p 4 is the RKHS induced by kernel ©p 4. ]

A.6 Proof of Corollary 4.6
Corollary With the assumptions in Lemma when B, 7, = 1/|| >0, (-, Zi)ic ||, the

Gaussian process induced by f (x) at the initialization would be equivalent to the adaptive Gaussian
process in [7] over NNKP kernel.
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Proof. One special case of distribution-informed neural network at initialization is that when the co-
efficient 3, 7, = 1/|| Y1, (, &) c» ||, it can be seen that &, (P) = m D (s Tk
is the normalized mean mapping [24]] of data distribution P’ in the NNGP kernel space. In this
case, the distribution kernel K5 (P, P'|2,2’) in Eq. 4@ can be explained as the inner prod-
uct of the mean mappings of P and P’. Moreover, using the definition of maximum mean
5 ,
discrepancy (MMD) [24], it can be shown that K g x (P,P'|z,2") = %

MMDy, (-) denotes the empirical MMD in the NNGP kernel space, and ¢ = 5 37 o1 Ka (T3, 25) +

, where

= Zf; 1 Kx (&}, &%). Tt implies that IC 5 x (P, P’|z, 2') is negatively correlated with the popular
MMD estimator. Moreover, when P = PP/ ’C'/Z‘X (P,P'|z,2") = 1, otherwise Kz (P, P |z, 2") =

Sy =1 K x(Z, % j) In this case, the adaptive transfer kernel

1327 ¢ m);cXIIHZ 18 ]
KP A(X X) induced by f (x) at the initialization would be equivalent to [7]], by setting the transfer
parameter T of Eq. (EI) as K| x (P, P! |2, 2'¢") for any inputs *°, 2", O

A.7 Proof of Theorem[A.1]

Theorem When wi > 0 forall ¢ = 1,--- ,ng, the reweighting domain adaptation ap-
proach Eq. (9) and standard supervised learning have identical predictions on test target data, i.e.,

limy s o0 limge o0 fo, (Xi8) = fo, (X3¥) — O(XE, X)O~ (fo,(X) = Y).

Proof. The objective function of Eq. (/) can be rewritten as follows.

Tsre

« 51’(, SfC SIC 1
Lrw(0) = 5~ > wi £ =yl +

i=1

2 1
) =1l = 3 037 CX) - OB

where f(X) = Vec({f(xi)}?;'°1+n‘lg‘), and C' = diag{\/a/nge, -+, V@ /Ngres \/ (1 — @) /0l - - (1 —a)/niy}

Msre

nlgl

MNgre ? ’

is a diagonal matrix and B = diag{\/w5", - - wsre ,1}. We have the dynamics of
H/—/

Ngre nlgl

linearized neural network as follows (let A = C'B for brevity).

0y = —nVoLa(0) = -V fyr(X)TATA (fiM(X) = Y)
_nvefgo( )TATA (feo( ) + v90f90 (X) (et - 90) - Y)
Then the ODE has closed form solution as

01 = b0 = Vofa,(X)TO7 (1= e770441) (£, (X) — Y)

Then given random initialization 6, the predictions of this neural network over training X and testing
examples X' are

o, (XE5) = fo (X2) — O(X, X)0 7 (1 - e 19474) (f,, (X) ~ )

Therefore, when w$™ > 0 for all i = 1, -+ Ny, it can be shown that Ay, (©ATA) >
Amin(©)Amin(ATA) > 0. Then we have lim; ;o limgs o0 fo, (X)) = fo (X&) —
O(XE, X)O™! (fo,(X) = Y).

As indicated in previous work [35]], the neural network f(-) with standard MSE loss also has the
following objective function

Nre ”tgt

1
an 7 - yill3 + Zuf ) =yl = 5 17 = Y113
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For any test examples X.%', it has
Fo T(XE) = fo, (X)) — O(XE, X)O7 (L - %) (fo (X) ~ Y)

and lim;_, o0 limgs o0 g:‘p(Xig‘) = fo, (XE)—O(XE, X)O~ 1 (fg,(X) — Y). This indicates that
when wi™ > 0 forall i = 1,--- , ng, the reweighting domain adaptation approach and standard
supervised learning have identical predictions on test target data. O

A.8 Proof of Corollary

Corollary [4.7, With the assumption in Theorem 4.4} our framework Eq. (7) with distribution-
informed neural network f(-) can recover the popular reweighting domain adaptation approach Eq.
(9) in the function space.

Proof. We can consider the following special case of the distribution representation in Eq. (#). For
1

source example x, we can set fy », = 5 — - 6[w;™® > 0], where 4[] is a Kronecker delta
Sre k2 X

function. For target example x, we can set ﬁl.,wj = where ny = nfg[ + n{”;t, as we use all

1
"!g&HﬂﬂjHKX
the target training examples as the basis examples for learning the input-oriented representation of the
target domain. In this case, for distribution-informed NTK © p 4 (X, X), we have © p 4 (z;, ;) = 0 if
z; (or x;) are source example with w;™ > 0 (or w3 > 0), O©pa(x;, ;) = O(x;, z;) otherwise. That
is, when wi™ > 0 forall i = 1,- - , g, we have Op 4 (X, X) = ©(X, X). Theorem indicates
that it can produce the same prediction function over random initialization as the reweighting domain
adaptation approach Eq. (9). When there are some source examples with w}™ = 0, the objective
function of our domain adaptation will also simply filter out those source examples, and the final
prediction function depends only on the source examples with w™ > 0. O

A.9 Proof of Corollary 4.8

Corollary 4.8/ Under mild conditions, our framework Eq. (7) with distribution- 1nf0rmed neural

network f (+) can recover the standard domain invariant representation learning in Eq. (1), where the
domain discrepancy measure d(-, -) is instantiated with MMD in RKHS induced by standard NTK ©.

Proof. Tt can be shown when the distribution representation of Eq. (@) is shared by all the input
examples. In this case, for any wy, f(z,P) = a - fo(x) where a = ®,(P)Tw, € R is shared by all
examples. Then, we have f(z,P) = a - fo(z) = a - ¢y<r(2)Tw = ¢gp<r (x)T (aw). Therefore, in
this case, f(-) is equivalent to a simple distribution-free neural network. The overall framework Eq.
would be degenerated into the standard domain invariant representation learning in Eq. (I). Notice
that when using the distribution-free neural network, the framework Eq. (I) requires an additional
discrepancy minimization regularization to guarantee the success of domain adaptation. In our case,
the discrepancy minimization regularization would be given by the MMD in RKHS induced by the
NTK ©p 4. Here, when the distribution representatlon of Eq (@) is shared by all the 1nput examples,
it holds that for any 2,2’ € X, Opa(z,2’) = b- O(x,2’) where b = [|®,(P)||%, € R. Thus,

MMDg,,, (P, &) = b - MMDg, (P, P'2t), O

A.10 Algorithms

DINO-INIT vs. DINO-TRAIN: DINO-INIT is weakly-trained (i.e., only the last layer is trained),
while DINO-TRAIN is fully-trained (i.e., all network layers are trained). We observe from the
experimental results that the weakly-trained DINO-INIT might outperform DINO-TRAIN in some
cases. This observation is consistent with previous work [33]] on standard neural networks.

The overall training procedures of DINO-INIT are illustrated in Algorithm [T} Here we use both labeled
target examples and unlabeled target examples X ;gt U X2 as the basis target examples of Eq. (E).
This allows the proposed DINO-INIT to be applied for domain adaptation scenarios [5} 13} 147]] where
both limited labeled and adequate unlabeled target data are available during model training. When no
unlabeled target data is available [7], i.e., only limited labeled target data is given, we can simply use
those labeled target examples as the basis target examples of Eq. ().
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Algorithm 1 DINO Algorithms

Input: Labeled source examples (X¢, V™), labeled target examples (X llgt, Y,
target examples X.=', neural network architecture of f ().

Output Predictions on testing target examples X',
Set X* to be basis source examples of Eq.

Set X;* U X" to be basis target examples of Eq.

Calculate the basis NNGP kernels of Eq. @;

Estimate the coefficient w” and noise variance o, o by maximizing p(Y;''| X;#, X5, y);
Calculate the posterior distribution with fi and ¥;

Output V2| X&' ~ N(1, 2).

*®") and unlabeled

AN A i

In addition, the overall training procedures of DINO-TRAIN are illustrated in Algorithm 2] Note that
in this paper, we focus on analyzing the training dynamics of our model in the adaptation scenarios
where limited labeled data in the target domain is available. But our theoretical results can be extended
to unsupervised domain adaptation setting where only unlabeled data is available in the target domain
For example, the proposed DINO-TRAIN framework of Eq. (]z) can be trained with @ = 1P| for
unsupervised domain adaptation. Then we can show similar convergence and generahzation results
of this framework.

Analysis of the reweighting approach Eq. (9): Notice that if we do not consider the dis-
tribution shift between source and target domain, the prediction function of reweighting ap-
proach Eq. (9) can be simply learned by minimizing the standard supervised learning loss:

Loup(0) = L300 (F(a3°) — yi)2 + L ang. (f(=F) — y;gl) over all the labeled training ex-
amples. The following theorem shows that for an infinitely-wide neural network f(-), the reweighting
domain adaptation approach Eq. (9) and the standard supervised learning have identical prediction
function when they converges.

Theorem A.1. When wi™® > 0 for all i = 1,--- ,nge, in the limit of infinite network width, the
reweighting domain adapmtlon approach Eq (D and the standard supervised learning would
have identical prea’zctlon function on testing target data, i.e., lim;_, o fo,( X)) = fo, (X&) —

O(X¥, X)O~! (fo,(X) —Y).

This result can be generalized to the scenarios where w{™ > 0. In this case, the reweighting domain
adaptation approach Eq. (E) considers only the source examples with w3 > 0. It is equivalent
to the standard supervised learning over those source examples. Therefore, we have the following
observations. (1) The weight w;™ can only filter out some unrelated source examples (i.e., w;™ = 0)
for the reweighting approach. (2) For neural networks with infinite width, the learned predictive
functions of the reweighting approach and the standard supervised learning are equivalent in the
function space. Compared to the reweighting approach Eq. (9), our framework of Eq. (7) learns
the distribution-informed representation for both source and target data. The resulting prediction
function is explicitly determined by the domain discrepancy (indicated by the distribution-informed
NTK ©pa).

Extension: We would like to point out that the proposed DINO framework can be easily generalized
to other network architectures. This is because previous works [4} 22 |54] 155] have shown the
existence of NNGP and NTK in different network architectures, including (residual) convolutional
neural networks, recurrent neural networks, transformer, etc. Therefore, we can adapt our algorithms
and theoretical analysis to those network architectures as well. In this paper, we focus on the
most used fully connected network, and the exploration of network architecture comparison in our
framework is beyond the scope of this paper.

Limitations: In this paper, we assume that there is only one source domain. But in real scenarios,
it is possible to gather source information from multiple domains. In the context of multi-source
domain adaptation regression, the generalization and convergence analysis of domain adaptation
regression with neural network might provide the insight on selecting high-quality source data for
better knowledge transfer. We would like to leave it as our future work.

’In Subsectionlﬁl we consider a € (0, 1), as the framework with o« = 1 or @ = 0 will produce a slightly
different convergence result.
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Algorithm 2 DINO-TRAIN

Input: Labeled source examples (X*¢,Y™°), labeled target examples (X,*,Y;*') and unlabeled
target examples X,;", neural network architecture of f(-).
Output Predictions on testing target examples X',
Set X to be basis source examples of Eq. .
Set X U X2 to be basis target examples of Eq.
Calculate the basis NNGP kernels of Eq. @);
repeat
Minimize the objective function of Eq. (7);
until It is converged
Output V¥ = f(X£).

AR A o ey

A.11 Experimental Details
A.11.1 Data Sets

dSprites [40]: It is composed of 737,280 images from three domains: Color (C), Noisy (N) and
Scream (S). Following [10], we evaluate all the baselines on six adaptation benchmarks: C — N, C —
S,N—+C,N—S,S — C,and S — N. For each image, it has three regression tasks, i.e., predicting
three factors of variations (scale, position X and Y).

MPI3D [23]: It contains over 3M images from three domains: Toy (T), Realistic (RC) and Real (RL).
We evaluate all the baselines on six benchmarks: T — RC, T — RL, RC — T, RC — RL, RL — T,
and RL — RC. It is shown [10] that for each image, it involves two regression tasks, i.e., predicting
three factors of variations (position X and Y).

Plant Phenotyping: It aims to predict diverse traits (e.g., Nitrogen) of plants related to the plants’
growth using leaf hyperspectral reflectance (i.e., spectral wavelengths 500-2400 nm). Then the input
example with spectral wavelengths 500-2400 nm is formulated as a 1901-dimensional feature vector.
Here we consider the following two domains [46]: Maize (M) and Maize_ UNL (MU), where "M"
denotes the collected maize data from Illinois and "MU" denotes the collected maize data from
Nebraska. In our case, the task is to predict the Nitrogen content of maize using the leaf hyperspectral
reflectance.

For dSprites and MPI3D, following [10], we use the default train/test split for the target domain. In
this case, we randomly choose 100 training target images as the labeled examples, and others as the
unlabeled ones for all our experiments. For Plant Phenotyping, for the target domain, we randomly
5% of data as the label examples, and others as the unlabeled ones.

A.11.2 Implementations

All the experiments are performed on a Windows machine with four 3.80GHz Intel Cores, 64GB RAM
and two NVIDIA Quadro RTX 5000 GPUs. In the experiments, our algorithms are implemented
based on a L-layer (L. = 6) fully-connected neural network with ReLU activation function. In
dSprites and MPI3D data sets, the size of input images is 64 x 64 x 3, we simply vectorize the
input image to a 12288-dimensional vector. That is, each input image = € R'?288 can be learned by
the fully-connected neural network. The NNGP and neural tangent kernels induced by this neural
network can be estimated using the Neural Tangents package [41]. In addition, we set & = 0.5
and ¢ = 0.1 for our DINO-TRAIN method. Note that different from previous works [37, [10], all
the baselines will be trained from scratch and use the same neural network architecture for domain
adaptation. It is shown [60} [10] that initializing the neural network using existing pre-trained models
(e.g. ResNet-50 [26]) can improve the domain adaptation performance, but it is out of the scope of
this paper.

In our experiments, we use three deep domain adaptation baselines: DAN [37]], WANN [16] and
RSD [10]. DAN [37] and RSD [[10]] focus on domain invariant representation learning (see Subsec-
tion [3.2.T) by empirically minimizing the prediction error over the labeled training examples and the
domain discrepancy (i.e., maximum mean discrepancy or representation subspace distance). WANN
uses the reweighting technique in Subsection [3.2.2. Notice that DAN and RSD are proposed for
unsupervised domain adaptation with no label information from the target domain. In the experiments,
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for a fair comparison, we extend them to domain adaptation scenarios with little label information
from the target domain, by adding the prediction error over the labeled training target examples.

Besides, Figure @ shows the comparison of the proposed gradient-based MMD MMDg oa (50)
and conventional MMD with RBF kernel for domain adaptation in Subsection To be more
specific, we consider a simple 3-layer fully-connected neural network with ReL.U. Following [37],
we implement the domain adaptation approach by minimizing the prediction error over the labeled
training examples and the MMD with RBF kernel over the source and target features learned by
the first [ = 1,2, 3 layers. We denote those approaches as ‘MMD-RBF (layer 1)’, ‘MMD-RBF
(layer 2) and ‘MMD-RBF (layer 3)’ in Figure [3b, respectively. For a fair comparison, we use the
same neural network architecture to implement the domain adaptation approach with our proposed
MMDe,, , (-, -), which is denoted as ‘MMD-NTK in Figure
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