
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

RHKH: Relational Hypergraph Neural Network for Link
Prediction on N-ary Knowledge Hypergraph

Anonymous Authors

ABSTRACT
All along, KG completion relied on link prediction has always been
the focus of researchers. However, overwhelming majority of them
can only serve 2-ary KGs. While in practice, knowledge hyper-
graphs (KH) covering facts beyond binary relations are far more
ubiquitous but receive little attention. When confronted with them,
massive studies for KGs show inadaptability. The several work to-
wards N-ary KHs generally simply extend KG methods. And they
usually transform N-ary knowledge into role-value pairs or triples,
largely simplifying inherent association within each piece of knowl-
edge. Furthermore, previous models study each N-ary knowledge
independently, resulting in structural correlations among them be-
ing completely neglected. Motivated by these, avoiding breaking
knowledge structure in KHs like previous studies do, based on
original knowledge formats, we propose the first KH reasoning
model based on an innovative relational hypergraph neural net-
work (RHNN), RHKH. Challenged by complicated compositions
indicated by the original format of N-ary tuples, association within
and among each knowledge is discovered through RHNN. It consid-
ers complex interactions between relation and entities involved in
the same knowledge as well. To refine such interactions, semantic
components at each arity-position of relations are distinguished,
along with introducing position-specific shift. Extensive experi-
ments demonstrate the effectiveness of our RHKH.

CCS CONCEPTS
• Computing methodologies → Knowledge representation
and reasoning; Machine learning approaches.

KEYWORDS
Knowledge Graph, Knowledge Hypergraph, Link Prediction, Hy-
pergraph Neural Network

1 INTRODUCTION
Knowledge graphs (KGs) were initially proposed for facilitating
information retrieval [40].With the popularity of KGs, their promot-
ing effect in application scenarios also comes to the fore, including
recommendation systems [20], question answering [38] and natu-
ral language processing [35]. Up to now, plentiful KGs have been
proposed, such as Wikidata [28] and DBpedia [14].

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

However, even these widely used and recognized KGs are still
far from being complete and comprehensive [34]. Such incomplete-
ness seriously affects their value as storage platforms for managing
structural information, so as the support for downstream tasks [39].
Motivated by this, KG completion (KGC) becomes a focused re-
search point [5].

KGC is usually realized via link prediction, which is devoted
to discovering missing elements in given triples through existing
knowledge in the KG. For example, identifying the most possible
candidate for (e, r , ?). So far, many studies are targeted for KGC,
including TransE [3], ConvE [6] and so on.

Despite such great efforts, overwhelming majority of studies
default that KGs only cover instances of binary relations. Knowl-
edge hypergraphs (KHs) with N-ary facts beyond binary relations
are significantly neglected. While in practice, N-ary facts occupy a
considerable proportion, since most real-world knowledge has in-
herently complex compositions [7]. Statistically, in Freebase, 61% of
the relations are non-binary, covering more than 1/3 of entities [7].
These observations greatly motivate the focus on KHs. An example
of comparing KG and KH is in Figure 1. As a 3-ary relation actInFilm,
Saldana plays Neytiri in Avatar is one of its induced instances. For
clarity, we call N-ary knowledge in KHs as tuples in the following
contents.

Shakespeare England

Macbeth Hathaway

wasBornIn

create wasBornIn
wasMarriedTo

Avatar Neytiri

Saldana

Best
Actress

Guardians of
the Galaxy

EnglaTeen
Choice

Awardsnd

actInFilm

wasAwardedFor

Shakespeare England

Macbeth Hathaway

wasBornIn

create wasBornIn
wasMarriedTo

Avatar Neytiri

Saldana

Best
Actress

Guardians of
the Galaxy

Teen
Choice
Awards

actInFilm

wasAwardedFor

Figure 1: Knowledge graph V.S. knowledge hypergraph.

When encountered with KHs, it seems natural to convert its
tuples into binary ones and then directly apply KG embedding
models. As available methods, reification [4] transforms each N-ary
relation into N binary ones and supplement an auxiliary entity to
decompose the tuple into N triples. S2C [33] converts the N-ary
tuple into

(N
2
)
triples, each with an auxiliary relation. An example

is shown in Figure 2. flight(Brussels, Chicago, Paris) is converted
into (e1, flight1, Brussels), (e1, flight2, Chicago), (e1, flight3, Paris) via
reification, and into (Brussels, flight12, Chicago), (Brussels, flight13,
Paris), (Chicago, flight23, Paris) via S2C.

However, simplifying KHs into KGs like above fail to yield sat-
isfactory results for link prediction on KHs [7]. Specifically, com-
pleting one N-ary tuple requires considering multiple decomposed
triples meanwhile. While it is inconsistent with existing KG embed-
ding models since they generally learn and perform link prediction
on each triple individually [11]. Abundant auxiliary entities also
bring more parameter and efficiency pressure [7]. Furthermore,

https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Brussels
Airlines

Shangh
ai

New
York

Chicago

Pari
s

Austrian
Airlines

e1 e2

e3

<flight2>
<flight1>

<flight3>

Brussels
Airlines

Shanghai

New
York

Chicago

Paris

Austrian
Airlines

<flight>
Brussels
Airlines

Shanghai

New
York

Chicago

Paris

Austrian
Airlines

<flight12>

<flight23> <flight13>

(a)Reification (b)S2C

Figure 2: Convert N-ary knowledge induced by relation
flight into triples through Reification or S2C.

this cut associations among entities in the same tuple, causing ir-
reversible loss of structural information [33]. All these potentially
affect the accuracy of link prediction. For example, flight(Brussels,
New York, Paris) is mistakenly regarded as true from Figure 2(b).

Apart from above thought, a few studies propose models tar-
geted for link prediction on KHs as the extensions of studies on
KGs. Typically, m-TransH [33] extends TransH [32] by summing
projected entities on the hyperplane in each tuple. Meanwhile, they
generally reconstruct each N-ary tuple as a primary triple with
qualifiers or role-value pairs {(ri : vi)}ni in advance [11, 19]. For
example, actInFilm(Saldana, Neytiri, Avatar) is reconstructed as
{Actor:Saldana, Role:Neytiri, Film:Avatar}.

However, their simplifying of internal associations of each tuple
cause problems. Firstly, not each N-ary tuple could be considered
as possessing a primary triple [11]. Even ignored this, these re-
constructions split up each tuple, breaking its complete internal
association and relation semantics. Although some work attempts
to make up for this, only the likelihood of pairwise co-occurrence of
entities, or information flow from role-value pairs to their primary
triple are emphasized, rather than the whole associations among
involved entities indicated by original knowledge format [37]. Es-
sentially, the methods utilizing primary triples usually still treat
link prediction on N-ary tuple as the one on triples, only with ad-
ditional information {(ri : vi)}ni available [9]. Furthermore, the
interaction between entity and relation at different arity-positions
in each tuple is not explicitly modeled. In addition to such internal
relatedness, association among various tuples is even completely
ignored by existing studies. For example, wasAwardedFor(Chastain,
Best Actress, Academy Award, The Eyes of Tammy Faye) could be the
clue for actInFilm(Chastain, Tammy Faye, The Eyes of Tammy Faye).

All these promote us to model tuples based on original knowl-
edge format in KHs, rather than simplifying their inherent complex
compositions via reconstruction. Directly confronting complicated
interactions in high-ary data naturally poses greater challenge.
Association within and among tuples should also be considered.
As a powerful tool for discovering associations among entities,
GNNs [42] are for graphs, rather than hypergraphs. Typically, for
every entity e in the hypergraph, its each neighboring tuple no
longer includes only one entity, entities therein also interact with
each other when contributing to e . Previous hypergraph neural net-
works [8] do not work in KHs as well since they are all for general
hypergraphs, where undirected hyperedges only represent links
among nodes, without any meaning or labels, completely different
from KHs [7].

Motivated by these, avoiding simplifying or converting knowl-
edge structure in KHs like previous studies do, we innovatively
propose a model for link prediction on N-ary KHs based on original

knowledge formats in KHs, RHKH. Particularly, a novel relational
hypergraph neural network specifically for KHs is proposed and
employed in RHKH. It discoveries correlation within each tuple in
KHs through neighboring aggregation. Also, the association among
tuples could be established through their co-occurrence in the neigh-
borhood of certain entities. Thus, the key issues mentioned above
could be properly answered. Specifically, we adopt a hierarchical
aggregation scheme that works within and among tuples succes-
sively. The peculiarity of KHs, namely hyperedges are relations with
various semantics is highlighted in this process. Furthermore, the
entity-relation interaction at various arity-positions in each tuple is
modeled as well. And to refine such interactions, for each relation,
its semantic components acting on different arity-positions are dis-
tinguished. Position-specific offset is also introduced. Contributions
of this work are summarized below.

• The usual preprocessing of converting N-ary tuples and pick-
ing primary triples in previous studies is omitted in RHKH,
possible manual efforts are also saved. Rather than their
simplifying or converting of knowledge structure, based on
original knowledge formats, we propose the first model for
link prediction on KHs based on a novel relational hyper-
graph neural network (RHNN).
• Challenged by complicated compositions indicated by origi-
nal knowledge formats in KHs, associationwithin and among
tuples are considered through our RHNN.
• Evaluation methods on the credibility of each tuple com-
prehensively considers its inherent relatedness, including
the interaction of involved entities and relations at each
arity-position and position-related correlations.
• Extensive experiments fully demonstrate the effectiveness
and advantages of our RHKH.

2 RELATEDWORK
We first outline the representative models proposed for KGs since
some of them are the basis for studies on KHs. Then, as the directly
related work, studies for N-ary KHs are reviewed. Overall, embed-
dings methods are the key paradigm for link prediction on KGs
and KHs [19]. Generally, they first learn vector representation of
entities and relations in respective way. Then, subsequent processes
like link prediction are carried out in the obtained embedding space.

2.1 Link Prediction on KGs
Most of existing studies are for KGs, divided into translation meth-
ods, bilinear models and the ones based on neural network. Trans-
lation models are represented by TransE [3], it regards relations as
semantic translations from head to tail entity, namely e + r ≈ e ′.
TransH [32] improves it by introducing hyperplanes. Bilinear mod-
els views KG as 3-order tensor, where each element corresponds
to a triple. DistMult [36] adopts eMr e ′ to reconstruct the 3-order
tensor, TuckER [2] applies Tucker composition [26]. SimplE [12]
further considers inverse relations to cover asymmetric features.
Neural networks are also utilized, such as ConvE [6] applies 2D
convolution on the concatenation of embeddings in each triple.
Some studies utilize graph neural networks [21, 27], while they can
only apply to KGs merely covering binary knowledge.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

RHKH: Relational Hypergraph Neural Network for Link Prediction on N-ary Knowledge Hypergraph ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

★

... ...

��

★

★

... ...

Aggr

...

�1

�2

�...

aggr

fc

��

�� �1 �2
�� �2 �3 �4

...��

��
. . .

��
�2

�1

�3

�1

�2
. . .
�...

�4

(c) Optimaization
Objective

Example
Knowledge Hypergraph

In-tuple Convolution Cross-tuple
convolution

Entity
Embeddding

Multi-
Relational

Embeddding

(a) RHNN

(b) N-ary evaluation
function

Our RHKH

Figure 3: Overview of RHKH. Firstly, RHNN is adopted to consider associations within and among each tuple in a hierarchical
way to aggregate and combine entity embeddings with their neighboring features, from entity-relation-interaction at each-
arity position, in-tuple convolution to cross-tuple convolution. Then, based on these enhanced entity and relation embeddings,
the evaluation function towardsN-ary tupleworks to calculate confidence score of each tuple. Finally, synthesizing these score,
optimization is carried out to data-fit the KH.

2.2 Link Prediction on N-ary KHs
Studies devoted to N-ary KHs are significantly scarcer, which gener-
ally follow above three categories. For each tuple, translation model
m-TransH [33] generalizes TransH [32] via projecting entities in
the same tuple onto the relation-specific hyperplane. Its credibility
is defined by the weighted sum of projected results. HSimplE and
HypE [7] further introduce positional convolutional weight filters
to capture the role of entities at different arity-positions. BoxE [1]
is a spatio-translational model, inducing entities in the same tuple
to be located in a geometric region. The generalized bilinear model
GETD [15] is based on Tucker and Tensor ring decomposition [41].
However, it can only apply to KHs whose tuples are with the same
arity number.

As neural-network-based models, NaLP [11] and RAM [16] rep-
resent each tuple as role-value pairs and applies fully-connected lay-
ers to discovery their pairwise relatedness, while HyConvE [29] uti-
lizes both 2D and 3D convolution. Others reconstruct the tuple into
a primary triple with additional descriptions{(e, r , e ′), {(ri : vi)}ni }.
However, not each tuple has a primary triple [11]. Even ignored
this, STARE [9], QUAD [22] and Hy-Transformer [37] completely
ignore associations among {(ri : vi)}ni . They essentially treat N-ary
KHs as KGs with additional information. And they only study link
prediction on primary triples, rather than the whole N-ary tuple.
Therefore, we do not focus much on them or consider them as
baselines. HINGE [19], GRAN [31] and NeuInfer [10] also mainly
consider the principal and subordinate relationship, namely the
information flow from {(ri : vi)}ni to (e, r , e ′). Relatedness among
{ri : vi }ni and information flow from (e, r , e ′) to {(ri : vi)}ni is
ignored, even though {vi }ni are also entities in the original tuple.

Therefore, as aforesaid in Sec.1, existing studies almost all re-
construct original knowledge format in KHs. And the associations
within and among tuples are largely ignored by them.

3 PROBLEM STATEMENT
KH is denoted as H = (E,R,K), where E,R,K respectively re-
fer to the set of entities, relations and tuples in H . Each N-ary
tuple τi ∈ K represents a piece of knowledge, defined as τi :
r (e1, e2, ..., e |r |), |r | is the arity number of r , namely the number of
entities that instances of r cover. It is fixed for each r , and ∀r ∈ R,
|r | ≥ 2 in KHs. Assuming that Kr is the set of tuples with r ,
Kr ⊆ {r } × E

|r | . We use bold lower-case to represent vectors
in the embedding space, like e for e ∈ E. Arity-position repre-
sents the position of entities in each tuple. For example, e1 is at the
1st arity-position of r1 in the tuple r1(e1, e2, e3).

Formally, let K∗ be the underlying complete knowledge set in
the real world, KH completion (KHC) is for predicting the missing
knowledge in K , namely K∗ K . Link prediction is the common
means for implementing KH completion. It discoveries the missing
element in a given tuple via existing information in the KH. For
example, identifying the most possible candidate for r (e1, e2, ?, e4).

4 THE RHKHMETHOD
Instead of simplifying full semantics and intrinsic relatedness of
each tuple through converting knowledge structure in previous
studies, RHKH is based on original knowledge formats in KHs.
Challenged by complicated compositions in original N-ary tuples,
RHKH adopts our novel relational hypergraph neural network,
which could consider associations within and among each tuple.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

To refine the association in every tuple, interactions of entities and
relation at each arity-position are modeled, along with position-
specific correlation.

RHKH is shown in Figure 3. Firstly, we employ our RHNN to
learn neighborhood information and enhance entity embeddings.
Then, N-ConvE is proposed to evaluate the truth value of tuples.
Based on it, the optimization objective is defined, enabling RHKH
gradually learns semantics indicated by tuples. They are introduced
in Sec.4.1, 4.2, 4.3, respectively.

4.1 Relational Hypergraph Neural Network
Figure 4 shows example work-flow of our relational hypergraph
neural netowrk, which aggregates and combines neighboring fea-
tures in KHs. Overall, it follows a hierarchical aggregation scheme
that works within and among each neighboring tuple in turn. Dif-
ferent from general hypergraphs, the peculiarity of KHs is that their
edges are not links without any meaning, but relations with vari-
ous semantics. Relations play a significant role, and entities often
highlight different aspects under the effect of distinct relations [30].
Therefore, the interaction between entities and relation in each
tuple is considered. Semantic components of every relation at each
arity-position are also distinguished to refine the characterization
of such interaction.

�1 �3

�2

�2 �5

�3 �4�1

Neighborhood matrix

��� �� �� �� ��
1 �11 �12 �13 0 0

2 0 �21 �24 �23 �22
3 �31 �33 0 0 �32

�5
(�)

�5
(�) ∙ �32

(�)

�2
(�) ∙ �33

(�)

�2
(�) ∙ �12

(�)

�3
(�) ∙ �13

(�)

⨁

⨁

��1←3
(�)

��1←1
(�)

⨂ ��1
(�) ⨁

�1
(�) ∙ ��

(�)

�2
(�)

�3
(�)

�1
(�)

�1
(�+1)

update�

(a) In-tuple Aggregation
(b) Cross-tuple

Aggregation (c) Combination

Figure 4: An example of updating the embedding of e1
through neighboring features ne(k)1 learned by RHNN.

Wefirst define the neighborhoodmatrixM |K |×|E | . Given r1(e1, e2, e3),
r2(e2, e5, e4, e3) and r3(e1, e5, e2) in an example KH,M is shown in
Figure 4. Each tuple covering e is one of its neighboring tuples,
corresponding to a row inM. We use circular correlation [18] to
model rich interactions between relation and entities in tuples, it
is the compression of tensor product that can capture rich interac-
tions [23]. For each entity-relation pair, it is defined below. F (·) is
fast Fourier transform, ⊙ is Hadamard product and (·) denotes the
complex conjugate.

e ⋆ r = F −1(F (e) ⊙ F (r)) (1)

Compared with binary relations, N-ary ones generally express
more complicated knowledge, includingmultiple sub-semantic com-
ponents. For example, three components of 3-ary relation actInFilm
respectively highlight aspects Actor, Role and Film of involved en-
tities at corresponding arity-position. Based on such observation,
representing r with a unique vector cannot cover its various seman-
tic components, nor can it express the interaction of r with entities
at its different arity-positions properly. To represent the role of
various semantic components, we denote r as {r , r1, r2, ..., r |r |}. r
is the embedding of r itself, representing its own features. ri refers
to the effect of r on its ith arity-position.

For each entity ei , the neighborhood information obtained from
itsmth neighboring tuple τm : r j (e1, ..e |r j |) is defined in formula(2).
As shown in Figure 4(a), neighboring information of e1 from r1(e1, e2, e3)
is e2 ⋆ r12 + e3 ⋆ r13. Similarly, in addition to e1, r1(e1, e2, e3) also
indicates corresponding neighboring information to e2 and e3.

nei←m =

|r j |∑
p=1,p,i

ep ⋆ rjp (2)

Then, from each row inM, corresponding neighboring infor-
mation to every included entity is obtained. These nei←m are
aggregated to constitute neighboring feature of each entity ei . It is
defined as formula(3). Nei is the set of neighboring tuples of ei ,W1
is the linear transformation matrix for extracting features and σ (·)
is activation function, corresponding to Figure 4(b).

nei = σ (
∑

τm :r j (e1, ..e |rj |)∈Nei

W1

|r j |∑
p=1,p,i

ep ⋆ rjp) (3)

Next, ei is combined with nei to retain the feature of ei itself. A
virtual relation rv is introduced, which only represents the links
pointing to entities themselves. Thus, it is denoted as a unique
vector, rv : {rv }. The entity embedding enhanced with neighboring
features is defined as formula(4).

ei =σ ((
∑

r j (e1, ..e |rj |)∈Nei

W1

|r j |∑
p=1

ep ⋆ rjp)

+W2(ei ⋆ rv)) (4)

During model training, in the (k + 1)th iteration, e(k+1)i is ob-
tained through the embeddings in the kth iteration, as shown in
formula(5) below, as shown in Figure 4(c).

e
(k+1)
i =σ ((

∑
r j (e1, ..e |rj |)∈Nei

W
(k)
1

|r j |∑
p=1,p,i

e
(k)
p ⋆ r

(k)
jp)

+W
(k)
2 (e

(k)
i ⋆ r

(k)
v)) (5)

Above process could also be expressed as matrix calculation in
formula(6). E(k) ⋆R(k)v W

(k)
2 combines entity embeddings, as for-

mula(5) shows. The part before it aggregates neighboring features,
as shown in formula(2-3). ⋆ is the same as it is defined in formula
(1), except that it is applied on matrices here. E(k) ∈ R |E |×d is
entity embeddings matrix in the kth iteration,H (k)r ∈ R |K |×|E |×d

′

acts like neighborhood matrix. For example, r1(e1, e2, e4) corre-
sponds to the row [r (k)11 , r

(k)
12 , 0, r

(k)
13 ...] inH

(k)
r . ⊕q sums over the

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

RHKH: Relational Hypergraph Neural Network for Link Prediction on N-ary Knowledge Hypergraph ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

qth dimension of HrD
− 1

2
e E(k), , like (⊕2(HrD

− 1
2

v E(k))) ∈ R |K |×d ,
(⊕1(HrD

− 1
2

v E(k))) ∈ R |E |×d . R
(k)
v ∈ Rd×d is the concatenation of

virtual relation rv .W
(k)
1 ,W (k)2 ∈ Rd×d

′

are for feature extraction.
d and d ′ could be the same or different. H |E |×|K |e is the incidence
matrix, He [i, j] = 1 if ei ∈ τj . D

|E |×|E |
e is the diagonal matrix for

normalization, De [i, i] =
∑ |K |
j=1 He [i, j].

E(k+1) =σ (D−
1
2

e (((He⊕2) − ⊕1)(H
(k)
r ⋆ (

D
− 1

2
e E(k))))W

(k)
1 + E(k) ⋆R(k)v W

(k)
2) (6)

Through such a hierarchical aggregation scheme in RHNN, local
context information of entities are encoded into their represen-
tations, namely the correlation within and among each high-ary
tuple. RHNN also models the interaction of entities and relations
at each arity-position meticulously, which is crucial for knowledge
reasoning [31].

4.2 Evaluation Function
Then, based on above neighborhood-enhanced entity embeddings,
the evaluation function on each tuple is defined. It aims to charac-
terize the credibility of correct or false knowledge, thus enabling the
model able to gradually distinguish between them during training.
Challenged by the complex compositions in N-ary tuples, it utilizes
powerful neural network to extract interaction features within each
tuple.

We generalize ConvE to propose a N-ConvE, which could be
applied to N-ary KHs. In KGs, for each triple (e, r , e ′), ConvE em-
ploys 2D convolution and fully connect layers on the concatenation
of e and r to establish their relatedness. Further interacted with
target entity e ′, the overall credibility of the triple is evaluated. It is
defined in formula(7). Symbols definitions are the same with those
in formula(9) below.

fr (e ,e ′) = σ (vec(σ ([e;r] ∗ ω))Y)e ′ (7)

While in KHs, for tuple ri (e1, .., e |ri |), N-ConvE discusses its over-
all credibility via regarding each of the involved entities as the target
entity successively. In addition, the role of various semantic compo-
nents of each relation are also distinguished in evaluation function,
thus analyzing the interaction at each arity-position elegantly. Such
position-related correlation is also imposed on entity embeddings
through position-specific shift. For any ri (e1, .., e |r |), the shift op-
erator is defined via a linear layer in formula(8). [v1;v2] performs
concatenation onv1 andv2, onehot(|ri |,p) is one-hot encoding,
returning the |ri |-dimensional vector v , v[p] = 1, vq,p [q] = 0. Z
is for linear transformation, b is bias vector.

θri (ep ,p) = [ep ;onehot(|ri |,p)]Z + b (8)

Formally, our evaluation function for each N-ary tuple is defined
below. Formula (9) characterizes the credibility of ri (e1, .., e |ri |)
when regarding ep in it as the target entity, it is the extended form
of formula(7) for tuples. The whole evaluation function is in formula
(10). ◦ denotes Hadamard production, establishing the interactions
between corresponding semantic component of the relation and
the entity at each arity-position. (v) reshapesvk×1, transforming
it into vkw×kh , k = kwkh . σ is activation function, ∗ refers to

Table 1: Statistics of the datasets.

|E | |R | |Kt r ain | |Kval id | |Kt est |

FB-AUTO 3410 8 6778 2255 2180
JF17K 29177 327 61911 15822 24915
M-FB15K 10314 71 415375 39348 38797
WN18RR 40943 11 86835 3034 3134
FB15K-237 14541 237 272115 17535 20466

convolution filters, vec(·) flattens the tensor into a vector. Y is for
linear transformation. θri is the shift operator defined in formula(8),
acting on entities, [•; •] is concatenation operator.

f
p
ri (e1,e2, ..,e |ri |)

=σ (vec(σ ([
|ri |∑

j=1, j,p
(θri (ej ◦ ri j, j));ri]

∗ ω))Y)(θri (ep ◦ rip ,p)) (9)

fri (e1,e2, ..,e |ri |)
=

1
|ri |

|ri |∑
p=1

f
p
ri (e1,e2, ..,e |ri |)

(10)

We employ such a neural-network-based evaluation function due
to the satisfactory ability of neural networks in KGs [24]. For com-
parison, we also generalize the representative evaluation functions
of other two categories, namely translation-based TransE and bilin-
ear DistMult. However, they are not expressive enough to evaluate
N-ary knowledge, which could be demonstrated in experiments in
Sec.5.2. N-TransE and N-DistMult are defined below.

f
′

ri (e1,e2, ..,e |ri |)
= (

|ri |∑
p=1

shi f tri (ep ◦ rip ,p)) + ri (11)

f
′′

ri (e1,e2, ..,e |ri |)
= (

|ri |∏
p=1

shi f tri (ep ◦ rip ,p))ri (12)

4.3 Optimization Objective
Based on above process, the whole optimization objective of RHKH
is defined in formula(13). Overall, the goal of training is to make
the embedding space gradually conform to semantics indicated
by tuples in the KH, thus enabling the model to distinguish be-
tween right and wrong knowledge tuples. Towards such target,
we define the cross-entropy loss function to establish score gap
between correct and wrong tuples as follows. And the optimiza-
tion process is carried out using Adam optimizer [13]. Tuples
in the KH naturally constitutes positive samples. Negative sam-
ples of τm : ri {e1, ..., er |i |} ∈ K is constructed through replacing
ep :p∈{1,2, ..., |ri | } in τm with other e ′ ∈ E in turn, denoted as τ ′m .
Kτm is the set of negative instances corresponding to τm ,K−τm , plus
τm . f is the evaluation function defined in formula(10). y refers to
0,1 label, positive tuples are marked with 1 and negative ones are

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Algorithm 1 RHKH

Require: KHH = (E,R,K), maximum Iteration N , batch size
1: Initialization
2: for k = 1 to N do
3: Aggregate neighboring features, as shown in formula (2-3).
NE(k) ← aддreдate(E(k),R(k),M)

4: Combine neighboring features, as shown in formula (4).
E(k+1) ← combine(NE(k),N(k))

5: for each batch S ⊆ K do
6: Negative sampling as required in formula (13)

S+ = S ∪ {K−τm |τm ∈ S}
7: Update embeddings w.r.t∇L in formula (13).
8: end for
9: end for

with 0. s(·) is the logistic sigmoid function.

L =
∑

τm ∈K

(−
1
|Kτm |

∑
τm′ ∈Kτm

(yτm′ • log(s(fτm′))

+ (1 − yτm′) • log(1 − s(fτm′)))) (13)

The workflow of RHKH is summarized in Algorithm 1. RHKH
first initializes parameters and embeddings of entities, relations in
the KH, as Line 1 shows. As the iteration shown in Line 2-8, associ-
ations within and among N-ary tuples are first modeled through
aggregating neighboring features of entities, as shown in formula(2-
3). Then, aggregated features are combined with the embeddings of
entities themselves, as discussed in formula(4). Finally, as Line 5-8
shows, RHKH negatively samples each training batch and performs
optimization for current batch.

5 EXPERIMENTS
The performance of RHKH is evaluated in this section. We first
introduce our experimental setup. Then, the experiments results
for each task are reported in turn.

5.1 Experimental Setup
5.1.1 Evaluation Protocol. For each test tuple τm : ri (e1, ..., e |ri |) ∈
Ktest , entities at each of its arity-position are taken into evaluation.
Specifically,∀e ∈ E will be filled into the position being evaluated,p,
in turn. Then, these constituted tuples ri (e1, ..., e, ...e |ri |) are rated
via evaluation function in Sec 4.2. The scores are sorted, where the
rank of the correct answer ep is naturally available. Performing
such process at each arity-position for every tuple in the test set,
the value of evaluation metricsMRR and Hit@K could be obtained.

5.1.2 Datasets. Following previous work, the experiments are con-
ducted on three N-ary KH datasets, namely JF17K, FB-AUTO and
M-FB15K [7]. When testing RHKH on different arity number, 2-ary
KGs are also considered, including classical FB15K-237 [25] and
WN18RR [6]. Table 1 shows statistics.

5.1.3 Baselines. Existing work for link prediction on N-ary KHs
constitute themajor comparison, includingm-TransH [33], BoxE [1],
NaLP [11], NeuInfer [10], GRAN [31], HINGE [19], GETD [15],
RAM [16], HyConvE [29], along with HypE, HSimplE, m-CP and
m-DistMult in [7]. GETD could only be applied to the KHs whose

tuples are all with the same number of arity. Therefore, we split
each dataset according to arity number of tuples and run GETD on
the decomposed datasets in turn. GETD reports the synthesis of
results on these decomposed datasets.

5.1.4 Implementations. We employ tanh(·) as activation function
σ in RHKH. The optimal combination of hyperparameters is de-
termined via the performance on valid set. The dimension of em-
beddings is set to 200, batch size is 256, and maximum iteration is
500. The learning rate lr is in {0.0005, 0.001, 0.005, 0.01}. Dropout
rate in and after RHNN hd,d , feature dropout f d in N-ConvE
are all in {0.0, 0.1, 0.2, 0.3}. Specifically, on experiments datasets,
lr = 0.001,hd = 0.0,d = 0.2, f d = 0.3, besides f d = 0.2 on JF17K.
RHKH is implemented using V100. For the baselines, we follow
their provided codes and optimal settings to run them in our exper-
imental environment and report corresponding results. The code
of RHKH and datasets are provided as the supplementary material,
and hyperparameters value on each dataset are also annotated.

5.2 Experiments Results
5.2.1 Link Prediction on N-ary KHs. We first evaluate the reasoning
performance of RHKH on KHs via link prediction task. Table 2
shows the results. In addition to primary baselines introduced in
Sec.5.1, the scheme converting KHs into triples and then applying
models for link prediction on KGs is also considered. Actually,
almost all previous studies including [7, 11, 33] prove the defects of
such scheme theoretically and experimentally, such as information
loss and poor performance. Even though, we still include this idea
into comparison and apply several representative models for KGs
here to fully demonstrate the effectiveness of RHKH.

With similar thought, [7] employs r-SimplE as the baseline,
which uses SimplE on datasets transformed through reification.
Following such approach, we also first transform KHs into triples
via reification or S2C, and then apply typical models proposed for
KGs. Specifically, TransE, RotatE, SimplE and CompGCN, which are
respectively the representative of three categories, namely trans-
lation methods, bilinear models and neural-network-based ones.
In Table 2, s− and r− denote that the model runs on the datasets
transformed through S2C or reification. For all baselines, their re-
sults are obtained by following their provided codes and optimal
settings in our experimental environment.

As Table 2 shows, by comparison, applying models for KGs on
the transformed KHs performs generally poor. Such conclusion is
consistent with previous studies like [7], further confirming the
necessity of specifically proposing a model for KHs. Furthermore,
our RHKH outperforms other baselines and shows satisfactory
performance. This demonstrates the effectiveness of our model.

5.2.2 Study on Instances Datasets of Different Arity Number. We
further analyze the performance of RHKH on various arity num-
bers. Each dataset is divided according to the arity number |ri | of
tuples ri (e1, ..., e |ri |). Compared with the baselines proposed for
KHs, results are shown in Table 3. For the arity number two, in Table
4, we additionally consider KGs since they only cover 2-ary tuples,
namely WN18RR and FB15K-237. It is also for demonstrating the

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

RHKH: Relational Hypergraph Neural Network for Link Prediction on N-ary Knowledge Hypergraph ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Experimental results of link prediction on N-ary KHs.

FB-AUTO JF17K M-FB15K
MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1

r-TransE 0.249 0.509 0.291 0.132 0.234 0.432 0.274 0.133 0.122 0.244 0.126 0.060
s-TransE 0.134 0.380 0.183 0.021 0.114 0.345 0.112 0.018 0.085 0.228 0.062 0.027
r-RotatE 0.338 0.551 0.390 0.221 0.391 0.603 0.442 0.280 0.176 0.391 0.182 0.081
s-RotatE 0.160 0.395 0.225 0.038 0.145 0.399 0.145 0.040 0.071 0.178 0.043 0.023
r-SimplE 0.266 0.444 0.321 0.169 0.126 0.285 0.129 0.056 0.052 0.112 0.062 0.016
s-SimplE 0.161 0.372 0.216 0.050 0.104 0.253 0.097 0.035 0.085 0.209 0.074 0.027
r-CompGCN 0.349 0.364 0.349 0.342 0.416 0.440 0.415 0.404 0.345 0.355 0.344 0.341
s-CompGCN 0.454 0.602 0.485 0.380 0.395 0.582 0.430 0.301 0.398 0.474 0.413 0.359

m-TransH 0.788 0.869 0.824 0.740 0.422 0.570 0.466 0.336 0.614 0.808 0.661 0.518
m-DistMult 0.776 0.856 0.826 0.720 0.454 0.635 0.503 0.359 0.708 0.851 0.745 0.634
m-CP 0.780 0.838 0.804 0.747 0.402 0.564 0.446 0.317 0.676 0.827 0.713 0.599
HypE 0.805 0.846 0.825 0.779 0.496 0.658 0.542 0.409 0.764 0.870 0.788 0.711
HSimplE 0.758 0.858 0.805 0.698 0.474 0.654 0.526 0.376 0.738 0.863 0.769 0.674
BoxE 0.826 0.893 0.847 0.790 0.553 0.718 0.599 0.465 0.755 0.875 0.785 0.695
NaLP 0.634 0.755 0.683 0.563 0.202 0.294 0.216 0.152 0.104 0.170 0.106 0.067
GRAN 0.768 0.903 0.860 0.670 0.533 0.716 0.581 0.438 0.538 0.788 0.610 0.408
GETD 0.751 0.830 0.773 0.715 0.561 0.703 0.593 0.482 0.701 0.816 0.726 0.641
NeuInfer 0.622 0.706 0.659 0.569 0.340 0.454 0.369 0.282 0.348 0.554 0.379 0.252
HINGE 0.588 0.700 0.633 0.520 0.416 0.575 0.449 0.334 0.169 0.293 0.184 0.106
RAM 0.803 0.879 0.834 0.759 0.548 0.698 0.582 0.471 0.761 0.871 0.785 0.706
HyConvE 0.764 0.847 0.792 0.718 0.534 0.690 0.570 0.453 0.438 0.636 0.468 0.343
RHKH 0.877 0.913 0.890 0.857 0.565 0.713 0.602 0.487 0.808 0.905 0.827 0.765

Table 3:MRR of link prediction on tuples with different arity number.

FB-AUTO JF17K M-FB15K
Arity=2 3 4 ≥5 Arity=2 3 4 ≥5 Arity=2 3 4 ≥5

m-TransH 0.370 - 0.285 0.895 0.213 0.452 0.622 0.764 0.515 0.609 0.833 1.000
m-DistMult 0.501 - 0.301 0.849 0.316 0.486 0.585 0.600 0.526 0.720 0.875 0.964
m-CP 0.435 - 0.134 0.874 0.241 0.452 0.492 0.628 0.522 0.682 0.938 0.995
HypE 0.411 - 0.344 0.905 0.291 0.536 0.694 0.756 0.687 0.764 1.000 1.000
HSimplE 0.499 - 0.330 0.827 0.318 0.531 0.569 0.600 0.587 0.747 0.875 0.999
BoxE 0.458 - 0.447 0.919 0.365 0.568 0.794 0.817 0.582 0.767 1.000 1.000
NaLP 0.038 - 0.043 0.782 0.053 0.172 0.551 0.336 0.068 0.080 0.005 0.712
GRAN 0.362 - 0.524 0.864 0.283 0.578 0.788 0.847 0.388 0.547 0.778 0.791
GETD 0.533 - 0.224 0.813 0.329 0.620 0.750 0.829 0.697 0.709 0.875 0.540
NeuInfer 0.134 - 0.115 0.743 0.122 0.380 0.567 0.587 0.137 0.393 0.001 0.009
HINGE 0.073 - 0.222 0.713 0.216 0.441 0.722 0.508 0.212 0.143 0.001 0.588
RAM 0.529 - 0.449 0.873 0.334 0.590 0.732 0.830 0.624 0.768 0.877 1.000
HyConvE 0.198 - 0.457 0.897 0.287 0.587 0.768 0.792 0.408 0.415 1.000 1.000
RHKH 0.545 - 0.463 0.962 0.314 0.624 0.774 0.887 0.724 0.810 0.875 1.000

effectiveness of our model against traditional KGs. The representa-
tive models only proposed for KGs are also considered as baselines
in Table 4, their results are from [17].

From Table 3, RHKH almost outperforms all baselines, including
tuples of various arity number and 2-ary triples. This point is also
indicated by Table 4. When applied to KGs, RHKH shows obvious
advantages over other models proposed for N-ary KHs. Meanwhile,
it is also competitive with the work put forward only for KGs.

These conclusions show the applicability of RHKH in the face of
knowledge with different arity number, and further demonstrate
its effectiveness.

5.2.3 Ablation Study. Ablation study is carried out to test the effec-
tiveness of each major component in RHKH. Specifically, −multi
no longer distinguishes various semantics components of each re-
lation and −shi f t omits the position-specific shift. −r regards KHs

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 4:MRR and Hit@1 of link prediction on 2-ary KGs.

WN18RR FB15K-237
MRR Hit@1 MRR Hit@1

TransE 0.226 0.056 0.294 0.198
RotatE 0.476 0.428 0.337 0.241
DistMult 0.430 0.390 0.241 0.155
TuckER 0.470 0.443 0.358 0.266
ConvE 0.430 0.400 0.325 0.237
CompGCN 0.479 0.443 0.355 0.264

m-TransH 0.310 0.267 0.182 0.110
m-DistMult 0.399 0.381 0.231 0.142
m-CP 0.026 0.017 0.222 0.140
HypE 0.380 0.359 0.268 0.170
HSimplE 0.181 0.136 0.252 0.161
BoxE 0.441 0.395 0.320 0.220
NaLP 0.394 0.371 0.160 0.119
GRAN 0.452 0.418 0.342 0.251
GETD 0.437 0.406 0.300 0.217
NeuInfer 0.051 0.044 0.136 0.093
HINGE 0.311 0.263 0.184 0.120
RAM 0.425 0.361 0.266 0.183
HyConvE 0.284 0.200 0.256 0.163
RHKH 0.480 0.445 0.353 0.271

Table 5: MRR on ablated models.

FB-AUTO JF17K M-FB15K

-multi 0.861 0.547 0.791
-shift 0.860 0.557 0.795
-r 0.858 0.553 0.796
-/+translation 0.837 0.536 0.659
-/+bilinear 0.855 0.535 0.727

as general hypergraphs like previous HGNN do, various relation
semantics on hyperedges are ignored. That is, neighborhood aggre-
gation only works on neighboring entities, the effect of relations
are completely removed in formula (2-5) in RHNN. −/+translation
and −/+bilinear refer to replacing our evaluation function with
N-TransE and N-DistMult in formula (11-12), respectively. Results
are reported in Table 5.

As Table 5 shows, omitting each of these major components af-
fects the effectiveness of RHKH, demonstrating their role in RHKH.
The comparison with −/+translation and −/+bilinear reflects that
relatively simple translation and bilinear evaluation function may
be insufficient to capture intrinsic correlation in N-ary tuples, stat-
ing our motivation for adopting a neural-network-based evaluation
function.

To sum up, firstly, since RHKH is based on original knowledge
format in KHs, possible efforts of converting N-ary tuples and pick-
ing primary triples in previous work could be saved. Secondly,
compared with existing studies, RHKH almost always shows advan-
tages, including KHs and KG, demonstrating its effectiveness and
adaptability for various arity number. Thirdly, in ablation study,

omitting each of its major components affects RHKH, embodying
their role.

6 CONCLUSION AND FUTUREWORK
Different from previous work, we do not transform the structure
of N-ary tuples in KHs into triples or role-value sets, which would
cause potential issues like the loss of structural information, the
severing of intrinsic relatedness within each tuple and so on. Based
on original knowledge format in KHs, we propose the first model
for link prediction on KHs based on a novel relational hypergraph
neural network (RHNN) specifically proposed for KHs, RHKH. Chal-
lenged by complicated compositions indicated by original knowl-
edge formats in KHs, the association within and among each tuple
is discovered via hierarchical aggregation in RHNN.

In particular, hyperedges among nodes are with various seman-
tics, rather than the ordinary edges without special meanings is one
of the distinguishing features of KHs from general hypergraphs. To-
wards this, RHKH emphasizes the interaction of relation and entities
involved in the same tuple to combine specific relational contexts.
To further refine such entity-relation interaction, semantic com-
ponents at each arity-position of every relation are distinguished,
position-specific shift is also introduced. In addition, RHKH pro-
poses evaluation function towards the credibility of N-ary tuples,
N-ConvE. Extensive experiments demonstrate the effectiveness and
superiority of RHKH.

Regarding future work, various relation patterns in KHs are
considered to be discovered and studied.

REFERENCES
[1] Ralph Abboud, Ismail Ceylan, Thomas Lukasiewicz, and Tommaso Salvatori.

2020. Boxe: A box embedding model for knowledge base completion. Advances
in Neural Information Processing Systems 33 (2020), 9649–9661.

[2] Ivana Balažević, Carl Allen, and Timothy M Hospedales. 2019. Tucker: Tensor
factorization for knowledge graph completion. arXiv preprint arXiv:1901.09590
(2019).

[3] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. Advances in neural information processing systems 26 (2013).

[4] Dan Brickley, Ramanathan V Guha, and Brian McBride. 2014. RDF Schema 1.1.
W3C recommendation 25 (2014), 2004–2014.

[5] Xiaojun Chen, Shengbin Jia, and Yang Xiang. 2020. A review: Knowledge reason-
ing over knowledge graph. Expert Systems with Applications 141 (2020), 112948.

[6] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. 2018.
Convolutional 2d knowledge graph embeddings. In Proceedings of the AAAI
conference on artificial intelligence, Vol. 32.

[7] Bahare Fatemi, Perouz Taslakian, David Vazquez, and David Poole. 2019.
Knowledge hypergraphs: Prediction beyond binary relations. arXiv preprint
arXiv:1906.00137 (2019).

[8] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. 2019. Hy-
pergraph neural networks. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 33. 3558–3565.

[9] Mikhail Galkin, Priyansh Trivedi, Gaurav Maheshwari, Ricardo Usbeck, and Jens
Lehmann. 2020. Message passing for hyper-relational knowledge graphs. arXiv
preprint arXiv:2009.10847 (2020).

[10] Saiping Guan, Xiaolong Jin, Jiafeng Guo, Yuanzhuo Wang, and Xueqi Cheng.
2020. Neuinfer: Knowledge inference on n-ary facts. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics. 6141–6151.

[11] Saiping Guan, Xiaolong Jin, Yuanzhuo Wang, and Xueqi Cheng. 2019. Link
prediction on n-ary relational data. In The World Wide Web Conference. 583–593.

[12] Seyed Mehran Kazemi and David Poole. 2018. Simple embedding for link predic-
tion in knowledge graphs. Advances in neural information processing systems 31
(2018).

[13] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[14] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo NMendes, Sebastian Hellmann, MohamedMorsey, Patrick Van Kleef, Sören

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

RHKH: Relational Hypergraph Neural Network for Link Prediction on N-ary Knowledge Hypergraph ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Auer, et al. 2015. Dbpedia–a large-scale, multilingual knowledge base extracted
from wikipedia. Semantic web 6, 2 (2015), 167–195.

[15] Yu Liu, Quanming Yao, and Yong Li. 2020. Generalizing tensor decomposition
for n-ary relational knowledge bases. In Proceedings of The Web Conference 2020.
1104–1114.

[16] Yu Liu, Quanming Yao, and Yong Li. 2021. Role-aware modeling for n-ary
relational knowledge bases. In Proceedings of the Web Conference 2021. 2660–
2671.

[17] Ting Ma, Mingming Li, Shangwen Lv, Fuqing Zhu, Longtao Huang, and Songlin
Hu. 2022. ContE: contextualized knowledge graph embedding for circular rela-
tions. Data Mining and Knowledge Discovery (2022), 1–26.

[18] Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. 2016. Holographic
embeddings of knowledge graphs. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 30.

[19] Paolo Rosso, Dingqi Yang, and Philippe Cudré-Mauroux. 2020. Beyond triplets:
hyper-relational knowledge graph embedding for link prediction. In Proceedings
of The Web Conference 2020. 1885–1896.

[20] Lei Sang, Min Xu, Shengsheng Qian, and Xindong Wu. 2021. Knowledge graph
enhanced neural collaborative recommendation. Expert Systems with Applications
164 (2021), 113992.

[21] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In European semantic web conference. Springer, 593–607.

[22] Harry Shomer, Wei Jin, Juanhui Li, Yao Ma, and Jiliang Tang. 2022. Learn-
ing Representations for Hyper-Relational Knowledge Graphs. arXiv preprint
arXiv:2208.14322 (2022).

[23] Paul Smolensky. 1990. Tensor product variable binding and the representation of
symbolic structures in connectionist systems. Artificial intelligence 46, 1-2 (1990),
159–216.

[24] Zhiqing Sun, Shikhar Vashishth, Soumya Sanyal, Partha Talukdar, and Yiming
Yang. 2019. A re-evaluation of knowledge graph completion methods. arXiv
preprint arXiv:1911.03903 (2019).

[25] Kristina Toutanova and Danqi Chen. 2015. Observed versus latent features
for knowledge base and text inference. In Proceedings of the 3rd workshop on
continuous vector space models and their compositionality. 57–66.

[26] Ledyard R Tucker. 1966. Some mathematical notes on three-mode factor analysis.
Psychometrika 31, 3 (1966), 279–311.

[27] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. 2019.
Composition-basedmulti-relational graph convolutional networks. arXiv preprint
arXiv:1911.03082 (2019).

[28] Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: a free collaborative
knowledgebase. Commun. ACM 57, 10 (2014), 78–85.

[29] Chenxu Wang, Xin Wang, Zhao Li, Zirui Chen, and Jianxin Li. 2023. HyConvE:
A Novel Embedding Model for Knowledge Hypergraph Link Prediction with
Convolutional Neural Networks. In Proceedings of the ACM Web Conference 2023,
WWW 2023, Austin, TX, USA, 30 April 2023 - 4 May 2023. 188–198.

[30] Hongwei Wang, Hongyu Ren, and Jure Leskovec. 2021. Relational message
passing for knowledge graph completion. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining. 1697–1707.

[31] Quan Wang, Haifeng Wang, Yajuan Lyu, and Yong Zhu. 2021. Link prediction on
n-ary relational facts: A graph-based approach. arXiv preprint arXiv:2105.08476
(2021).

[32] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge
graph embedding by translating on hyperplanes. In Proceedings of the AAAI
conference on artificial intelligence, Vol. 28.

[33] Jianfeng Wen, Jianxin Li, Yongyi Mao, Shini Chen, and Richong Zhang. 2016. On
the representation and embedding of knowledge bases beyond binary relations.
arXiv preprint arXiv:1604.08642 (2016).

[34] Robert West, Evgeniy Gabrilovich, Kevin Murphy, Shaohua Sun, Rahul Gupta,
and Dekang Lin. 2014. Knowledge base completion via search-based question
answering. In Proceedings of the 23rd international conference on World wide web.
515–526.

[35] Bishan Yang and Tom Mitchell. 2019. Leveraging knowledge bases in lstms for
improving machine reading. arXiv preprint arXiv:1902.09091 (2019).

[36] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2014. Em-
bedding entities and relations for learning and inference in knowledge bases.
arXiv preprint arXiv:1412.6575 (2014).

[37] Donghan Yu and Yiming Yang. 2021. Improving hyper-relational knowledge
graph completion. arXiv preprint arXiv:2104.08167 (2021).

[38] Donghan Yu, Chenguang Zhu, Yuwei Fang,Wenhao Yu, ShuohangWang, Yichong
Xu, Xiang Ren, Yiming Yang, and Michael Zeng. 2021. Kg-fid: Infusing knowledge
graph in fusion-in-decoder for open-domain question answering. arXiv preprint
arXiv:2110.04330 (2021).

[39] Mohamad Zamini, Hassan Reza, and Minou Rabiei. 2022. A Review of Knowledge
Graph Completion. Information 13, 8 (2022), 396.

[40] Richong Zhang, Junpeng Li, Jiajie Mei, and Yongyi Mao. 2018. Scalable instance
reconstruction in knowledge bases via relatedness affiliated embedding. In Pro-
ceedings of the 2018 World Wide Web Conference. 1185–1194.

[41] Qibin Zhao, Guoxu Zhou, Shengli Xie, Liqing Zhang, and Andrzej Cichocki. 2016.
Tensor ring decomposition. arXiv preprint arXiv:1606.05535 (2016).

[42] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:
A review of methods and applications. AI Open 1 (2020), 57–81.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Link Prediction on KGs
	2.2 Link Prediction on N-ary KHs

	3 Problem Statement
	4 The RHKH Method
	4.1 Relational Hypergraph Neural Network
	4.2 Evaluation Function
	4.3 Optimization Objective

	5 Experiments
	5.1 Experimental Setup
	5.2 Experiments Results

	6 Conclusion and Future Work
	References

