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A BROADER IMPACT

Our method aims at improving the trustworthiness and reliability of deployment of MLLMs in real
world application, including but not limited to Vision Pro, autonomous driving, and also humanoid
robots. To have a virtual assistant like JARVIS in Marvel films, it’s necassry to align the understanding
of vision-language model with human’s understanding, so that we can ensure safe application of these
applications. Further, we are committed to reducing the carbon emissions produced by these models.
By employing our coarse correspondence prompting method, we use a much smaller tracking module
to reduce the number of input used as input to large GPT model. Besides, we also improve the
speed and lower the cost of calling OpenAl API to understand a 3d scene. This enables democratize
MLLMs so that more people and small companies can create their own real-world applications based
on GPT-4V. We hope our work can make large AI models more effectively used for social good.

Still, we would like to point out that with the development of MLLMs, increased reliance on advanced
MLLMs could also lead to a reduction in human skills, especially in interpreting and interacting
with visual content. Over-dependence on these models might erode critical thinking and analytical
abilities in the long term.

B RELATED WORK

Multimodal language models Multimodal LLMs(Liu et al., 2024;|Bai et al.,|2023)) integrate vision
encoders (Radford et al.||2021)) into large LLMs (Chiang et al., 2023} Touvron et al., [2023), allowing
them to directly reason over visual input. Many proprietary models, such as GPT-4 (OpenAl, 2023)),
Gemini (Team et al.,[2024), and Claude (Anthropicl 2024)), as well as open-source models like the
LLaVA series (Liu et al., [2024) and BLIP series (Li et al.,2023), have made significant progress in
2D vision-language tasks like image captioning (Chen et al.,[2015) and visual question answering
(VQA) (Hudson & Manning, 2019; |Goyal et al.l|2017). Beyond these language-related tasks, many
newer attempts applying MLLMs to applications such as autonomous driving (T1an et al.,[2024) and
robotics (Yang et al.| 2023b). Many of these tasks require understanding the 3D space in which they
are deployed and reason about how things are changing temporally. We improve the 3D space-time
capabilities of such models.

Visual prompting. Effective prompting has been widely proven to improve LL.Ms across multi-
ple domains. Methods, such as chain-of-thought prompting (Wei et al.| |2023)), force the model to
reason before answering a question. For multimodal LLMs, methods such as Red-circle prompt-
ing (Shtedritski et al.l 2023) and Set-of-marks (Yang et al.| 2023a) can enhance the grounding
abilities of CLIP (Radford et al.,|2021) and GPT-4V. PIVOT (Nasiriany et al.,2024) employs visual
prompting combined with iterative VQA to induce GPT-4V to generate outputs for robotics control.
3DAxies (Liu et al) 2023) enhances GPT-4V’s ability to use numerical expressions to describe
3D relationships of objects in a single image by annotating a scaled 3D coordinate system on the
image. Unlike these works, COARSE CORRESPONDENCES prompts MLLMs to understand the
spatial relationships within a complete 3D scene from an image sequence.

Video understanding. Videos carry rich information about both the 3D structure as well as temporal
changes in the physical world. To perform better long-horizon reasoning, work has begun incorporat-
ing video inputs into MLLMs. Recent work (Lin et al., 2023)) has improved performance on video
dense captioning (Krishna et al.,[2017)) and videoQA (Xiao et al., 2021} |Grunde-McLaughlin et al.,



2021)). To further advance the understanding of temporal relationships in videos, EgoSchema (Man-
galam et al.,2023)) introduced a benchmark for long video understanding, which is more challenging
than previous video-language benchmarks. Meanwhile, understanding 3D spatial relationships in
videos received relatively less attention. 3D-LLM (Hong et al.l 2024) converts multiview images into
3D point clouds and then feeds them into LLMs, demonstrating better results on the ScanQA (Azuma
et al.,|2022) benchmark for 3D understanding. OpenEQA (Majumdar et al., 2024) is also a benchmark
dedicated to evaluating MLLM’s understanding of 3D physical space, with outputs that are more
open-vocabulary compared to ScanQA. In this paper, we propose a framework that does not require
any training in modifying MLLMs; it extracts meaningful information from videos using off-the-shelf
tracking models and achieves state-of-the-art performance on the benchmarks mentioned.

Visual correspondences. Visual correspondences have been a vital area of research in computer
vision for a few decades. Applications such as Structure-from-Motion(Schonberger & Frahm, [2016)
utilize correspondences to better reconstruct 3D scenes. In the past, we relied on handcrafted features
like SIFT (Lowe, |2004)) or SURF (Bay et al., |2006) to obtain good correspondence. Today, features
extracted from deep models (Tang et al.,|2023)) can also provide increasingly accurate correspondences.
Generally, people aim to achieve precise geometric and semantic correspondences at the pixel level.
However, in this paper, we use coarse visual correspondence to prompt MLLMs, which can be easily
obtained from off-the-shelf video tracking models (Yang et al.| [ 2023c).

C COARSE CORRESPONDENCE IMPLEMENTATION DETAILS

As discussed in Method section, visualizing our proposed Coarse Correspondence on images will
involve a centering algorithm. The inputs are selected instance segmentation masks that originally
obtained from tracking model. A center of the instance mask needs to be determined in order to place
the coarse correspondence marker. It is worth noting that the instance mask does not necessarily form
a connected component, which makes the centering procedure worth explaining.

# Find center of a mask,
# May contains multiple connected components.
def find center(mask):
# Go through the middle column, try to find centerl
exist y =[]
x center = median(left bound, right bound)
for y in range(upper_bound, lower bound):
if (x_center, y) in mask:
exist y.append(y)
if exist y is not empty:
y center = median(exist y)
center1 = (x center, y center)
else:
center1 = None

# Go through the middle row, try to find center2 (skip)
if avg(center1, center2) in mask:
return avg(center1, center2)
elif center1 in mask:
return centerl
elif center2 in mask:
return center2
else:
center naive = ((left bound + right bound)//2,
(upper bound + lower bound)//2)
return center_naive

Figure 1: The pseudo code of our proposed algorithm to find the center of a given object mask. The
Coarse Correspondence will be further added to the object center

As shown in the pseudo code in Figure [T} firstly we calculate the medium x-index of the masked
pixels and loop through this column, trying to find the first center point. Similarly, we calculate the
medium y-index of the masked pixels and loop through this row, trying to find another center point.
Normally we return the average location of these two centers. If either of these centers failed to be
positioned in the masked area (which may happens when the mask is not a connected components),



System: You are an AI with the ability to analyze a series of images,
each representing a different perspective of a single scene. [Prompt-about-
Marks]. Your task is to construct a 3D understanding based on these images.

User: How many sofa appear in the scene? A. 3; B. 4; C. 5; D. 6.

Raw image input without marks

GPT-4V: The four images provided show a common area,
possibly a library ... We can piece together the layout of
the room. From the first image, we see a black sofa(v/).
In the second image, a similar style black sofa is visible
along with a brown sofa(+/ ). In the third image, two brown
sofas are visible, suggesting there is at least one black
and two brown sofas(+/). The fourth image confirms the
presence of the one black sofa and at least one brown
sofa(v/).

No new sofas are introduced in any image, I conclude that
there are 3 sofas appear in the scene(X).

Image input with Coarse Correspondence (Ours)

GPT-4V: Image 1 shows a sofa labeled with the number
5(«/). There is also a coffee table in front of it marked
as 2, ... Image 2 shows the same coffee table marked as 2,
and another sofa which can now be seen labeled with
number 7(+/). Image 3 provides a clearer view of the
sofas. The additional sofa is clearly part of a larger
sofa labeled with number 8(/). Image 4 gives us another
angle showing part of the sofa labeled as 8, and another
sofa labeled with number 1(v/). Through these images, we
can establish that there are four sofas present, marked
with 5, 7, 8, 4(v/). The arrangement of the furniture
remains consistent across the different views, allowing
us to create a mental model of the 3D space. I deduced
that the answer is B. 4 sofas appear in the scene(/).

View 4

(a) Task: Duplicate Objects Counting. There are
2 brown sofas and 2 black sofas. The brown sofas in
View 2&4 are duplication of those in View 3. Only with
the help of the Coarse Correspondence can GPT-4V
understand duplicate objects between different views
across a single 3D scene.

System: You are an AI with the ability to analyze a series of images,
each representing a different perspective of a single scene. [Prompt-about-
Marks]. Your task is to construct a 3D understanding based on these images.
User: You are standing facing the washbasin.
position of the room door from your perspective.

Describe the relative

/Raw image input without marks N
GPT-4V: The images depict different angles of
what appears to be a bathroom. In the first image,
we see a washbasin ... The second image seems to
be taken from an angle showing the right side of
the basin ... The third image shows a door with
its handle, ... (+/). From the images, it can be
inferred that when facing the washbasin, the door
is not in front because we see a wall with a
mirror and a paper towel dispenser, not a
door(«/). The first image also does not show the
door to the left of the basin which suggests it's
not on that side when facing the basin.(X)...
Therefore, the door must be behind the person
facing the washbasin(X).

Image input with Coarse Correspondence (Ours)

GPT-4V: From the perspectives provided, the
door is most visible in Views 2 and 3, with a
full front view in View 3(v/). The position of
the door relative to the washbasin can be
determined by the location of Object 1, which is
on the washbasin's edge closest to the door, and
by the visibility of the door's parts (Objects
11, 13, 12) in the different views(«/).

Based on the explanations above, the door is to
the left of you when you are facing the
washbasin(v/).

View 3

(b) Task: Relative Location Modeling. From View 1
& 2 we can tell that the room door is on the left-hand-
side when facing the washbasin. Only with the help
of the Coarse Correspondence can GPT-4V understand
relative location between objects appear in different
views across a single 3D scene.

Figure 2: Two complicated tasks, i.e. Duplicate Objects Counting and Relative Location Modeling
are chosen to demonstrate our method. Zoom in for better view.

we adopt the other one. If both of them failed to deliver, we adopt a naive center by simply averaging
the four boundary.

D QUALITATIVE CASE STUDY

To further demonstrate the effectiveness of our proposed Coarse Correspondence under sparse image
input, we defined two challenging tasks and one qualitative case study for each task.

The results of these case studies are shown in Fig. [2| Detailed illustration of the results are provided
in the figure captions. The first case study is about the task of Duplicate Objects Counting, where the
model needs to count the number of objects in a 3D scene. Only equipped with coarse correspondence
can GPT-4V get a comprehensive understanding of the 3D scene, excludes the duplicate objects,
and give the right answer.The second case study is about the task of Relative Location Modeling,
where the model needs to understand the relative location of objects in a 3D scene. It is obvious
that without the correspondence markers, GPT-4V fails to response from 3D perspective with only
raw 2D images.These case studies demonstrate that our proposed Coarse Correspondence can elicit
MLLMs in understanding 3D scenes from sparse image inputs.

We also prove that our Coarse Correspondence method works well with hand-crafted correspondence
marks as shown in Figure[3] This further proves that our proposed method are style-agnostic as long
as the marks is able to deliver the spatial correspondence knowledge.

E MORE DISCUSSIONS

Limitations. Our method relies on off-the-shelf video tracking models to obtain instance-level
correspondences. Although the performance of tracking models has significantly improved with the
advent of tools like SAM (Kirillov et al}[2023), achieving good results on long-form in-the-wild
videos remains challenging. This is particularly evident on the 180-second EgoSchema benchmark,
where Track-Anything often loses track of objects after 100 seconds, leading to inconsistent instance
segmentation masks between the beginning and end of the video clip. Despite observing consistent




System: You are an AI with the ability to analyze a series of images,
each representing a different perspective of a single scene. [Prompt-about-
Marks]. Your task is to construct a 3D understanding based on these images.

User: You are sitting on the chair in front of the desk. Describe the relative
position of these objects from your perspective: the closet, the guitar, and the
bed.

Raw image input without marks

GPT-4V: The closet is to your left, partially obscured by a white curtain or
door(X ). The guitar is to your right, leaning against the wall next to the
bed(X ). The bed is also to your right but behind the guitar(X).

Image input with Hand-crafted Coarse Correspondence (Ours)

GPT-4V: The closet, labeled with the number 4, is to your right side,
indicated by the positioning in the first image(+/ ). The guitar, labeled with
the number 1, is behind you to your left. This is clear from the third image
where the guitar is shown behind the bed, which is opposite the desk(«/). The
bed, labeled with the number 2 , is behind you. When sitting at the desk, you
would turn around to see the bed, as shown in the second and third images(«/).

Figure 3: Hand-crafted coarse correspondence label

and significant improvements on EgoSchema, we believe that accurate correspondence would further
enhance the benefits of our approach.

Relation to SlowFast SlowFast (Feichtenhofer et al.| 2019) is a framework for video recognition that
includes two parallel pathways: a Slow pathway that captures motion information at a high frame
rate and a Fast pathway that captures semantic information at a low frame rate. The information
from both pathways is fused through lateral connections for downstream video recognition tasks. In
a way, our coarse correspondence prompting can be seen as another form of SlowFast. However,
unlike SlowFast, where the Slow and Fast pathways operate in parallel, our framework operates
sequentially. First, it captures low-level, class-agnostic motion information at a high frame rate
using a lightweight tracking model. Then, at a low frame rate, it performs recognition and reasoning
requiring semantic understanding using larger MLLMs. The two stages are bridged through visual
prompting. Moreover, while SlowFast learns a representation of the input video for pure vision
recognition tasks such as action classification and detection, our coarse correspondence framework
aims to better understand the 3D spatial structure and temporal information contained in the input
video to achieve spatiotemporal perception and reasoning simultaneously.

Eulerian vs Lagrangian If deep learning-based methods represent camera or object motion in videos
from an Eulerian viewpoint—i.e., expressing how features at fixed locations evolve over time through
a multi-dimensional tensor—then our framework adds a Lagrangian viewpoint to this representation.
The Lagrangian viewpoint describes the trajectories of entities moving through space and time in
the video. Previously, the Lagrangian viewpoint in video descriptions has been shown to better aid
human action recognition (Rajasegaran et al.,[2023)). Here, we demonstrate that it can more generally
help MLLMs understand the 4D spatiotemporal context represented in videos.
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