
Supplementary Material: Revisiting Multi-Codebook
Quantization

Anonymous Author(s)
Affiliation
Address
email

In this supplemental material, we will first give the detailed network implementation for reproducibil-1

ity (section A). Then, additional experimental results are illustrated in section B for comprehensive2

analysis.3

A Model Specifications1
4

In this section, specifications of IndepNet θ and QENet τ are explained, as well as hyper-parameters5

for reproducibility. The specification on each dataset (SIFT1M, DEEP1M and LabelMe22K) are6

shown in Table 1. Since two networks only consist of IndepBlocks, we only show the specification7

of a IndepBlock for simplicity. Additionally, during training, we insert dropout layers after every8

layer-normalization in all layer-groups to tackle overfitting. Table 2 shows all hyper-parameters9

involved in our experiments.10

Layer SIFT / DEEP (D = 128/96) LabelMe22K (D = 512)
№ Out-dim Layers Out-dim Layers

1 4D lg(D, 4D) D lg(D,D)
2 2D lg(4D, 2D) D/2 lg(D,D/2)
3 D lg(2D,D) D/4 lg(D/2, D/4)
4 D lg(D,D) D/4 lg(D/4, D/4)
5 2D lg(D, 2D) D/2 lg(D/4, D/2)
6 4D lg(2D, 4D) D lg(D/2, D)
7 7D cat(4, 5, 6) 7D/4 cat(4, 5, 6)
8 K fc(7D,K) K fc(7D/4,K)

Table 1: Layer specifications on three datasets. D is the dimension of input x. fc(·, ·) is a linear layer
with input and output dimensions specified. lg(·, ·) is a layer-group which has a linear layer fc(·, ·)
with a ReLU activation and a layer-normalization. cat(· · · ) concatenates layers with specified №, e.g.
cat(4, 5, 6) concatenates the outputs of layer 4, 5 and 6. We also show the output dimensions after
each layer in the 2nd and 4th columns. On SIFT1M and DEEP1M, we first expand x to 4D, while
on LabelMe22K, since the dimension of x is enough, we keep the input dimension as D.

B Additional Experimental Results11

Encoding times. The total encoding time w.r.t. code-length comparison is stated in Table 3. Ours12

is faster than most of constrained MCQs, and much faster than LSQ. Although UNQ is the fastest13

among all methods, it still needs to decode and re-rank during the retrieval.14

1Our implementation is publicly available at this url.

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

https://github.com/DeepMCQ/DeepQ


Method SIFT1M total encoding time
16 bits 32 bits 64 bits 128 bits

OPQ 4.44 4.19 4.13 4.30
SQ 3.58 5.18 10.28 20.67

LSQ 52.84 96.99 256.86 639.18

DPQ 5.60 6.57 8.81 12.81
DPgQ 6.46 8.71 13.67 24.42
DRQ 6.42 8.88 13.78 24.55
UNQ 3.31 3.34 3.36 3.40

Ours* 4.17 5.40 7.51 14.73
Ours 4.46 5.46 8.26 16.64

Table 3: Total encoding time w.r.t. bit-length on SIFT1M dataset (sec). Ours* is the variant that
removes extra refinement. This is the quantitative results of the time comparison which is visualized
in our main paper. Our two variants show superior encoding efficiency among most of compared
methods. Compared to LSQ, ours is 11.8×, 17.8×, 31.1× and 38.4× faster. UNQ achieves the
fastest encoding speed but slows down the retrieval because of the decoding and re-ranking.

Hyper-parameters Values

Learning rates η1, η2 2× 10−4

with decay = 0.9999

Batch size 2000

Dropout rate 0.1

Entropy reg. coeff. α 0.05
with decay = 0.9999

Clip-range ε 0.2

Gradient clipping 0.5

Table 2: Hyper-parameters we employ on all
datasets. decay is the exponential decay which
is applied after every updating stage i.e. in the end
of training loop, η1, η2 and α are multiplied by
decay . Furthermore, dropout layers are inserted
after every layer-normalization during training to
tackle overfitting. Additionally, gradient is clipped
by its l2 norm when updating the networks to avoid
training crash.

16-bits recalls. 16-bits recall@{1, 10, 100}15

are shown in Table 4 (2 sub-codebooks, 25616

codewords for each). Ours acheives comparable17

recalls against state-of-the-arts on SIFT1M and18

DEEP1M, and outperforms state-of-the-arts by19

0.80%, 2.60%, 3.20% on LabelMe22K.20

Ablation study. We visualize the codewords21

assignment histogram of 4 variants (w/o regu-22

larization, w/o return-norm, w/o correction,23

w/o refinement) with 32 bits, on SIFT1M,24

shown in Figure 4. The quantization error E25

during sampling stage for each step is shown in26

Figure 1 (only first 1, 000 steps of E are plotted27

due to the space limitation). As shown in two fig-28

ures, training without regularization is trapped29

in local-optima, i.e. datapoints are assigned to30

a few specific codewords. Meanwhile, without31

return normalization and value correction, the32

network is slow to converge.33

Training statistics. Quantization error E, Lθ34

and Lτ during training are illustrated in Figure35

3. The final codewords assignment histogram36

is placed in Figure 2. With our proposal, the37

network gets improved continuously.38

2



Method SIFT1M@16 bits DEEP1M@16 bits LabeMe22K@16 bits
R@1 R@10 R@100 R@1 R@10 R@100 R@1 R@10 R@100

OPQ 0.23 2.17 13.19 0.27 2.25 14.90 3.35 20.20 65.35
SQ 0.33 3.95 24.24 0.47 3.81 25.09 4.00 25.20 72.70

LSQ 0.57 4.92 28.81 0.48 4.22 26.96 4.45 27.25 75.80

DPQ 0.31 3.28 18.45 0.13 1.41 9.41 2.25 16.50 63.00
DPgQ 0.41 4.43 26.37 0.41 3.62 24.07 4.30 26.60 74.50
DRQ 0.38 3.58 24.96 0.35 3.48 22.64 1.00 9.15 52.20
UNQ 0.42 4.27 25.91 0.34 3.66 23.91 7.75 33.55 80.35

Ours 0.53 4.34 27.68 0.45 3.79 26.54 8.55 36.15 83.55

Table 4: Quantitative comparisons with state-of-the-arts on three datasets with 16 bits (2 sub-
codebooks and 256 codewords for each). Recall(R)@{1, 10, 100} are reported (%). The 16 bits’
results are similar with others that are shown in the paper. Specifically, our method has comparable
retrieval performance against the state-of-the-arts on SIFT1M and DEEP1M datasets. Meanwhile,
ours outperforms state-of-the-art by 0.80%, 2.60%, 3.20% on LabelMe22K.

0 200 400 600 800 1000
Steps

3.7

4.0

5.0

6.0

7.0

Q
ua

nt
iz

at
io

n 
er

ro
r (

lo
ga

rit
hm

, ×
10

4 )

w/o regularization
w/o return-norm
w/o correction
DReinQ

Figure 1: Quantization error during train-
ing for 4 variants. Comparing to other three
variants, w/o regularization has lower er-
ror in the first few steps, but it is quickly
trapped into local-optima and hard to con-
verge. w/o return-norm and w/o correction
have higher errors and are slower to converge
than the full version during the whole train-
ing. For example, ours reaches quantization
error of 4.0 × 104 at ∼ 550 steps while the
two variants reach later at ∼ 600 steps.

Codebook 1
0.000

0.002

0.004

0.006

D
en

si
ty

Codebook 2

0 50 100 150 200 250

Codebook 3
0.000

0.002

0.004

0.006

D
en

si
ty

0 50 100 150 200 250

Codebook 4

Figure 2: Codewords assignment histogram
for 32 bits on SIFT1M dataset. We visualize
the histogram by encoding on the whole base
set and generating histogram of quantization
codes seperately on 4 sub-codebooks. Higher
bars indicate there are more datapoints assign
to these codewords.

0 2 4 6 8 10
Steps (k)

3

4

5

6

7

Q
ua

nt
iz

at
io

n 
er

ro
r (

lo
ga

rit
hm

, ×
10

4 )

(a) Quantization error w.r.t. steps

0 2 4 6 8 10
Steps (k)

0.5

0.0

0.5

1.0

1.5

2.0

L

(b) Lθ w.r.t. steps

0 2 4 6 8 10
Steps (k)

0.0

0.2

0.4

0.6

0.8

1.0

L
 (×

10
3 )

(c) Lτ w.r.t. steps

Figure 3: Training statistics on SIFT1M dataset, 32 bits. We plot the quantization error of training
set after each sampling stage, and Lθ, Lτ during updating stage. The quantization error declines
continuously.

3



Codebook 1
0.000

0.002

0.004

0.006

0.008

0.010

D
en

si
ty

Codebook 2

0 50 100 150 200 250

Codebook 3
0.000

0.002

0.004

0.006

0.008

0.010

D
en

si
ty

0 50 100 150 200 250

Codebook 4

(a) w/o regularization

Codebook 1
0.000

0.002

0.004

0.006

D
en

si
ty

Codebook 2

0 50 100 150 200 250

Codebook 3
0.000

0.002

0.004

0.006

D
en

si
ty

0 50 100 150 200 250

Codebook 4

(b) w/o return-norm

Codebook 1
0.000

0.002

0.004

0.006

D
en

si
ty

Codebook 2

0 50 100 150 200 250

Codebook 3
0.000

0.002

0.004

0.006

D
en

si
ty

0 50 100 150 200 250

Codebook 4

(c) w/o correction

Codebook 1
0.000

0.002

0.004

0.006

D
en

si
ty

Codebook 2

0 50 100 150 200 250

Codebook 3
0.000

0.002

0.004

0.006

D
en

si
ty

0 50 100 150 200 250

Codebook 4

(d) w/o refinement

Figure 4: Codewords assignment histogram of 4 variants, 32 bits on SIFT1M. Compared to Figure 2,
the variant w/o regularization has higher variance on assignment, i.e. datapoints are assigned to a
few specific codewords while some codewords are totally not used. Other three variants have similar
histogram as the full version, but actually have higher quantization error and lower performance
which are shown in other experiments.

4


	Model SpecificationsOur implementation is publicly available at this url.
	Additional Experimental Results

