
Closing the Computational-Statistical Gap in Best
Arm Identification for Combinatorial Semi-bandits

Ruo-Chun Tzeng
EECS

KTH, Stockholm, Sweden
rctzeng@kth.se

Po-An Wang
EECS

KTH, Stockholm, Sweden
wang9@kth.se

Alexandre Proutiere
EECS and Digital Futures
KTH, Stockholm, Sweden

alepro@kth.se

Chi-Jen Lu
Institute of Information Science

Academia Sinica, Taiwan
cjlu@iis.sinica.edu.tw

Abstract

We study the best arm identification problem in combinatorial semi-bandits in the
fixed confidence setting. We present Perturbed Frank-Wolfe Sampling (P-FWS), an
algorithm that (i) runs in polynomial time, (ii) achieves the instance-specific mini-
mal sample complexity in the high confidence regime, and (iii) enjoys polynomial
sample complexity guarantees in the moderate confidence regime. To the best of our
knowledge, even for the vanilla bandit problems, no algorithm was able to achieve
(ii) and (iii) simultaneously. With P-FWS, we close the computational-statistical
gap in best arm identification in combinatorial semi-bandits. The design of P-FWS
starts from the optimization problem that defines the information-theoretical and
instance-specific sample complexity lower bound. P-FWS solves this problem
in an online manner using, in each round, a single iteration of the Frank-Wolfe
algorithm. Structural properties of the problem are leveraged to make the P-FWS
successive updates computationally efficient. In turn, P-FWS only relies on a
simple linear maximization oracle.

1 Introduction

An efficient method to design statistically optimal algorithms solving active learning tasks (e.g.,
regret minimization or pure exploration in bandits and reinforcement learning) consists in the
following two-step procedure. The first step amounts to deriving, through change-of-measure
arguments, tight information-theoretical fundamental limits satisfied by a wide class of learning
algorithms. These limits are often expressed as the solution of an optimization problem, referred in
this paper to as the lower-bound problem. Interestingly, this solution specifies the instance-specific
optimal exploration process: it characterizes the limiting behavior of the adaptive sampling rule
any statistically optimal algorithm should implement. In the second step, the learning algorithm
is designed so that its exploration process approaches the solution of the lower-bound problem.
This design yields statistically optimal algorithms, but typically requires to repeatedly solve the
lower-bound problem. This method has worked remarkably well for simple learning tasks such as
regret minimization or best-arm identification with fixed confidence in classical stochastic bandits
[Lai87, GC11, GK16], but also in bandits whose arm-to-average reward function satisfies simple
structural properties (e.g., Lipschitz, unimodal) [MCP14, WTP21].

The method also provides a natural way of studying the computational-statistical gap [KLLM22] for
active learning tasks. Indeed, if solving the lower-bound problem in polynomial time is possible, one
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may hope to devise learning algorithms that are both statistically optimal and computationally efficient.
As of now, however, the computational complexity of the lower-bound problem remains largely
unexplored, except for simple learning tasks. For example, in the case of best policy identification
in tabular Markov Decision Processes, the lower-bound problem is non-convex [AMP21] and its
complexity and approximability are unclear.

In this paper, we leverage the aforementioned two-step procedure to assess the computational-
statistical gap for the best arm identification in combinatorial semi-bandits in the fixed confidence
setting. We establish that, essentially, this gap does not exist (a result that was conjectured in
[JMKK21]). Specifically, we present an algorithm that enjoys the following three properties: (i) it
runs in polynomial time, (ii) its sample complexity matches the fundamental limits asymptotically in
the high confidence regime, and (iii) its sample complexity is at most polynomial in the moderate
confidence regime. Next, after formally introducing combinatorial semi-bandits, we describe our
contributions and techniques in detail.

Best arm identification in combinatorial semi-bandits. In combinatorial semi-bandits [CBL12,
CTMSP+15], the learner sequentially selects an action from a combinatorial set X ⊂ {0, 1}K .
When in round t, the action x(t) = (x1(t), . . . , xK(t)) ∈ X is chosen, the environment samples a
K-dimensional vector y(t) whose distribution is assumed to be Gaussian N (µ, I). The learner then
receives the detailed reward vector x(t)⊙ y(t) where ⊙ denotes the element-wise product (in other
words, the learner observes the individual reward yk(t) of the arm k if and only if this arm is selected
in round t, i.e., xk(t) = 1). The parameter µ characterizing the average rewards of the various arms
is initially unknown. The goal of a learner is to identify the best action i⋆(µ) = argmaxx∈X ⟨x,µ⟩
with a given level of confidence 1 − δ, for some δ > 0 while minimizing the expected number of
rounds needed. We assume that the best action is unique and denote by Λ = {µ ∈ RK : |i⋆(µ)| = 1}
the set of parameters satisfying this assumption. The learner strategy is defined by three components:
(i) a sampling rule dictating the sequence of the selected actions; (ii) a stopping time τ defining the
last round where the learner interacts with the environment; (iii) a decision rule specifying the action
ı̂ ∈ X believed to be optimal based on the data gathered until τ .

The sample complexity lower-bound problem. Consider the set of δ-PAC algorithms such that for
any µ ∈ Λ, the best action is identified correctly with probability at least 1− δ. We wish to find a δ-
PAC algorithm with minimal expected sample complexity Eµ[τ ]. To this aim, using classical change-
of-measure arguments [GK16], we may derive a lower bound of the expected sample complexity
satisfied by any δ-PAC algorithm. This lower bound is given by1 Eµ[τ ] ≥ T ⋆(µ)kl(δ, 1− δ). The
characteristic time T ⋆(µ) is defined as the value of the following problem

T ⋆(µ)−1 = sup
ω∈Σ

inf
λ∈Alt(µ)

〈
ω,

(µ− λ)2

2

〉
, (1)

where2 Σ = {
∑

x∈X wxx : w ∈ Σ|X |}, kl(a, b) is the KL-divergence between two Bernoulli
distributions with respective means a and b, and Alt(µ) = {λ ∈ Λ : i⋆(λ) ̸= i⋆(µ)} is the set of
confusing parameters. As it turns out (see Lemma 1), T ⋆(µ) is at most quadratic in K, and hence
the sample complexity lower bound is polynomial. (1) is a concave program over Σ [WTP21], and
a point ω⋆ in its solution set corresponds to an optimal allocation of action draws: an algorithm
sampling actions according to ω⋆ and equipped with an appropriate stopping rule would yield a
sample complexity matching the lower bound. In this paper, we provide computationally efficient
algorithms to solve (1) and show how these can be used to devise a δ-PAC best action identification
algorithm with minimal sample complexity and running in polynomial time. We only assume that we
have access to a computationally efficient Oracle, referred to as the LM (Linear Maximization) Oracle,
identifying the best action should µ be known (but for any possible µ). This assumption, made in all
previous work on combinatorial semi-bandits (see e.g. [JMKK21, PBVP20]), is crucial as indeed, if
there is no computationally efficient algorithm solving the offline problem argmaxx∈X ⟨x,µ⟩ with
known µ, there is no hope to solve its online version with unknown µ in a computationally efficient
manner. The assumption holds for a large array of combinatorial sets of actions [S+03], including
m-sets, matchings, (source–destination)-paths, spanning trees, matroids (refer to [CCG21b] for a
thorough discussion).

1We present proof in Appendix K for completeness – see also [JMKK21].
2ΣN denotes the (N − 1) dimensional simplex.
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The Most-Confusing-Parameter (MCP) algorithm. The difficulty of solving (1) lies in the inner
optimization problem, i.e., in evaluating the objective function:

Fµ(ω) = inf
λ∈Alt(µ)

〈
ω,

(µ− λ)2

2

〉
= min

x ̸=i⋆(µ)
fx(ω,µ) (2)

where fx(ω,µ) = infλ∈Cx⟨ω,
(µ−λ)2

2 ⟩ and Cx = {λ ∈ RK : ⟨λ, i⋆(µ)− x⟩ < 0}. Evaluating
Fµ(ω) is required to solve (1), but also in the design of an efficient stopping rule. Our first con-
tribution is MCP (Most-Confusing-Parameter), a polynomial time algorithm able to approximate
Fµ(ω) for any given µ and ω. The algorithm’s name refers to the fact that by computing Fµ(ω), we
implicitly identify the most confusing parameter λ⋆ ∈ arg infλ∈Alt(µ)⟨ω, (µ−λ)2

2 ⟩. The design of
MCP leverages a Lagrangian relaxation of the optimization problem defining fx(ω,µ) and exploits
the fact that the Lagrange dual function linearly depends on x. In turn, this linearity allows us to
make use of the LM Oracle. From these observations, we show that computing Fµ(ω) boils down to
solving a two-player game, for which one of the players can simply update her strategy using the LM
Oracle. We prove the following informally stated theorem quantifying the performance of the MCP
algorithm (see Theorem 3 for a more precise statement).
Theorem 1. For any (ω,µ), the MCP algorithm with precision ϵ and certainty parameter θ returns
F̂ and x̂ satisfying Pµ[Fµ(ω) ≤ F̂ ≤ (1 + ϵ)Fµ(ω)] ≥ 1− θ and F̂ = fx̂(ω,µ). The number of
calls to the LM Oracle is, almost surely, at most polynomial in K, ϵ−1, and ln θ−1.

The Perturbed Frank-Wolfe Sampling (P-FWS) algorithm. The MCP algorithm allows us to solve
the lower-bound problem (1) for any given µ. The latter is initially unknown, but could be estimated.
A Track-and-Stop algorithm [GK16] solving (1) with this plug-in estimator in each round would
yield asymptotically minimal sample complexity. It would however be computationally expensive. To
circumvent this difficulty, as in [WTP21], our algorithm, P-FWS, performs a single iteration of the
Frank-Wolfe algorithm for the program (1) instantiated with an estimator of µ. To apply the Frank-
Wolfe algorithm, P-FWS uses stochastic smoothing techniques to approximate the non-differentiable
objective function Fµ by a smooth function. To estimate the gradient of the latter, P-FWS leverages
both the LM Oracle and the MCP algorithm (more specifically its second output x̂). Finally, P-FWS
stopping rule takes the form of a classical Generalized Likelihood Ratio Test (GLRT) where the
estimated objective function is compared to a time-dependent threshold. Hence the stopping rule also
requires the MCP algorithm. We analyze the sample and computational complexities of P-FWS. Our
main results are summarized in the following theorem (refer to Theorem 4 for details).
Theorem 2. For any δ ∈ (0, 1), P-FWS is δ-PAC, and for any (ϵ, ϵ̃) ∈ (0, 1) small enough, its
sample complexity satisfies:

Eµ[τ ] ≤
(1 + ϵ̃)2

T ⋆(µ)−1 − ϵ
×H

(
1

δ
· c(1 + ϵ̃)2

T ⋆(µ)−1 − ϵ

)
+Ψ(ϵ, ϵ̃),

where H(x) = ln(x) + lnln(x), c > 0 is a universal constant, and Ψ(ϵ, ϵ̃) is polynomial in ϵ−1, ϵ̃−1,
K, ∥µ∥∞, and△−1

min, where△min = minx̸=i⋆(µ)⟨i⋆(µ)− x,µ⟩. Under P-FWS, the number of LM
Oracle calls per round is at most polynomial in ln δ−1 and K. The total expected number of these
calls is also polynomial.

To the best of our knowledge, P-FWS is the first polynomial time best action identification algorithm
with minimal sample complexity in the high confidence regime (when δ tends to 0). Its sample
complexity is also polynomial in K in the moderate confidence regime.

2 Preliminaries

We start by introducing some notation. We use bold lowercase letters (e.g., x) for vectors, and bold
uppercase letter (e.g., A) for matrices. ⊙ (resp. ⊕) denotes the element-wise product (resp. sum over
Z2). For x ∈ RK , i ∈ N, xi = (xik)k∈[K] is the i-th element-wise power of x. D = maxx∈X ∥x∥1
denotes the maximum number of arms part of an action. For any µ ∈ Λ, we define the sub-optimality
gap of x ∈ X as△x(µ) = ⟨i⋆(µ)−x,µ⟩, and the minimal gap as△min(µ) = minx ̸=i⋆(µ)△x(µ).
Pµ (resp. Eµ) denotes the probability measure (resp. expectation) when the arm rewards are
parametrized by µ. Whenever it is clear from the context, we will drop µ for simplicity, e.g.
i⋆ = i⋆(µ),△x = △x(µ), and△min = minx̸=i⋆ △x. Refer to Appendix A for an exhaustive table
of notation.
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2.1 The lower-bound problem

Classical change-of-measure arguments lead to the asymptotic sample complexity lower bound
Eµ[τ ] ≥ T ⋆(µ)kl(δ, 1 − δ) where the characteristic time is defined in (1). To have a chance to
develop a computationally efficient best action identification algorithm, we need that the sample
complexity lower bound grows at most polynomially in K. This is indeed the case as stated in the
following lemma, whose proof is provided in Appendix K.
Lemma 1. For any µ ∈ Λ, T ⋆(µ) ≤ 4KD△min(µ)

−2.

We will use first-order methods to solve the lower-bound problem, and to this aim, we will need to
evaluate the gradient w.r.t. ω of fx(ω,µ). We can apply the envelop theorem [WTP21] to show that
for (ω,µ) ∈ Σ+ × Λ,

∇ωfx(ω,µ) =
(µ− λ⋆

ω,µ(x))
2

2
,

where Σ+ = Σ ∩ RK
>0, λ⋆

ω,µ(x) = argminλ∈cl(Cx)⟨ω,
(µ−λ)2

2 ⟩ and cl (Cx) is the closure of Cx
(refer to Lemma 19 in Appendix G.2).

2.2 The Linear Maximization Oracle

As mentioned earlier, we assume that we have access to a computationally efficient Oracle, referred
to as the LM (Linear Maximization) Oracle, identifying the best action if µ is known. More precisely,
as in existing works in combinatorial semi-bandits [KWA+14, PPV19, PBVP20], we make the
following assumption.
Assumption 1. (i) There exists a polynomial-time algorithm identifying i⋆(v) for any v ∈ RK; (ii)
X is inclusion-wise maximal, i.e., there is no x,x′ ∈ X s.t. x < x′; (iii) for each k ∈ [K], there
exists x ∈ X such that xk = 1; (iv) |X | ≥ 2.

Assumption 1 holds for combinatorial sets including m-sets, spanning forests, bipartite matching, s-t
paths. For completeness, we verify the assumption for these action sets in Appendix J. In the design
of our MCP algorithm, we will actually need to solve for some v ∈ RK the linear maximization
problem max⟨x,v⟩ over X \ {i⋆(µ)}; in other words, we will probably need to identify the second
best action. Fortunately, this can be done in a computationally efficient manner under Assumption 1.
The following lemma formalizes this observation. Its proof, presented in Appendix J, is inspired by
Lawler’s m-best algorithm [Law72].
Lemma 2. Let v ∈ RK and x ∈ X . Under Assumption 1, there exists an algorithm that solves
maxx′∈X :x′ ̸=x ⟨v,x′⟩ by only making at most D queries to the LM Oracle.

3 Solving the lower bound problem: the MCP algorithm

Solving the lower bound problem first requires to evaluate its objective function Fµ(ω). A naive
approach, enumerating fx(ω,µ) for all x ∈ X \ {i⋆}, would be computationally infeasible. In this
section, we present and analyze MCP, an algorithm that approximates Fµ(ω) by calling the LM Oracle
a number of times growing at most polynomially in K.

3.1 Lagrangian relaxation

The first step towards the design of MCP consists in considering the Lagrangian relaxation of the
optimization problem defining fx(ω,µ) = infλ∈Cx⟨ω,

(µ−λ)2

2 ⟩ (see e.g., [BV04, Vis21]). For any
(ω,µ) ∈ Σ+×Λ and x ̸= i⋆, the Lagrangian Lω,µ and Lagrange dual function gω,µ of this problem
are defined as, ∀α ≥ 0,

Lω,µ(λ,x, α) =

〈
ω,

(µ− λ)2

2

〉
+ α ⟨i⋆ − x,λ⟩ and gω,µ(x, α) = inf

λ∈RK
Lω,µ(λ,x, α),

respectively. The following proposition, proved in Appendix C.1, provides useful properties of gω,µ:
Proposition 1. Let (ω,µ) ∈ Σ+ × Λ and x ∈ X \ {i⋆(µ)}.
(a) The Lagrange dual function is linear in x. More precisely, gω,µ(x, α) = cω,µ(α)+ ⟨ℓω,µ(α),x⟩
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where cω,µ(α) = α
〈
µ− α

2ω
−1, i⋆(µ)

〉
and ℓω,µ(α) = −α

(
µ+ α

2ω
−1 ⊙ (1K − 2i⋆(µ))

)
.

(b) gω,µ(x, ·) is strictly concave (for any fixed x).
(c) fx(ω,µ) = maxα≥0 gω,µ(x, α) is attained by α⋆

x = △x(µ)
⟨x⊕i⋆(µ),ω−1⟩ .

(d) ∥ℓω,µ(α
⋆
x)∥1 ≤ Lω,µ = 4D2K ∥µ∥2∞

∥∥ω−1
∥∥
∞.

From Proposition 1 (c), strong duality holds for the program defining fx(ω,µ), and we conclude:

Fµ(ω) = min
x ̸=i⋆

max
α≥0

gω,µ(x, α). (3)

Fµ(ω) can hence be seen as the value in a two-player game. The aforementioned properties of the
Lagrange dual function will help to compute this value.

3.2 Solving the two-player game with no regret

There is a rich and growing literature on solving zero-sum games using no-regret algorithms, see for
example [RS13, ALLW18, DFG21, ZODS21]. Our game has the particularity that the x-player has
a discrete combinatorial action set whereas the α-player has a convex action set. Importantly, for
this game, we wish not only to estimate its value Fµ(ω) but also an equilibrium action xe such that
Fµ(ω) = maxα≥0 gω,µ(xe, α). Indeed, an estimate of xe will be needed when implementing the
Frank-Wolfe algorithm and more specifically when estimating the gradient of Fµ(ω). To return such
an estimate, one could think of leveraging results from the recent literature on last-iterate convergence,
see e.g. [DP19, GPDO20, LNP+21, WLZL21, APFS22, AAS+23]. However, most of these results
concern saddle-point problems only, and are not applicable in our setting. Here, we adopt a much
simpler solution, and take advantage of the properties of the Lagrange dual function gω,µ(x, α) to
design an iterative procedure directly leading to estimates of (Fµ(ω),xe). In this procedure, the two
players successively update their actions until a stopping criterion is met, say up to the N -th iterations.
The procedure generates a sequence {(x(n), α(n))}1≤n≤N , and from this sequence, estimates (F̂ , x̂)
of (Fµ(ω),xe). The details of the resulting MCP algorithm are presented in Algorithm 1.

x-player. We use a variant of the Follow-the-Perturbed-Leader (FTPL) algorithm [Han57, KV05].
The x-player updates her action as follows:

x(n) ∈ argmin
x ̸=i⋆

(
n−1∑
m=1

gω,µ(x, α
(m)) +

〈
Zn

ηn
,x

〉)
= argmin

x ̸=i⋆

(〈
n−1∑
m=1

ℓω,µ(α
(m)) +

Zn

ηn
,x

〉)
,

where Zn is a random vector, exponentially distributed and with unit mean ({Zn}n≥1 are i.i.d.).
Compared to the standard FTPL algorithm, we vary learning rate ηn over time to get anytime
guarantees (as we do not know a priori when the iterative procedure will stop). This kind of time-
varying learning rate was also used in [Neu15] with a similar motivation. Note that thanks to the
linearity of gω,µ and Lemma 2, the x-player update can be computed using at most D calls to the LM
Oracle.

α-player and MCP outputs. From Proposition 1, fx(ω,µ) = maxα≥0 gω,µ(x, α). This suggests
that the α-player can just implement a best-response strategy: after the x-player action x(n) is selected,
the α-player chooses α(n) = α⋆

x(n) =
△

x(n) (µ)

⟨x(n)⊕i⋆(µ),ω−1⟩ . This choice ensures that fx(n)(ω,µ) =

gω,µ(x
(n), α(n)), and suggests natural outputs for MCP: should it stops after N iterations, it can

return F̂ = minn∈[N ] gω,µ(x
(n), α(n)) and x̂ ∈ argminn∈[N ] gω,µ(x

(n), α(n)).

Stopping criterion. The design of the MCP stopping criterion relies on the convergence analysis and
regret from the x-player perspective of the above iterative procedure, which we present in the next
subsection. This convergence will be controlled by ℓω,µ(α

⋆
x) and its upper bound Lω,µ derived in

Proposition 1. Introducing cθ = Lω,µ(4
√
K(lnK + 1)+

√
ln(θ−1)/2), the MCP stopping criterion

is:
√
n > cθ(1 + ϵ)/(ϵF̂ ). Since

√
n strictly increases with n and since F̂ ≥ Fµ(ω), this criterion

ensures that the algorithm terminates in a finite number of iterates. Moreover, as shown in the
next subsection, it also ensures that F̂ returned by MCP is an (1 + ϵ)-approximation of Fµ(ω) with
probability at least 1− θ.
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Algorithm 1: (ϵ, θ)-MCP(ω,µ)

initialization: n = 1, F̂ =∞, cθ = Lω,µ

(
4
√
K(lnK + 1) +

√
ln(θ−1)/2

)
;

while (n = 1) or (n > 1 and
√
n ≤ cθ(1 + ϵ)/(ϵF̂ )) do

Sample Zn ∼ exp(1)K and set ηn =
√
K(lnK + 1)/(4nL2

ω,µ);

x(n) ← argminx ̸=i⋆(µ)

(∑n−1
m=1 gω,µ(x, α

(m)) + ⟨Zn,x⟩ /ηn
)

(ties broken arbitrarily);

α(n) ← argmaxα≥0 gω,µ(x
(n), α) (uniqueness ensured by Proposition 1 (c));

if gω,µ(x
(n), α(n)) < F̂ then (F̂ , x̂)← (gω,µ(x

(n), α(n)),x(n)) ;
n← n+ 1;

end
return (F̂ , x̂);

3.3 Performance analysis of the MCP algorithm

We start the analysis by quantifying the regret from the x-player perspective of MCP before its stops.
The following lemma is proved in Appendix C.3.
Lemma 3. Let N ∈ N. Under (ϵ, θ)-MCP(ω,µ),

P

[
1

N

N∑
n=1

gω,µ(x
(n), α(n))− 1

N
min
x̸=i⋆

N∑
n=1

gω,µ(x, α
(n)) ≤ cθ√

N

]
≥ 1− θ.

Observe that on the one hand,

1

N

N∑
n=1

gω,µ(x
(n), α(n)) ≥ min

n∈[N ]
gω,µ(x

(n), α(n)) = F̂ (4)

always holds. On the other hand, if xe ∈ argminx ̸=i⋆ maxα≥0 gω,µ(x, α), then we have:

1

N
min
x ̸=i⋆

N∑
n=1

gω,µ(x, α
(n)) ≤ 1

N

N∑
n=1

gω,µ(xe, α
(n)) ≤ max

α≥0
gω,µ(xe, α) = Fµ(ω). (5)

We conclude that for N such that
√
N ≥ cθ(1+ϵ)

ϵF̂
, Lemma 3 together with the inequalities (4)

and (5) imply that F̂ − Fµ(ω) ≤ cθ√
N
≤ ϵF̂

1+ϵ holds with probability at least 1 − θ. Hence

P
[
F̂ ≤ (1 + ϵ)Fµ(ω)

]
≥ 1 − θ. From this observation, we essentially deduce the following

theorem, whose complete proof is given in Appendix C.2.
Theorem 3. Let ϵ, θ ∈ (0, 1). Under Assumption 1, for any (ω,µ) ∈ Σ+ × Λ, the (ϵ, θ)-MCP(ω,µ)

algorithm outputs (F̂ , x̂) satisfying P
[
Fµ(ω) ≤ F̂ ≤ (1 + ϵ)Fµ(ω)

]
≥ 1 − θ and F̂ =

maxα≥0 gω,µ(x̂, α). Moreover, the number of LM Oracle calls the algorithm does is almost surely at

most
⌈

c2θ(1+ϵ)2

ϵ2Fµ(ω)2

⌉
= O

(
∥µ∥4

∞∥ω−1∥2∞K3D5 lnK ln θ−1

ϵ2Fµ(ω)2

)
.

4 The Perturbed Frank-Wolfe Sampling (P-FWS) algorithm

To identify an optimal sampling strategy, rather than solving the lower-bound problem in each round
as a Track-and-Stop algorithm would [GK16], we devise P-FWS, an algorithm that performs a single
iteration of the Frank-Wolfe algorithm for the lower-bound problem instantiated with an estimator
of µ. This requires us to first smooth the objective function Fµ(ω) = minx ̸=i⋆ fx(ω,µ) (the latter
is not differentiable at points ω where the min is achieved for several sub-optimal actions x). To
this aim, we cannot leverage the same technique as in [WTP21], where r-subdifferential subspaces
are built from gradients of fx(ω,µ). These subspaces could indeed be generated by a number of
vectors (here gradients) exponentially growing with K. Instead, to cope with the combinatorial
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decision sets, P-FWS applies more standard stochastic smoothing techniques as described in the
next subsection. All the ingredients of P-FWS are gathered in §4.2. By design, the algorithm just
leverages the MCP algorithm as a subroutine, and hence only requires the LM Oracle. In §4.3, we
analyze the performance of P-FWS.

4.1 Smoothing the objective function Fµ

Here, we present and analyze a standard stochastic technique to smooth a function Φ. In P-FWS,
this technique will be applied to the objective function Φ = Fµ. Let Φ : RK

>0 7→ R be a concave
and ℓ-Lipschitz function. Assume that the set of points where Φ is not differentiable is of Lebesgue-
measure zero. To smooth Φ, we can take its average value in a neighborhood of the point considered,
see e.g. [FKM05]. Formally, we define the stochastic smoothed approximate of Φ as:

Φ̄η(ω) = EZ∼Uniform(B2)[Φ(ω + ηZ)] , (6)

where B2 = {v ∈ RK : ∥v∥2 ≤ 1} and η ∈ (0,mink∈[K] ωk). The following proposition lists
several properties of this smoothed function, and gathers together some of the results from [DBW12],
see Appendix H for more details.

Proposition 2. For any ω ∈ Σ+ and η ∈ (0,mink∈[K] ωk), Φ̄η satisfies: (i) Φ(ω)− ηℓ ≤ Φ̄η(ω) ≤
Φ(ω); (ii) ∇Φ̄µ,η(ω) = EZ∼Uniform(B2)[∇Φµ(ω + ηZ)]; (iii) Φ̄η is ℓK

η -smooth; (iv) if η > η′ > 0,
then Φ̄η′(ω) ≥ Φ̄η(ω).

Note that with (i), we may control the approximation error between Φ̄η and Φ by η. (ii) and
(iii) ensure the differentiability and smoothness of Φ̄η respectively. (iii) is equivalent to Φ̄η(ω

′) ≤
Φ̄η(ω)+

〈
∇Φ̄η(ω),ω′ − ω

〉
+ ℓK

2η ∥ω − ω′∥22 , ∀ω,ω′ ∈ Σ+. Finally, (iv) stems from the concavity
of Φ, and implies that the value Φη(ω) monotonously increases while η decreases, and it is upper
bounded by Φ(ω) thanks to (i). The above results hold for Φ = Fµ. Indeed, first it is clear that the
definition (2) of Fµ can be extended to RK ; then, it can be shown that Fµ is Lipschitz-continuous
and almost-everywhere differentiable – refer to Appendices I and H for formal proofs.

4.2 The algorithm

Before presenting P-FWS, we need to introduce the following notation. For t ≥ 1, k ∈ [K], we define
Nk(t) =

∑t
s=1 1{xk(s) = 1}, ω̂k(t) = Nk(t)/t, and µ̂k(t) =

∑t
s=1 yk(s)1{xk(s) = 1} /Nk(t)

when Nk(t) > 0.

Sampling rule. The design of the sampling rule is driven by the following objectives: (i) the empirical
allocation should converge to the solution of the lower-bound problem (1), and (ii) the number of
calls to the LM Oracle should be controlled. To meet the first objective, we need in the Frank-Wolfe
updates to plug an accurate estimator of µ in. The accuracy of our estimator will be guaranteed
by alternating between forced exploration and FW update sampling phases. Now for the second
objective, we also use forced exploration phases when in a Frank-Wolfe update, the required number
of calls to the LM Oracle predicted by the upper bound presented in Theorem 3 is too large. In view
of Lemma 1 and Theorem 3, this happens in round t if ∥µ̂(t − 1)∥∞ or △min(µ̂(t − 1))−1 is too
large. Next, we describe the forced exploration and Frank-Wolfe update phases in detail.

Forced exploration. Initially, P-FWS applies the LM Oracle to compute the forced exploration set
X0 = {i⋆(ek) : k ∈ [K]}, where ek is the K-dimensional vector whose k-th component is equal
to one and zero elsewhere. P-FWS then selects each action in X0 once. Note that Assumption 1
(iii) ensures that the k-th component of i⋆(ek) is equal to one. In turn, this ensures that X0 is a [K]-
covering set, and that playing actions from X0 is enough to estimate µ. P-FWS starts an exploration
phase at rounds t such that

√
t/ |X0| is an integer or such that the maximum of△min(µ̂(t− 1))−1

and ∥µ̂(t− 1)∥∞ is larger than
√
t− 1. Whenever this happens, P-FWS pulls each x ∈ X0 once.

Frank-Wolfe updates. When in round t, the algorithm is not in a forced exploration phase, it im-
plements an iteration of the Frank-Wolfe algorithm applied to maximize the smoothed function
F̄µ̂(t−1),ηt

(ω̂(t − 1)) = EZ∼Uniform(B2)

[
Fµ̂(t−1)(ω̂(t− 1) + ηtZ)

]
. The sequence of parameters

{ηt}t≥1 is chosen to ensure that ηt chosen in (0,mink ω̂k(t)), and hence ω̂(t − 1) + ηtZ ∈
RK

>0. Also note that in a round t where the algorithm is not in a forced exploration phase,
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Algorithm 2: P-FWS ({(ϵt, ηt, nt, ρt, θt)}t)
initialization:

for k = 1, . . . ,K do
X0 ← argmaxx∈X ⟨ek,x⟩ (tie broken arbitrarily)

end
Sample x ∈ X0 in a round-robin manner for 4|X0| rounds; update µ̂(4|X0|) and ω̂(4|X0|);

for t = 4|X0|+ 1, · · · do
if
√
t/|X0| ∈ N or max{△min(µ̂(t− 1))−1, ∥µ̂(t− 1)∥∞} >

√
t− 1 then

Sample each x ∈ X0 once, update µ̂(t) and ω̂(t), and t← t+ |X0| − 1;
else

Compute∇F̃µ̂(t−1),ηt,nt
(ω̂(t− 1)) by (ρt, θt)-MCP algorithm;

x(t)← i⋆
(
∇F̃µ̂(t−1),ηt,nt

(ω̂(t− 1))
)

;
Sample x(t) and update µ̂(t) and ω̂(t);

end
if max{△min(µ̂(t))

−1, ∥µ̂(t)∥∞} ≤
√
t then

F̂t ←
(
ϵt, δ/t

2
)

-MCP(ω̂(t), µ̂(t));

if tF̂t > (1 + ϵt)β
(
t,
(
1− 1

4|X0|

)
δ
)

then break;

end
return ı̂ = i⋆(µ̂(t));

by definition △min(µ̂(t − 1)) > 0. This implies that µ̂(t − 1) ∈ Λ and that Fµ̂(t−1) and
F̄µ̂(t−1),ηt

(ω̂(t − 1)) are well-defined. Now an ideal FW update would consist in playing an
action i⋆(∇F̄µ̂(t−1),ηt

(ω̂(t − 1))) = argmaxx∈X
〈
∇F̄µ̂(t−1),ηt

(ω̂(t− 1)),x
〉
, see e.g. [Jag13].

Unfortunately, we do not have access to ∇F̄µ̂(t−1),ηt
(ω̂(t − 1)). But the latter can be approxi-

mated, as suggested in Proposition 2 (ii), by ∇F̃µ̂(t−1),ηt,nt
(ω̂(t− 1)) = 1

nt

∑nt

m=1∇fx̂m
(ω̂(t−

1) + ηtZm, µ̂(t − 1)), where Z1, · · · ,Znt

i.i.d.∼ Uniform(B2), x̂m is the action return by
(ρt, θt)-MCP(ω̂(t − 1) + ηtZm, µ̂(t − 1)). P-FWS uses this approximation and the LM Oracle
to select the action: x(t) ∈ i⋆

(
∇F̃µ̂(t−1),ηt,nt

(ω̂(t− 1))
)
. The choices of the parameters ηt, nt,

ρt and θt do matter. ηt impacts the sample complexity and should converge to 0 as t→∞ so that
F̄µ,ηt(ω)→ Fµ(ω) at any point ω ∈ Σ+ (this is a consequence of Proposition 2 (i)(iv)). ηt should
not decay too fast however as it would alter the smoothness of F̄µ,ηt

. We will show that ηt should
actually decay as 1/

√
t. (nt, ρt, θt) impact the trade-off between the sample complexity and the

computational complexity of the algorithm. We let nt → ∞ and (ρt, θt) → 0 as t → ∞ so that〈
∇F̃µ,ηt,nt

(ω)−∇F̄µ,ηt
(ω),x

〉
→ 0 for any (ω,x) ∈ Σ+ ×X .

Stopping and decision rule. As often in best arm identification algorithms, the P-FWS stopping rule
takes the form of a GLRT:

τ = inf

{
t > 4|X0| :

tF̂t

1 + ϵt
> β

(
t,

(
1− 1

4|X0|

)
δ

)
,max

{
△min(µ̂(t))

−1, ∥µ̂(t)∥∞
}
≤
√
t

}
,

(7)
where ϵt ∈ R>0, F̂t is returned by the (ϵt, δ/t2)-MCP(ω̂(t), µ̂(t)) algorithm. The function β satisfies

∀t ≥ 1,
(
tFµ̂(t)(ω(t)) ≥ β(t, δ)

)
=⇒ (Pµ[i

⋆(µ̂(t)) ̸= i⋆(µ)] ≤ δ) , (8)

∃c1, c2 > 0 : ∀t ≥ c1, β(t, δ) ≤ ln

(
c2t

δ

)
. (9)

Examples of function β satisfying the above conditions can be found in [GK16, JP20, KK21]. The
condition (8) will ensure the δ-correctness of P-FWS, whereas (9) will control its sample complexity.
Finally, the action returned by P-FWS is simply defined as ı̂ = i⋆(µ̂(τ)). The complete pseudo-code
of P-FWS is presented in Algorithm 2.3

3Our Julia implementation could be found at https://github.com/rctzeng/NeurIPS2023-PerturbedFWS.
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4.3 Non-asymptotic performance analysis of P-FWS

The following theorem provides an upper bound of the sample complexity of P-FWS valid for any
confidence level δ, as well as the computational complexity of the algorithm.
Theorem 4. Let µ ∈ Λ and δ ∈ (0, 1). If P-FWS is parametrized using

(ϵt, ηt, nt, ρt, θt) =

(
t−

1
9 ,

1

4
√
t|X0|

,
⌈
t
1
4

⌉
,

1

16tD2|X0|
,

1

t
1
4 e

√
t

)
, (10)

then (i) the algorithm finishes in finite time almost surely and Pµ [̂ı ̸= i⋆(µ)] ≤ δ; (ii) its sam-
ple complexity satisfies Pµ

[
lim supδ→0

τ
ln δ−1 ≤ T ⋆(µ)

]
= 1 and for any ϵ, ϵ̃ ∈ (0, 1) with

ϵ < min{1, 2D
2△2

min

K ,
D2∥µ∥2

∞
3 },

Eµ[τ ] ≤
(1 + ϵ̃)2

T ⋆(µ)−1 − 6ϵ
×H

(
1

δ
· 4c2

3
· (1 + ϵ̃)2

T ⋆(µ)−1 − 6ϵ

)
+Ψ(ϵ, ϵ̃),

where H(x) = lnx+ lnlnx+1 and Ψ(ϵ, ϵ̃) (refer to (34) for a detailed expression) is polynomial in
ϵ−1, ϵ̃−1, K, ∥µ∥∞, and△min(µ)

−1; (iii) the expected number of LM Oracle calls is upper bounded
by a polynomial in ln δ−1, K, ∥µ∥∞, and△min(µ)

−1.

The above theorem establishes the statistical asymptotic optimality of P-FWS since it implies that
lim supδ→0 Eµ[τ ] / ln(1/δ) ≤ (1 + ϵ̃)2/(T ⋆(µ)−1 − 6ϵ). This upper bound matches the sample
complexity lower bound (1) when ϵ→ 0 and ϵ̃→ 0.

Proof sketch. The complete proof of Theorem 4 is presented in Appendix D.

(i) Correctness. To establish the δ-correctness of the algorithm, we introduce the event G under which
F̂t, computed by (ϵt, δ/t

2)-MCP(ω̂(t), µ̂(t)), is an (1 + ϵt)-approximation of Fµ̂(t)(ω̂(t)) in each
round t ≥ 4|X0|+ 1. From Theorem 3, we deduce that Pµ[Gc] ≤

∑∞
t=4|X0|+1 δ/t

2 ≤ δ/4|X0|. In
view of (8), this implies that Pµ [̂ı ̸= i⋆(µ)] ≤ δ.

(ii) Non-asymptotic sample complexity upper bound.
Step 1. (Concentration and certainty equivalence) We first define two good events, E(1)t and E(2)t . E(2)t

corresponds to the event where µ̂(t) is close to µ, and its occurrence probability can be controlled
using the forced exploration rounds and concentration inequalities. Under E(1)t , the selected action
x(t) is close to the ideal FW update. Again using concentration results and the performance
guarantees of MCP given in Theorem 3, we can control the occurrence probability of E(2)t . Overall,
we show that

∑∞
t=1 Pµ[(E(1)t ∩ E(2)t )c] < ∞. To this aim, we derive several important continuity

results presented in Appendix G. These results essentially allow us to study the convergence of the
smoothed FW updates as if the certainty equivalence principle held, i.e., as if µ̂(t) = µ.
Step 2. (Convergence of the smoothed FW updates) We study the convergence assuming that (E(1)t ∩
E(2)t ) holds. We first show that F̄µ,ηt

is ℓ-Lipschitz and smooth for ℓ = 2D2 ∥µ∥2∞, see Appendices
H and I. Then, in Appendix E, we establish that the dynamics of ϕt = maxω∈Σ Fµ(ω)− Fµ(ω̂(t))

satisfy tϕt ≤ (t − 1)ϕt−1 + ℓ
(
ηt−1 +

K2

2tηt

)
. Observe that, as mentioned earlier, 1/

√
t is indeed

the optimal scaling choice for ηt. We deduce that after a certain finite number T1 of rounds, ϕt is
sufficiently small and max{△min(µ̂(t))

−1, ∥µ̂(t)∥∞} ≤
√
t.

Step 3. Finally, we observe that Eµ[τ ] ≤ T1 +
∑∞

t=T1
Pµ

[
tF̂t ≤ (1 + ϵt)β

(
t, (1− 1

4|X0| )δ
)]

+∑∞
t=T1+1 Pµ

[
(E(1)t ∩ E(2)t )c

]
, and show that the second term in the r.h.s. in this inequality is

equivalent to T ⋆(µ) ln(1/δ) as δ → 0 using the property of the function β defining the stopping
threshold and similar arguments as those used in [GK16, WTP21].

(iii) Expected number of LM Oracle calls. The MCP algorithm is called to compute F̂t and to
perform the FW update only in rounds t such that max{△min(µ̂(t))

−1, ∥µ̂(t)∥∞} ≤
√
t. Thus,

from Theorem 3 and Lemma 1, the number of LM Oracle calls per-round is a polynomial in t and
K. As the Eµ[τ ] is polynomial (in ln δ−1, K, ∥µ∥∞ and△−1

min), the expected number of LM Oracle
calls is also polynomial in the same variables.
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5 Related Work

We provide an exhaustive survey of the related literature in Appendix B. To summarize, to the best of
our knowledge, CombGame [JMKK21] is the state-of-the-art algorithm for BAI in combinatorial
semi-bandits in the high confidence regimes. A complete comparison to P-FWS is presented in
Appendix B. CombGame was initially introduced in [DKM19] for classical bandit problems. There,
the lower-bound problem is casted as a two-player game and the authors propose to use no-regret
algorithms for each player to solve it. [JMKK21] adapts the algorithm for combinatorial semi-
bandits, and provides a non-asymptotic sample complexity upper bound matching (1) asymptotically.
However, the resulting algorithm requires to call an oracle solving the Most-Confusing-Parameter
problem as our MCP algorithm. The authors of [JMKK21] conjectured the existence of such a
computationally efficient oracle, and we establish this result here.

6 Conclusion

In this paper, we have presented P-FWS, the first computationally efficient and statistically optimal
algorithm for the best arm identification problem in combinatorial semi-bandits. For this problem, we
have studied the computational-statistical trade-off through the analysis of the optimization problem
leading to instance-specific sample complexity lower bounds. This approach can be extended to
study the computational-statistical gap in other learning tasks. Of particular interest are problems
with an underlying structure (e.g. linear bandits [DMSV20, JP20], or RL in linear / low rank MDPs
[AKKS20]). Most results on these problems are concerned with statistical efficiency, and ignore
computational issues.
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A Table of Notation

Problem setting
K Number of arms

[m] for any m ∈ N The set {1, 2 . . . ,m}
δ Required uncertainty

µ ∈ RK Vector of the expected rewards of the various arms
Eµ and Pµ The expectation and probability measure corresponding to µ

Λ {µ ∈ RK : |i⋆(µ)| = 1}
i⋆(µ) Best arm under parameter µ
X Set of actions in {0, 1}K
D maxx∈X ∥x∥1

△x(µ) ⟨i⋆(µ)− x,µ⟩
△min(µ) minx̸=i⋆(µ) △x(µ)

Notation related to a given algorithm
Nk(t) Number of pulls of arm k up to time t
ω̂k(t) Nk(t)/t
x(t) The action taken in time t
yk(t) Random reward received if xk(t) = 1
µ̂k(t)

∑t
s=1 yk(s)1{xk(s) = 1}/Nk(t)

τ Stopping time
ı̂ Recommended action

Notation used for sets and vectors
⊙ Elementwise product
⊕ Elementwise sum over Z2

xi The i-th elementwise power of x ∈ RK , i.e., (xi
k)k∈[K]

cl (S) The closure of set S
ek the K-dimensional vector whose k-th component is equal to one and zero

elsewhere

Properties for lower bound
d(µ, µ′) KL divergence between the distributions parametrized by µ and µ′

kl(a, b) KL divergence between two Bernoulli distributions of means a and b
Alt(µ) {λ ∈ Λ : i⋆(λ) ̸= i⋆(µ)}

Σ {
∑

x∈X wxx : w ∈ Σ|X|} where ΣN is a (N − 1)-dimensional simplex
Σ+ Σ ∩ RK

>0

Notation for MCP
Fµ(ω) minx̸=i⋆(µ) fx(ω,µ)

fx(ω,µ) infλ∈Cx⟨ω, (µ−λ)2

2
⟩, where Cx = {λ ∈ RK : ⟨λ, i⋆(µ)− x⟩ < 0}

Lω,µ(λ,x, α) ⟨ω, (µ−λ)2

2
⟩+ α ⟨i⋆(µ)− x,λ⟩

gω,µ(x, α) infλ∈RK Lω,µ(λ,x, α)

Notation for P-FWS
X0 A [K]-covering set
F̂t MCP-approximated value of Fµ̂(t)(ω̂(t)) for stopping rule

F̄µ,η(·) EZ∼Uniform(B2)[∇Fµ(·+ ηZ)] where B2 = {v ∈ RK : ∥v∥2 ≤ 1}
F̃µ,η,n The empirical n-sample estimate of F̄µ,η

ℓ Lipschitz constant of Fµ
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B Further related work

Combinatorial semi-bandits [CBL12] have found numerous applications including online ranking
[DKC21], network routing [CLK+14, KWA+14], loan assignment [KWA+14], path planning prob-
lem [JMKK21], and influence marketing [Per22]). We do not discuss these applications here, but
rather focus the literature that is the most relevant to our analysis and results.

Solving the lower-bound problem in combinatorial semi-bandits. We are not aware of any
computationally efficient algorithm to solve the lower-bound problem, or to compute its objective
function. To the best of our knowledge, MCP is the first algorithm to do so. A work closed to ours is
[CCG21a] for combinatorial semi-bandits but in the regret minimization. Regret minimization yields
a different lower-bound problem. There exits a statistically optimal algorithm [CMP17], called OSSB,
that matches the regret lower bound by [CTMSP+15]. OSSB requires to solve the lower-bound
problem in each round, and the authors [CCG21a] are the first to investigate whether this is at all
possible in a computationally efficient way. They establish that if budgeted-linear maximization
(BLM) [RG96, BBGS11] can be solved within an ε-approximation factor for the combinatorial set
X , then the lower-bound problem can be approximately solved with a precision depending on ε. As
a consequence, the approach leads to an algorithm with asymptotically minimal regret only if one
has access to an exact BLM solver. This is the case for m-sets and s-t paths but this is not the case
for spanning trees and perfect matchings. For the latter case, as mentioned [CCG21a], an algorithm
using an approximately correct BLM solver would not be statistically optimal.

Best arm identification in combinatorial semi-bandits. Many tasks related to combinatorial best
arm identification are formulated in the transductive setting [JMKK21], where the set A ⊆ {0, 1}K
available for exploration is not necessarily the same as the setX ⊆ {0, 1}K for decision. The minimal
sample complexity in the transductive setting is exactly (1) with Σ replaced with {

∑
x∈A wxx :

ω ∈ Σ|A|} - see (58) in Appendix L for details. Two most studied tasks are combinatorial multi-arm
bandit (C-MB) where A = {ek}k∈[K] and the best action identification (C-BAI) where A = X .
The former is arguably simpler than the latter if we compare the corresponding minimal sample
complexities (note that ΣK ⊇ Σ). We note that our results for C-BAI can be easily generalized to the
transductive setting (see Appendix L).

Prior works mainly focus on the C-MB task. UCB-based [KTAS12, CLK+14] and elimination-
based [CGL16, CGL+17, KSJJ+20] approaches are popular. Among these, EfficientGapElim
[CGL+17] achieves the lowest sample complexityO(T ⋆(µ)(ln δ−1+ln2△−1

min(ln ln△
−1
min+ln|X |))

with high probability4, but its computational complexity is hard to analyze. Peace [KSJJ+20], an-
other elimination-based approach by experimental design, requires with high probability a polynomial
number of the LM Oracle calls in total. The sample complexity of Peace has a δ-dependent term
(scaling as KT ⋆(µ) ln δ−1) worse than EfficientGapElim. Overall, none of these are statisti-
cally optimal when δ → 0. Note that algorithms for linear best-arm identification [DMSV20, WTP21]
are applicable to C-MB but not to C-BAI and the general transductive setting.

For the task of C-BAI, we are only aware of two works: GCB-PE [DKC21] and CombGame
[JMKK21]. GCB-PE is a UCB-based algorithm with guarantees on the sample complexity and
computational complexity valid with high probability only. CombGame [JMKK21] is proposed
for the transductive setting, and its design inherits from [DKM19] that interprets the lower-bound
problem and more precisely T ⋆(µ)−1 as the value of a two-player game (a ω-player and a λ-
player)5. Assuming that an MCP oracle is available, CombGame leverages Frank-Wolfe algorithms,
namely OFW [HK12] and LLOO [GH16], for the ω-player and the MCP algorithm for the λ-player.
[JMKK21] leaves the existence of such an oracle running in polynomial time as an open problem.
Our MCP algorithm resolves this issue. CombGame is statistically optimal in the high confidence
regime but has no clear guarantees in the moderate regime [BGK22].

We wish to finally mention an algorithm that has inspired the design of P-FWS. This algorithm is
referred to as Frank-Wolfe Sampling (FWS) [WTP21]. FWS is optimal in high confidence regime

4In Section 4.5 in [CGL+17], the authors provide a lemma stating that: if parallel simulation is additionally
allowed, then any high-probability sample complexity upper bound can be converted to an upper bound in
expectation.

5Note that this two-player game is different than the two-player game involved in our algorithm MCP.
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but is not computationally efficient for combinatorial semi-bandits. For example, to deal with
the non-smoothness issue of the objective function Fµ, FWS needs to construct the so-called r-
subdifferentiable spaces and to optimize a linear function on these spaces. Unfortunately, these
spaces can be generated by a number of vectors exponentially increasing with K in combinatorial
semi-bandits. Moreover, in moderate confidence regime, the sample complexity upper bound derived
in [WTP21] has an exponential dependence in K.

All the relevant algorithms, their sample complexity guarantees and computational complexity are
summarized in Table 1.

Table 1: Algorithms for best-arm identification in combinatorial semi-bandits with fixed confidence
and their performance.

Algorithm Task Instance-specific Sample Complexity Computational Complexity

Non-asympt. Asympt. Opt. Needed (Provided) Total LM oracle calls

Peace C-MB poly
(
K,△−1

min, ln δ
−1
)

w.h.p. ✗ LP solver (✓) poly
(
K,△−1

min, δ
−1
)

w.h.p.
GCB-PE C-BAI poly

(
K,△−1

min, ln δ
−1
)

w.h.p. ✗ - poly
(
K,△−1

min, ln δ
−1
)

w.h.p.
CombGame Trans. ✗ (incomparable) ✓ MCP (✗) ✗

P-FWS Trans. poly
(
K,△−1

min, ln δ
−1
)

✓ MCP (✓) poly
(
K,△−1

min, ln δ
−1
)
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C Results related to our (ϵ, θ)-MCP algorithm

C.1 Properties of Lagrangian dual of fx

Proposition 1. Let (ω,µ) ∈ Σ+ × Λ and x ∈ X \ {i⋆(µ)}.
(a) The Lagrange dual function is linear in x. More precisely, gω,µ(x, α) = cω,µ(α)+ ⟨ℓω,µ(α),x⟩
where cω,µ(α) = α

〈
µ− α

2ω
−1, i⋆(µ)

〉
and ℓω,µ(α) = −α

(
µ+ α

2ω
−1 ⊙ (1K − 2i⋆(µ))

)
.

(b) gω,µ(x, ·) is strictly concave (for any fixed x).
(c) fx(ω,µ) = maxα≥0 gω,µ(x, α) is attained by α⋆

x = △x(µ)
⟨x⊕i⋆(µ),ω−1⟩ .

(d) ∥ℓω,µ(α
⋆
x)∥1 ≤ Lω,µ = 4D2K ∥µ∥2∞

∥∥ω−1
∥∥
∞.

Proof Fix any (ω,µ) ∈ Σ+ × Λ and let i⋆ = i⋆(µ) for short. For convenience, the definition of
Lω,µ and gω,µ are restated:

Lω,µ(λ,x, α) =

〈
ω,

(µ− λ)2

2

〉
+ α ⟨i⋆ − x,λ⟩ and gω,µ(x, α) = inf

λ∈RK
Lω,µ(λ,x, α).

Proof of (a): linearity of gω,µ(·, α): Let λ⋆
ω,µ(x, α) ∈ arg infλ∈RK Lω,µ(λ,x, α). The first-order

condition implies that 0K = ∇λLω,µ(λ
⋆
ω,µ(x, α),x, α) = ω ⊙ (λ⋆

ω,µ(x, α) − µ) + α(i⋆ − x),
which directly yields (as ω > 0K)

λ⋆
ω,µ(x, α) = µ+ αω−1 ⊙ (x− i⋆). (11)

We plug (11) into Lω,µ(λ
⋆
ω,µ(x, α),x, α) and directly obtain that

gω,µ(x, α) =

〈
ω,

α2

2
ω−2 ⊙ (x− i⋆)2

〉
+ α ⟨µ, i⋆ − x⟩ − α2

〈
ω−1, (x− i⋆)2

〉
= α ⟨µ, i⋆ − x⟩ − α2

2

〈
ω−1, (x− i⋆)2

〉
(12)

= cω,µ(α) + ⟨ℓω,µ(α),x⟩ , (13)

where (13) follows from a fact that (x− i⋆)2 = i⋆ − 2x⊙ i⋆ + x = i⋆ + x⊙ (1K − 2i⋆).

Proof of (b): strict concavity of gω,µ(x, ·): This is trivial from (12).

Proof of (c): fx(ω,µ) = maxα≥0 gω,µ(x, α) is attained by α⋆
x = △x(µ)

⟨x⊕i⋆,ω−1⟩ : For a fixed x ̸= i⋆,

by the first-order condition of (12), we find that the maximum of gω,µ(x, ·) is reached at

α⋆
x =

△x(µ)

⟨ω−1, (x− i⋆)2⟩
=

△x(µ)

⟨x⊕ i⋆,ω−1⟩
, (14)

where for the second equality, we use the assumption that i⋆ and x are binary vectors and hence
(x−i⋆)2 = x⊕i⋆. We now verify that (α⋆

x,λ
⋆
x), where λ⋆

x = λ⋆
ω,µ(x, α

⋆
x) (see (11)), satisfies KKT

conditions, which is equivalent to strong duality (refer to [Vis21, BV04]) under Slater’s condition
(there exists a λ ∈ RK such that the constraint is strict). Since x is a suboptimal action,△x(µ) is
positive, so is α⋆

x (dual feasibility). To verify ⟨λ⋆
x, i

⋆ − x⟩ ≤ 0 (primal feasibility), the definition of
λ⋆
ω,µ(·, ·), (11), yields

⟨λ⋆
x, i

⋆ − x⟩ = △x(µ) + α⋆
x

〈
ω−1 ⊙ (x− i⋆), (i⋆ − x)

〉
= △x(µ)− α⋆

x⟨ω−1,x⊕ i⋆⟩ = 0,

which implies that α⋆
x ⟨i

⋆ − x,λ⋆
x⟩ = 0 (complementary slackness). Finally, stationarity holds

automatically as∇λLω,µ(λ
⋆
x,x, α) = 0 for all α.

Proof of (d): ∥ℓω,µ(α
⋆
x)∥1 ≤ Lω,µ = 4D2K ∥µ∥2∞

∥∥ω−1
∥∥
∞: Following from the expression of

ℓω,µ(α), we have ℓω,µ(α
⋆
x) = −α⋆

xµ+
α⋆

x
2

2 ω−1 ⊙ (1K − 2i⋆). Observe that ∥µ∥1 ≤ K ∥µ∥∞ ≤
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K
∥∥ω−1

∥∥
∞ ∥µ∥∞ (as ω ∈ Σ+) and the coordinate of 1K−2i⋆ is either 1 or−1, a simple application

of triangle inequality leads to

∥ℓω,µ(α
⋆
x)∥1 ≤ K

∥∥ω−1
∥∥
∞

(
∥µ∥∞ +

α⋆
x

2

)
α⋆
x.

As for α⋆
x (see (14)),△x(µ) ≤ 2D ∥µ∥∞ and

〈
ω−1,x⊕ i⋆

〉
≥ mink ω

−1
k ≥ 1, hence we conclude

that ∥ℓω,µ(α
⋆
x)∥1 ≤ 2D(D + 1)K ∥µ∥2∞

∥∥ω−1
∥∥
∞ ≤ Lω,µ. □

C.2 Analysis of MCP

Theorem 3. Let ϵ, θ ∈ (0, 1). Under Assumption 1, for any (ω,µ) ∈ Σ+ × Λ, the (ϵ, θ)-MCP(ω,µ)
algorithm outputs (F̂ , x̂) satisfying

P
[
Fµ(ω) ≤ F̂ ≤ (1 + ϵ)Fµ(ω)

]
≥ 1− θ and F̂ = max

α≥0
gω,µ(x̂, α).

Moreover, the number of LM Oracle calls the algorithm does is almost surely at most⌈
c2θ(1 + ϵ)2

ϵ2Fµ(ω)2

⌉
= O

(
∥µ∥4∞

∥∥ω−1
∥∥2
∞K3D5 lnK ln θ−1

ϵ2Fµ(ω)2

)
.

Proof Fix any (ω,µ) ∈ Σ+ × Λ and denote by i⋆ = i⋆(µ). Suppose Algorithm 1 reaches the
stopping criterion at the N -th iteration.

Guarantees on the outputs of MCP: By Proposition 1 (a),

N∑
n=1

gω,µ(x
(n), α(n))−min

x ̸=i⋆

N∑
n=1

gω,µ(x, α
(n)) =

N∑
n=1

〈
ℓω,µ(α

(n)),x(n)
〉
−min

x ̸=i⋆

N∑
n=1

〈
ℓω,µ(α

(n)),x
〉
.

The regret of x-player can be bounded by applying Lemma 3, resulting in:

P

[
N∑

n=1

gω,µ(x
(n), α(n))− min

x̸=i⋆

N∑
n=1

gω,µ(x, α
(n)) ≤ cθ

√
N

]
≥ 1− θ. (15)

To relate Fµ(ω) with (15), let xe be the minimizer attaining Fµ(ω) = fxe(ω,µ). Then,

min
x ̸=i⋆

N∑
n=1

gω,µ(x, α
(n)) ≤

N∑
n=1

gω,µ(xe, α
(n)) ≤ N max

α≥0
gω,µ(xe, α) = NFµ(ω). (16)

Recall that α(n) is chosen as the best response maxα≥0 gω,µ(x
(n), α) = gω,µ(x

(n), α(n)) and that
F̂ = minn∈[N ] gω,µ(x

(n), α(n)). These together with (16) imply that

N(F̂ − Fµ(ω)) ≤
N∑

n=1

gω,µ(x
(n), α(n))− min

x ̸=i⋆

N∑
n=1

gω,µ(x, α
(n)). (17)

A simple rearrangement on (15) and (17) implies that: with probability at least 1− θ,

F̂ − Fµ(ω) ≤ cθ√
N
≤ ϵ(F̂ − cθ√

N
) ≤ ϵFµ(ω),

where the second inequality follows from the stopping criterion that
√
N > cθ(1 + ϵ)/ϵF̂ , and the

last inequality simply comes from the rearrangement of the first inequality.

Computational cost: From the stopping criterion of MCP, we know that

N =

⌈
c2θ(1 + ϵ)2

ϵ2F̂ 2

⌉
≤
⌈
c2θ(1 + ϵ−1)2

Fµ(ω)2

⌉
= O

L2
ω,µ

(√
K lnK +

√
ln θ−1

)2
ϵ2Fµ(ω)2


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since F̂ ≥ Fµ(ω) and cθ = Lω,µ

(
4
√
K(lnK + 1) +

√
ln(θ−1)/2

)
. Finally, as computing each

x(n) takes at most D calls to LM Oracle, the total number of LM Oracle calls is

O

L2
ω,µD

(√
K lnK +

√
ln θ−1

)2
ϵ2Fµ(ω)2

 = O

(
∥µ∥4∞

∥∥ω−1
∥∥2
∞K3D5 lnK ln θ−1

ϵ2Fµ(ω)2

)

by recalling Lω,µ = 4D2K ∥µ∥2∞
∥∥ω−1

∥∥
∞ from Proposition 1 (d) and (

√
lnK +

√
ln θ−1)2 =

O(lnK ln θ−1). □

C.3 Regret analysis of Follow-the-Perturbed-Leader

In this subsection, we aim at proving Lemma 3, which is a direct consequence of Lemma 4. One can
find similar proofs in e.g. [KV05, Neu15, SN20]. However, the parameter ηn in our MCP algorithm
is varying and carefully chosen (without the knowledge of the last round), which makes the proof
slightly more complicated.

Lemma 3. Let N ∈ N. Under (ϵ, θ)-MCP(ω,µ), then

P

[
1

N

N∑
n=1

gω,µ(x
(n), α(n))− 1

N
min
x̸=i⋆

N∑
n=1

gω,µ(x, α
(n)) ≤ cθ√

N

]
≥ 1− θ.

Lemma 4. Let θ ∈ (0, 1) andM ⊆ {0, 1}K . Given an arbitrary sequence {ℓn}n≥1 of vectors in
RK whose length ∥ℓn∥1 is bounded by L > 0 for all n ∈ N. Suppose {x(n)}n≥1 is generated by

x(n) ∈ argmin
x∈M

(
n−1∑
m=1

⟨ℓm,x⟩+
〈
Zn

ηn
,x

〉)
,

where Zn = (Z1,n, · · · ,ZK,n) is a random vector with uncorrelated exponentially distributed (with
unit mean) components, and ηn =

√
K(lnK + 1)/(4nL2). Then, for any N ∈ N,

P

[
N∑

n=1

〈
ℓn,x

(n)
〉
− min

x∈M

N∑
n=1

⟨ℓn,x⟩ ≤ L
√
N

(
4
√
K(lnK + 1) +

√
ln θ−1

2

)]
≥ 1− θ.

Proof of Lemma 4: We will prove this lemma as if {ℓn}n is chosen in advance since there exists
a standard technique for extending regret against oblivious player to the one against nonoblivious
one (see Lemma 4.1 in [CBL06]). For convenience, we introduce the following notation. Let
m⋆ (·) = argminx∈M⟨·,x⟩. Finally, further define global minimizer x⋆ = m⋆

(∑N
n=1 ℓn

)
and an

auxiliary vector b(n) = m⋆ (
∑n

m=1 ℓm +Z1/ηn).

It suffices to show the expected regret bound (18).

E

[
N∑

n=1

〈
ℓn,x

(n)
〉]
− min

x∈M

N∑
n=1

⟨ℓn,x⟩ ≤ 4L
√
NK(lnK + 1). (18)

This is because {
〈
ℓn,x

(n)
〉
− E

[〈
ℓn,x

(n)
〉]
}n forms a sequence of bounded martingale difference,

so an application of a concentration inequality (Lemma 6) with Vn =
〈
ℓn,x

(n)
〉
− E

[〈
ℓn,x

(n)
〉]

,
rn = L for n ∈ [N ], and s = L

√
N ln θ−1/2 gives that

P

[
N∑

n=1

〈
ℓn,x

(n)
〉
− E

[
N∑

n=1

〈
ℓn,x

(n)
〉]

> L

√
N ln θ−1

2

]
≤ θ

and combining this with (18) completes the proof.
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Proof of (18): We decompose the regret into two terms:

N∑
n=1

〈
ℓn,x

(n) − x⋆

〉
=

N∑
n=1

〈
b(n) − x⋆, ℓn

〉
+

N∑
n=1

〈
x(n) − b(n), ℓn

〉
.

(i). We show that E
[∑N

n=1

〈
b(n) − x⋆, ℓn

〉]
≤ K(lnK+1)

ηN
. Invoking Lemma 5 with x = x⋆

results in

E

[
N∑

n=1

〈
b(n) − x⋆, ℓn

〉]
≤ E

[〈
x⋆

ηN
−

(
b(1)

η1
+

N∑
n=2

(
1

ηn
− 1

ηn−1

)
b(n)

)
,Z1

〉]

≤ E

[
∥Z1∥∞

∥∥∥∥∥x⋆

ηN
−

(
b(1)

η1
+

N∑
n=2

(
1

ηn
− 1

ηn−1

)
b(n)

)∥∥∥∥∥
1

]
,

where the last inequality uses Hölder’s inequality. As all the components of x⋆ and ηNb(1)

η1
+∑N

n=2 ηN

(
1
ηn
− 1

ηn−1

)
b(n) are nonnegative and bounded by 1, the 1-norm of their difference is

bounded by K. It remains to show

E[∥Z1∥∞] =

∫ ∞

0

P
[
max

i
Z1,i ≥ x

]
dx ≤

∫ lnK

0

P
[
max

i
Z1,i ≥ x

]
dx+

∫ ∞

lnK

Ke−xdx ≤ lnK+1.

(ii). We show that E
[∑N

n=1

〈
x(n) − b(n), ℓn

〉]
≤ 2L2

∑N
n=1 ηn. Let the pdf of exp(1) be

π(·) = e−∥·∥1 .

E
[〈

b(n), ℓn

〉]
=

∫
z∈RK

〈
m⋆

(
ηn

n∑
m=1

ℓm + z

)
, ℓn

〉
dπ(z)

=

∫
y∈RK

〈
m⋆

(
ηn

n−1∑
m=1

ℓm + y

)
, ℓn

〉
dπ(y − ηnℓn)

=

∫
y∈RK

〈
m⋆

(
ηn

n−1∑
m=1

ℓm + y

)
, ℓn

〉
e−∥y−ηnℓn∥1+∥y∥1dπ(y).

Notice that the triangular inequality implies −∥y − ηnℓn∥1 + ∥y∥1 ≤ ∥ηnℓn∥1 ≤ ηnL and ex ≤
1 + 2x for all x ∈ (0, 1) (Taylor expansion), so recalling x(n) = m⋆

(
ηn
∑n−1

m=1 ℓm +Z1

)
, we

deduce that

N∑
n=1

E
[〈

x(n) − b(n), ℓn

〉]
≤

N∑
n=1

2ηnL

∫
z∈RK

〈
m⋆

(
ηn

n∑
m=1

ℓm + z

)
, ℓn

〉
dπ(z)

≤
N∑

n=1

2ηnL

∫
z∈RK

∥∥∥∥∥m⋆

(
ηn

n∑
m=1

ℓm + z

)∥∥∥∥∥
∞

∥ℓn∥1 dπ(z) ≤ 2L2
N∑

n=1

ηn.

Finally, plugging ηn =
√

K(lnK+1)
4nL2 into (i). and (ii). directly concludes the proof. □

The following lemma is a result that can be found in [CBL06, H+16], we rewrite it here for complete-
ness.

Lemma 5. According to b(n) = m⋆ (ηn
∑n

m=1 ℓm +Z1), we can have

∀x ∈M,

N∑
n=1

〈
b(n) − x, ℓn

〉
≤
〈

x

ηN
,Z1

〉
−

〈
b(1)

η1
+

N∑
n=2

(
1

ηn
− 1

ηn−1

)
b(n),Z1

〉
. (19)
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Proof This is done by induction. For the base case, N = 1, as b(1) = m⋆ (ℓ1 +Z1/η1)〈
b(1), ℓ1 +Z1/η1

〉
≤ ⟨x, ℓ1 +Z1/η1⟩

for any x ∈ M. A simple rearrangement yields (19). While considering N + 1, we suppose
(19) holds for all integers smaller than N + 1. For an arbitrary x ∈ M, the fact b(N+1) =

m⋆
(∑N+1

n=1 ℓn +Z1/ηN+1

)
directly implies that〈

x,

N+1∑
n=1

ℓn +
Z1

ηN+1

〉
≥

〈
b(N+1),

N+1∑
n=1

ℓn +
Z1

ηN+1

〉

=

〈
b(N+1), ℓN+1 +

(
1

ηN+1
− 1

ηN

)
Z1

〉
+

〈
b(N+1),

N∑
n=1

ℓn +
Z1

ηN

〉

≥
N+1∑
n=1

〈
b(n), ℓn

〉
+

〈
b(1)

η1
+

N+1∑
n=2

(
1

ηn
− 1

ηn−1

)
b(n),Z1

〉
,

where the last inequality comes from applying the hypothesis (19) with x = b(N+1) on the second
inner product. Rearrange the above inequality, our induction is completed. □

Lemma 6 (Hoeffding-Azuma). Let N ∈ N, V1, V2, · · · , VN be a bounded martingale difference
sequence w.r.t. X1, X2, · · · , XN such that for any n ∈ [N ] Vn ∈ [An, An + rn] for some random
variable An, measurable w.r.t. X1, · · · , Xn−1 and a positive constant rn. Then, for any s > 0,

P

 ∑
n∈[N ]

Vn > s

 ≤ exp

(
− 2s2∑

n∈[N ] r
2
n

)
and P

 ∑
n∈[N ]

Vn < −s

 ≤ exp

(
− 2s2∑

n∈[N ] c
2
n

)
.
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D Analysis of P-FWS

In this appendix, we prove our main theorem.
Theorem 4. Let µ ∈ Λ and δ ∈ (0, 1). If P-FWS is parametrized using

(ϵt, ηt, nt, ρt, θt) =

(
t−

1
9 ,

1

4
√
t|X0|

,
⌈
t
1
4

⌉
,

1

16tD2|X0|
,

1

t
1
4 e

√
t

)
, (10)

then (i) the algorithm finishes in finite time almost surely and Pµ [̂ı ̸= i⋆(µ)] ≤ δ; (ii) its sam-
ple complexity satisfies Pµ

[
lim supδ→0

τ
ln δ−1 ≤ T ⋆(µ)

]
= 1 and for any ϵ, ϵ̃ ∈ (0, 1) with

ϵ < min{1, 2D
2△2

min

K ,
D2∥µ∥2

∞
3 },

Eµ[τ ] ≤
(1 + ϵ̃)2

T ⋆(µ)−1 − 6ϵ
×H

(
1

δ
· 4c2

3
· (1 + ϵ̃)2

T ⋆(µ)−1 − 6ϵ

)
+Ψ(ϵ, ϵ̃),

where H(x) = lnx+ lnlnx+1 and Ψ(ϵ, ϵ̃) (refer to (34) for a detailed expression) is polynomial in
ϵ−1, ϵ̃−1, K, ∥µ∥∞ and△min(µ)

−1; (iii) the expected number of LM Oracle calls is upper bounded
by a polynomial in ln δ−1, K, ∥µ∥∞ and△min(µ)

−1.

D.1 δ-correctness (Theorem 4 (i))

Recall that P-FWS stopping rule is:

τ = inf

{
t > 4|X0| :

tF̂t

1 + ϵt
> β

(
t,

(
1− 1

4|X0|

)
δ

)
,max

{
1

△min(µ̂(t))
, ∥µ̂(t)∥∞

}
≤
√
t

}
,

(7)
where F̂t is computed by (ϵt, δ/t

2)-MCP(ω̂(t), µ̂(t)). Let ı̂ = i⋆(µ̂(τ)) be the output of P-FWS.
Define the good event G =

⋂∞
t=4|X0|+1{F̂t ≤ (1 + ϵt)Fµ̂(t)(ω̂(t))}. Hence, it follows from the

guarantee of (ϵt, δ/t2)-MCP algorithm that

Pµ[Gc] ≤ δ
∞∑

t=4|X0|+1

t−2 ≤ δ
∫ ∞

4|X0|
x−2dx ≤ δ

4|X0|
.

Besides, under the event G,

(1 + ϵτ )τFµ̂(τ)(ω̂(τ)) ≥ τF̂τ ≥ (1 + ϵτ )β

(
τ,

(
1− 1

4|X0|

)
δ

)
holds, implying that τFµ̂(τ)(ω̂(τ)) ≥ β

(
τ,
(
1− 1

4|X0|

)
δ
)

. So, by (8)-(9), ı̂ = i⋆(µ̂(t)) satisfies:

Pµ [̂ı ̸= i⋆(µ) ,G] ≤
(
1− 1

4|X0|

)
δ,

and thus Pµ [̂ı ̸= i⋆(µ)] ≤ Pµ [̂ı ̸= i⋆(µ) ,G] + Pµ[Gc] ≤ δ.

D.2 Almost-sure upper bound (Theorem 4 (ii))

In this section, we show Theorem 4 (ii) an almost-sure upper bound on the sample complexity for
P-FWS. Our proof is based on the continuity of Fµ in µ (as in [GK16, WTP21]) and also on the
following observations:

(a) {µ̂(t) t→∞−→ µ} and {∇F̃µ,ηt,nt
(ω)

t→∞−→ ∇F̄µ,ηt
(ω), ∀ω ∈ Σ+} happen almost surely,

(b) F̂t ≥ Fµ̂(t)(ω̂(t)).

For (a), by the law of large numbers, µ̂(t) t→∞−→ µ as Nk(t)
t→∞−→ ∞ for all k ∈ [K] yielded by

forced exploration rounds involved in P-FWS (Lemma 14 in Appendix F), ∇F̃µ,ηt,nt
(ω)

t→∞−→
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∇F̄µ,ηt
(ω), ∀ω ∈ Σ+ is a direct consequence that nt

t→∞−→ ∞. (b) is immediately derived from
the definition of F̂t as F̂t = fx̂(ω̂(t), µ̂(t)) for some action x̂ ̸= i⋆(µ̂(t)) and Fµ̂(t)(ω̂(t)) =
minx∈X\i⋆(µ̂(t)) fx(ω̂(t), µ̂(t)).

Introduce the event

E =

{
Fµ(ω̂(t))

t→∞−→ max
ω∈Σ

Fµ(ω) and µ̂(t)
t→∞−→ µ

}
.

Because of (a), Theorem 5 in Appendix E ensures that Pµ[E ] = 1. Also, by the uniform continuity of
Fµ(ω) in µ for an arbitrary ω ∈ Σ+ (Lemma 7 in D.3.3),

max
ω∈Σ+

∣∣Fµ̂(t)(ω)− Fµ(ω)
∣∣ t→∞−→ 0

almost surely, and hence by the triangle inequality, this implies that

Pµ

[
Fµ̂(t)(ω̂(t))

t→∞−→ max
ω∈Σ

Fµ(ω)

]
= 1.

For any ϵ ∈ (0, 1), under E , there exists a positive integer Tϵ > max {c1, 4|X0|} such that for any
t ≥ Tϵ, we have

Fµ̂(t)(ω̂(t)) ≥ (1− ϵ)max
ω∈Σ

Fµ(ω), max

{
1

△min(µ̂(t))
, ∥µ̂(t)∥∞

}
≤
√
t, and ϵt ≤ ϵ, (20)

where the second inequality is due to (a) and the third is because ϵt → 0. So, the stopping time (7)
can be upper bounded by

τ ≤ Tϵ + inf

{
t > Tϵ : tF̂t > (1 + ϵ)β

(
t,
(4|X0| − 1)δ

4|X0|

)}
≤ Tϵ + inf

{
t > Tϵ : tFµ̂(t)(ω̂(t)) > (1 + ϵ)β

(
t,
(4|X0| − 1)δ

4|X0|

)}
≤ Tϵ + inf

{
t > Tϵ : t(1− ϵ)max

ω∈Σ
Fµ(ω) > (1 + ϵ)β

(
t,
(4|X0| − 1)δ

4|X0|

)}
≤ Tϵ + inf

{
t > Tϵ :

(1− ϵ)t
(1 + ϵ)T ⋆(µ)

> ln

(
c2t

δ
· 4|X0|
4|X0| − 1

)}
≤ 2Tϵ +

(
1 + ϵ

1− ϵ

)
T ⋆(µ)H

(
1

δ
· 8c2

7

(
1 + ϵ

1− ϵ

)
T ⋆(µ)

)
. (21)

where the first inequality uses the last two inequalities of (20), the second inequality uses (b), the third
inequality is based on the first inequality of (20), the fourth uses T ⋆(µ)−1 = maxω∈Σ Fµ(ω) and
(9), and the last inequality results from (4|X0|)/(4|X0| − 1) ≤ 8/7 (as |X0| ≥ 2), and an application
of Lemma 9 with

α = 1, b1 =
1− ϵ
1 + ϵ

· 1

T ⋆(µ)
and b2 =

8c2
7
· 1
δ
.

Finally, as ϵ ∈ (0, 1) can be arbitrarily small, (21) implies that

Pµ

[
lim sup

δ→0

τ

ln δ−1
≤ T ⋆(µ)

]
= 1.

D.3 Non-asymptotic sample complexity (Theorem 4 (ii))

We establish the following non-asymptotic upper bound on Eµ[τ ]: for any ϵ̃, ϵ ∈ (0, 1) small enough,

Eµ[τ ] ≤
(1 + ϵ̃)2

T ⋆(µ)−1 − 6ϵ
H

(
1

δ
· 8c2

7
· (1 + ϵ̃)2

T ⋆(µ)−1 − 6ϵ

)
+Ψ(ϵ, ϵ̃),

where H(x) = lnx+ lnlnx+ 1 and Ψ(ϵ, ϵ̃) is defined in (34).
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Note that this directly implies the asymptotic optimality. Indeed, when δ → 0, we get:

lim sup
δ→0

Eµ[τ ]

ln δ−1
≤ (1 + ϵ̃)2

T ⋆(µ)−1 − 6ϵ
.

As ϵ, ϵ̃ can be set arbitrarily small and kl(δ, 1 − δ) ≈ ln δ−1 as δ → 0, it matches the sample
complexity lower bound (1) (Theorem 7 in Appendix K) asymptotically.

Throughout this section, we assume µ ∈ Λ is given and take any ϵ ∈ (0, 1) satisfying the following:

ϵ < min

{
1,

2D2△2
min

K
,

1

6T ⋆(µ)

}
≤ min

{
1,

2D2△2
min

K
,
D2 ∥µ∥2∞

3

}
, (22)

where the second inequality is because T ⋆(µ)−1 ≤ ℓ = 2D2 ∥µ∥2∞ by Lemma 22 in Appendix I.

The assumption of ϵ < min{1, 2D
2△2

min

K ,
D2∥µ∥2

∞
3 } is used to define the good events introduced in

D.3.1 as well as to derive several necessary technical lemmas summarized in D.3.3.

D.3.1 Good events

Since in early rounds, the estimation of µ̂(t) is noisy, we introduce two threshold functions, h and h,
on the round index T :{

h(T ) = min{t ∈ N : t ≥ T a,
√
t/|X0| ∈ N}

h(T ) = min{t ∈ N : t ≥ T bh(T ),
√
t/|X0| ∈ N}

, (23)

where a, b ∈ (0, 1) and a+ b < 1 will be explained later in (27). Now, we define our good events:

E1,ϵ(T ) =
T⋂

t=h(T )

E(t)1,ϵ and E2,ϵ(T ) =
T⋂

t=h(T )

E(t)2,ϵ , (24)

where E(t)1,ϵ =
{〈
∇F̄µ̂(t−1),ηt

(ω̂(t− 1)),x(t)
〉
≥ maxx∈X

〈
∇F̄µ̂(t−1),ηt

(ω̂(t− 1)),x
〉
− ϵ
}

and E(t)2,ϵ =
{
∥µ̂(t− 1)− µ∥∞ < ϵ

24D3∥µ∥∞

}
.

E(t)1,ϵ is the event when the solution of FW update is bounded by at most ϵ, and E(t)2,ϵ is the event when

the empirical estimate of µ is sufficiently accurate. Under E(t)2,ϵ , the uniform continuity shown in
Lemma 7 in D.3.3 ensures that:

|Fµ̂(t−1)(ω)− Fµ(ω)| < ϵ, ∀ω ∈ Σ+,

|
〈
∇F̄µ̂(t−1),η(ω)−∇F̄µ,η(ω),x− ω

〉
| < ϵ, ∀(ω,x) ∈ Σ+ ×X ,∀η ∈ (0, min

k∈[K]
ωk).

The second inequality enables the duality gap of FW algorithm to be controlled, leading to the
convergence of P-FWS. Let

M = max

{
(4|X0|)

1
a ,

(
4K2

ϵ2D2|X0|

) 1
a

,

(
2

△min(µ)

) 2
a

,

(
3 ∥µ∥∞

2

) 2
a

}

+max


(
ℓ

ϵ

) 1
b

,

(
5ℓK2

ϵ
√
|X0|

) 2
a+b

 , (25)

then overall, we have (Theorem 5 in D.3.3): for any t ≥ h(M),

max
ω∈Σ

Fµ(ω)− Fµ(ω̂(t)) ≤ 5ϵ, △min(µ̂(t)) ≥
△min(µ)

2
, and ∥µ̂(t)∥∞ ≤

3 ∥µ∥∞
2

. (26)

Finally, the values of a, b are set to the following:

a =
7

9
and b =

1

9
. (27)

This choices will balance the leading order between ϵ−1 and ϵ̃−1 in the δ-independent terms (34) of
the non-asymptotic upper bound (which will be shown later).
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D.3.2 Proof of non-asymptotic sample complexity

Let δ ∈ (0, 1). We claim that:

Eµ[τ ] ≤
∞∑

T=1

Pµ[τ ≥ T ] ≤ T0(δ) +
∞∑

T=M+1

Pµ[(E1,ϵ(T ) ∩ E2,ϵ(T ))c] , (28)

where T0(δ) = inf
{
T ≥M : h(T ) + (1+ϵT )

T⋆(µ)−1−6ϵβ
(
T, (4|X0|−1)δ

4|X0|

)
≤ T

}
. The proof is completed

by bounding each term in the right-hand side of (28).

Proof of (28): Suppose T ≥M and E1,ϵ(T ) ∩ E2,ϵ(T ) holds. Observe that

min{τ, T} ≤ h(T ) +
T∑

t=⌈h(T )⌉

1{τ > t} .

To derive an upper bound of
∑T

t=⌈h(T )⌉ 1{τ > t}, recall the stopping rule (7) that

τ = inf

{
t > 4|X0| :

tF̂t

1 + ϵt
> β

(
t,
(4|X0| − 1)δ

4|X0|

)
,max

{
1

△min(µ̂(t))
, ∥µ̂(t)∥∞

}
≤
√
t

}

≤ inf

{
t ≥ h(M) : tF̂t > (1 + ϵt)β

(
t,
(4|X0| − 1)δ

4|X0|

)}
≤ inf

{
t ≥ h(M) : t(T ⋆(µ)−1 − 6ϵ) > (1 + ϵt)β

(
t,
(4|X0| − 1)δ

4|X0|

)}
,

where the first inequality uses (26), and the second follows from Lemma 7 and Theorem 5 in D.3.3:
|Fµ̂(t−1)(ω̂(t− 1))− Fµ(ω̂(t− 1))| < ϵ and T ⋆(µ)−1 − Fµ(ω̂(t)) ≤ 5ϵ, (29)

and the fact that F̂t ≥ Fµ̂(t)(ω̂(t)). Hence,
∑T

t=h(T ) 1{τ > t} is upper bounded by
T∑

t=h(T )

1

{
t(T ⋆(µ)−1 − 6ϵ) ≤ (1 + ϵt)β

(
t,
(4|X0| − 1)δ

4|X0|

)}
≤ (1 + ϵT )

T ⋆(µ)−1 − 6ϵ
β

(
T,

(4|X0| − 1)δ

4|X0|

)
.

By defining T0(δ) as done in (28), we get (28), i.e.,

Eµ[τ ] ≤
∞∑

T=1

Pµ[τ ≥ T ] ≤ T0(δ) +
∞∑

T=M+1

Pµ[(E1,ϵ(T ) ∩ E2,ϵ(T ))c]

because E1,ϵ(T ) ∩ E2,ϵ(T ) ⊆ {τ ≤ T} for any T ≥ T0(δ).

Now, we proceed with the proof by upper-bounding each term in the right-hand side of (28).

Bounding T0(δ): Introduce ϵ̃ ∈ (0, 1) that can be chosen arbitrarily small. Notice that

T − h(T ) = T − T a+b ≥ T

1 + ϵ̃
when T ≥

(
1 +

1

ϵ̃

) 1
1−(a+b)

, (30)

ϵT = T− 1
9 ≤ ϵ̃ when T ≥

(
1

ϵ̃

)9

, (31)

where the first inequality results from a simple rearrangement, and the second substitutes ϵt = t−1/9.
Then, it follows from (9) that:

T0(δ) ≤ inf

{
T ≥ max

{
M, (1 + ϵ̃−1)

1
1−(a+b) , ϵ̃−9

}
:
(1 + ϵ̃)β

(
T, 3δ4

)
T ⋆(µ)−1 − 6ϵ

≤ T

1 + ϵ̃

}

≤ inf

{
T ≥ max

{
M, (1 + ϵ̃−1)

1
1−(a+b) , ϵ̃−9, c1

}
: ln

(
4c2T

3δ

)
≤ T ⋆(µ)−1 − 6ϵ

(1 + ϵ̃)2
· T
}

≤ max
{
M, (1 + ϵ̃−1)

1
1−(a+b) , ϵ̃−9, c1

}
+

(1 + ϵ̃)2

T ⋆(µ)−1 − 6ϵ
×H

(
4c2
3δ
· (1 + ϵ̃)2

T ⋆(µ)−1 − 6ϵ

)
,

(32)
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where the first inequality uses (30)-(31) and 4|X0|−1
4|X0| ≥

3
4 (as |X0| ≥ 2 is shown in Lemma 23 in

Appendix J), the second inequality is due to (9), and the last results from an application of Lemma 9
in Appendix D.3.3 with

α = 1, b1 =
T ⋆(µ)−1 − 6ϵ

(1 + ϵ̃)2
, and b2 =

4c2
3δ
.

Bounding
∑∞

T=M+1 Pµ[(E1,ϵ(T ) ∩ E2,ϵ(T ))c]: By Lemma 8 in Appendix D.3.3, it is upper bounded
by

2K

 3

min{1, ϵ2

8ℓ2K3D2 }2+
2
a

+ 2

(
2304D6 ∥µ∥2∞

√
|X0|

ϵ2

)2+ 2
a

Γ

(
2 +

2

a

)
. (33)

Putting things together: Finally, substituting (a, b) = (79 ,
1
9 ) into (25)-(32)-(33) yields that:

• T0(δ) ≤M +
(
1 + 1

ϵ̃

)9
+
(
1
ϵ̃

)9
+ c1 +

(1+ϵ̃)2

T⋆(µ)−1−6ϵ ×H
(

4c2
3δ ·

(1+ϵ̃)2

T⋆(µ)−1−6ϵ

)
• M ≤ max{(4|X0|)

9
7 , ( 4K2

ϵ2D2|X0| )
9
7 , ( 4

△2
min

)
9
7 , (

9∥µ∥2
∞

4 )
9
7 }+max{( ℓϵ )

9, ( 5ℓK2

ϵ
√

|X0|
)2.25}

•
∑∞

T=M Pµ[(E1,ϵ(T ) ∩ E2,ϵ(T ))c] < 78K
ϵ10

(
215K15D10ℓ10 + 24139D30 ∥µ∥10∞ |X0|2.5

)
where simplifications are obtained remarking that Γ(2 + 2

a ) ≤ 13 and 2 + 2
a < 5. Therefore,

substituting ℓ = 2D2 ∥µ∥2∞ (defined in Appendix I) and 78 < 27, 39 ≤ 215, and 49/7 < 6 lead to:

Eµ[τ ] ≤
(1 + ϵ̃)2

T ⋆(µ)−1 − 6ϵ
×H

(
4c2
3δ
· (1 + ϵ̃)2

T ⋆(µ)−1 − 6ϵ

)
+Ψ(ϵ, ϵ̃),

where

Ψ(ϵ, ϵ̃) = 6max

{
|X0|,

K2

ϵ2D2|X0|
,

1

△2
min

, ∥µ∥2∞

} 9
7

+max

{
29D18 ∥µ∥18∞

ϵ9
,
102.25D4.5 ∥µ∥4.5∞ K2

ϵ2.25|X0|1.125

}

+

(
1 +

1

ϵ̃

)9

+

(
1

ϵ̃

)9

+ c1 +
232KD30 ∥µ∥10∞

(
K15 ∥µ∥10∞ + 231|X0|2.5

)
ϵ10

. (34)

D.3.3 Technical lemmas

The most important step in Theorem 4 is to bound the term
∑∞

T=M+1 Pµ[(E1,ϵ(T ) ∩ E2,ϵ(T ))c] in
(28) explicitly in terms of K, ∥µ∥∞ and ϵ. For this purpose, inspired by Assumption 3 in [WTP21],
we developed Proposition 4 (see Appendix G.2 for the proof) and combine it with the mean-valued
theorem to derive our main continuity results in Lemma 7 (see Appendix G for the proof). Throughout
this section, we fix µ ∈ Λ and denote△min(µ) by△min.

Lemma 7. Let ϵ ∈ (0,
2D2△2

min

K ). Then, any π ∈ RK with ∥π − µ∥∞ < ϵ
24D3∥µ∥∞

satisfies the
following:

|Fµ(ω)− Fπ(ω)| < ϵ, ∀ω ∈ Σ+ (35)

|
〈
∇F̄π,η(ω)−∇F̄µ,η(ω),x− ω

〉
| < ϵ, ∀(ω,x) ∈ Σ+ ×X ,∀η ∈ (0, min

k∈[K]
ωk). (36)

Our main concentration result with error specified explicitly in terms of ϵ is (see Appendix F for the
proof):

Lemma 8. Let ϵ ∈ (0,
2D2△2

min

K ) and M be defined as in (25). Then,
∞∑

T=M+1

Pµ[(E1,ϵ(T ) ∩ E2,ϵ(T ))c] < 2K

(
3

A1(ϵ)2+
2
a

+
2

A2(ϵ)2+
2
a

)
Γ

(
2 +

2

a

)
,

where A1(ϵ) = min{1, ϵ2

8ℓ2K3D2 }, A2(ϵ) =
ϵ2

2304D6∥µ∥2
∞

√
|X0|

, and Γ denotes the gamma function

Γ(z) =
∫∞
0
tz−1e−tdt for any z > 0.
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We remark that Lemma 8 sharpens a similar result, Lemma 2 in [WTP21], by a factor of eK after
performing a more careful analysis.

Under good events E1,ϵ(T ) ∩ E2,ϵ(T ), we show Theorem 5, the convergence of P-FWS when µ̂(t) is
replaced with µ. As shown in Appendix D.3.2, the extra error due to this replacement is controlled,
thanks to Lemma 7.

Theorem 5. Let ϵ ∈ (0,min{1, 2D
2△2

min

K }) and T be an integer at least larger than

max

{
(4|X0|)

1
a ,

(
4K2

ϵ2D2|X0|

) 1
a

,

(
2

△min

) 2
a

,

(
3 ∥µ∥∞

2

) 2
a

}
+max


(
ℓ

ϵ

) 1
b

,

(
5ℓK2

ϵ
√
|X0|

) 2
a+b

 .

Under E1,ϵ(T ) ∩ E2,ϵ(T ), Algorithm 2 with (10) satisfies that: for any t = h(T ), h(T ) + 1 · · · , T ,

(i) max
ω∈Σ

Fµ(ω)− Fµ(ω̂(t)) ≤ 5ϵ, (ii)△min(µ̂(t)) ≥
△min

2
, and (iii) ∥µ̂(t)∥∞ ≤

3 ∥µ∥∞
2

.

The proof of Theorem 5 is given in Appendix E.

Finally, the last ingredient is Lemma 9.
Lemma 9 (Lemma 18 in [GK16]). Let α ∈ [1, e2 ] and b1, b2 > 0. Then,

x =
1

b1

(
ln

(
b2e

bα1

)
+ lnln

(
b2
bα1

))
satisfies b1x ≥ ln(b2x

α).

D.4 Computational complexity (Theorem 4 (iii))

In this section, we analyze the computational complexity of P-FWS running with (10) in terms of the
number of calls to LM Oracle. We will show that the expected number of LM Oracle calls is upper
bounded by a polynomial in ln δ−1, K, ∥µ∥∞ and△min(µ)

−1.

Proof The construction of X0 and computation of ı̂ merely takes O(KD) calls to LM Oracle.
The overall complexity is dominated by the LM Oracle calls performed from 4|X0|+ 1 to round τ ,
analyzed as follows.

Per-round complexity: Fix t ∈ {4|X0|+1, · · · , τ}. Recall from P-FWS that the FW update in round
t and the stopping rule in round t− 1 are computed only if:

max{△min(µ̂(t− 1))−1, ∥µ̂(t− 1)∥∞} ≤
√
t− 1. (37)

Otherwise, forced-exploration procedure is invoked. Verifying (37) takes at most D + 1 calls.6 The
computation of F̂t−1 and i⋆(∇F̃µ̂(t−1),ηt,nt

(ω̂(t−1))) by Theorem 3 in Appendix C.2 takes at most

O

(
D +

∥µ̂(t− 1)∥4∞
∥∥ω̂(t− 1)−1

∥∥2
∞K3D5 lnK

Fµ̂(t−1)(ω̂(t− 1))2

(
ln(t2δ−1)

ϵ2t
+
nt ln θ

−1
t

ρ2t

))
(38)

calls to LM Oracle. To evaluate (38), we need a lower bound on Fµ̂(t−1)(ω̂(t− 1)). By Proposition 1
(c) in Appendix C.1, one evaluates Fµ̂(t−1)(ω̂(t− 1)) in closed-form:

Fµ̂(t−1)(ω̂(t− 1)) = min
x̸=i⋆(µ̂(t−1))

△x(µ̂(t− 1))2

2 ⟨x⊕ i⋆(µ̂(t− 1)), ω̂(t− 1)−1⟩
≥

mink∈[K] ω̂k(t− 1)

4D(t− 1)
,

where the inequality results from (37) that △min(µ̂(t − 1)) ≥ 1√
t−1

, ∥x⊕ x′∥1 ≤ 2D for any
x,x′ ∈ X , and ⟨y, z⟩ ≤ ∥y∥1 ∥z∥∞ for any y, z ∈ RK . Further, combining with Lemma 14 (which
states mink∈[K] ω̂k(t− 1) ≥ 1

2
√

(t−1)|X0|
) in Appendix F yields

Fµ̂(t−1)(ω̂(t− 1)) ≥ 1

8D
√
|X0|(t− 1)1.5

. (39)

6For any π ∈ Λ, △min(π) requires to compute i⋆(π) and and solve maxx̸=i⋆(π) ⟨π,x⟩, where the latter
requires at most D calls to the LM Oracle by Lemma 2 in § 2.2.
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From (39), ∥µ̂(t− 1)∥∞ ≤
√
t− 1, Lemma 14, and substituting the parameters (10) into (38), we

know that the number of LM Oracle calls performed at any round t ≥ 4|X0|+ 1 is at most

O
(
t6|X0|2K3D7 lnK

(
ln(t2δ−1)

ϵ2t
+
nt ln θ

−1
t

ρ2t

))
= O

(
t6|X0|2K3D7 lnK

(
t
2
9 ln

(
t

δ

)
+ t2.75D4|X0|2

))
= O

(
t8.75 ln

(
t

δ

)
|X0|4D11K3 lnK

)
. (40)

Overall complexity: Invoking Theorem 4 in D.3 with ϵ̃ = 0.1 and ϵ = 1
12T⋆(µ) results in

Eµ[τ ] = O

(
T ⋆(µ) ln

(
T ⋆(µ)

δ

)
+

1

△
18
7

min

+K16D30 ∥µ∥20∞ T ⋆(µ)10

)

which after using T ⋆(µ) ≤ 4KD/△2
min (Lemma 1 in §2.1) becomes

Eµ[τ ] = O

(
KD

△2
min

ln

(
KD

δ△2
min

)
+
K26D40 ∥µ∥20∞
△20

min

)
. (41)

Hence, by a summation of (40) over t = 4|X0| + 1 to Eµ[τ ], the expected total number of the LM
Oracle calls is upper bounded by

O
(
Eµ[τ ]

9.75
ln

(
Eµ[τ ]

δ

)
|X0|4D11K3 lnK

)
, (42)

where the inequality uses integral by parts
∫
t8.75 ln tdt = O(t9.75 ln t). Remind that

max{D, |X0|} ≤ K. Thus, we conclude that (42) is bounded by a polynomial function in ln δ−1,
∥µ∥∞,△−1

min, and K (due to (41), Eµ[τ ] is bounded by a polynomial function in the same variables).
□
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E Convergence of P-FWS under the good events

Throughout this section, we assume that µ is fixed and drop µ from the notation, e.g., F = Fµ,
F̄η = F̄µ,η, F̃η,t = F̃µ,η,t, and △min = △min(µ). Also, we will use ω⋆ ∈ argmaxω∈Σ F (ω) to
denote any optimal allocation and let i⋆ = i⋆(µ). Recall that h(T ) ≥ T a and h(T ) ≥ T a+b is
defined in (23) in Appendix D.3.1 for some a, b ∈ (0, 1).

Theorem 5. Let ϵ ∈ (0,min{1, 2D
2△2

min

K }) and T be an integer at least larger than

max

{
(4|X0|)

1
a ,

(
4K2

ϵ2D2|X0|

) 1
a

,

(
2

△min

) 2
a

,

(
3 ∥µ∥∞

2

) 2
a

}
+max


(
ℓ

ϵ

) 1
b

,

(
5ℓK2

ϵ
√
|X0|

) 2
a+b

 .

Under E1,ϵ(T ) ∩ E2,ϵ(T ), Algorithm 2 with (10) satisfies that: for any t = h(T ), h(T ) + 1, · · · , T ,

(i) F (ω⋆)− F (ω̂(t)) ≤ 5ϵ, (ii)△min(µ̂(t)) ≥
△min

2
, and (iii) ∥µ̂(t)∥∞ ≤

3 ∥µ∥∞
2

.

Proof Fix arbitrary ϵ and T that satisfy the conditions in the statement, and suppose E1,ϵ(T )∩E2,ϵ(T )
holds. (ii)(iii) directly follows from Lemma 10 (where one can verified that its assumption of
Lemma 10 on T is satisfied). With (ii)(iii), the analysis of FW convergence will be greatly simplified
as (ii)(iii) ensure that

max

{
1

△min(µ̂(t− 1))
, ∥µ̂(t− 1)∥

}
≤
√
t− 1.

This means that the forced-exploration procedure will only be invoked by the condition of
√
t/|X0|

when t ≥ h(T ) = T a.

Proof of (i) F (ω⋆)− F (ω̂(t)) ≤ 5ϵ: Fix t ≥ h(T ). As mentioned above, for such t, the forced-
exploration procedure will be invoked only when

√
t/|X0| ∈ N. To specify the rounds performing

FW udpates, introduce s(t) = ⌊
√
t/|X0|⌋ − 1 and define

p(t) = (s(t)2 + 1)|X0| and q(t) = (s(t) + 1)2|X0| − 1.

Notice that p(t) and q(t) are respectively the starting (including) and the ending (including) round of
a successive FW update rounds with no forced exploration in between. Let ϕt = F (ω⋆)− F̄ηt(ω̂(t))
be the error. By a careful analysis, we derive a recursive relationship satisfied by ϕt (Lemma 11):{

tϕt ≤ (t− |X0|)ϕt−|X0| + 2ℓ
√
D|X0|2 if t = p(t)− 1,

tϕt ≤ (t− 1)ϕt−1 + 3ϵ+ ℓ
(
ηt−1 +

K2

2tηt

)
if t ∈ [p(t), q(t)].

(43)

The first case (in round t = p(t)− 1) is exactly the ending round of a forced-exploration procedure
(from t − |X0|, · · · , t), and the second case (in round t ∈ [p(t), q(t)]) is a FW-update round. By
repeatedly applying (43), we have

h(T )ϕh(T ) ≤ h(T )ϕh(T ) + 2ℓ
√
D|X0|2

(
s(h(T ))− s(h(T ))

)
+ 3

h(T )∑
t=h(T )

(
ℓK2√
t|X0|

+ ϵ)

≤ h(T )ℓ+ ℓ

(
2
√
D|X0|1.5 +

3K2√
|X0|

)(√
h(T )−

√
h(T )

)
+ 3ϵ(h(T )− h(T )),

where the second inequality follows from ϕh(T ) ≤ maxω∈Σ Fµ(ω) ≤ ℓ (Lemma 22 in Appendix I),

s(h(T ))− s(h(T )) ≤
√

h(T )−
√

h(T )√
X0

and
∑h(T )

t=h(T )
1√
t
≤
√
h(T )−

√
h(T ). Substituting h(T ) and

h(T ) from (23) and simplifying the terms, we get:

F (ω⋆)− F (ω̂(t)) ≤ ϕh(T ) ≤ ℓT
−b +

5ℓK2√
|X0|

T− a+b
2 + 3ϵ(1− T−b) ≤ 5ϵ
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when

T ≥ max

{
(4|X0|)

1
a ,

(
4K2

ϵ2D2|X0|

) 1
a

,

(
2

△min

) 2
a

,

(
3 ∥µ∥∞

2

) 2
a

}
+max


(
ℓ

ϵ

) 1
b

,

(
5ℓK2

ϵ
√
|X0|

) 2
a+b

 ,

where the first inequality is due to F (ω̂(t)) ≥ F̄ηt
(ω̂(t)) by Proposition 2 (i) in §4.1. □

Lemma 10. Let ϵ ∈ (0,min{1, 2D2△2
min/K}) and T be a positive integer s.t.

T ≥ max

{
(4|X0|)

1
a ,

(
4K2

ϵ2D2|X0|

) 1
a

,

(
2

△min

) 2
a

,

(
3 ∥µ∥∞

2

) 2
a

}
. (44)

Suppose E1,ϵ(T ) ∩ E2,ϵ(T ) holds. Then, for any t ≥ h(T ),

△min(µ̂(t)) ≥
△min

2
and ∥µ̂(t)∥∞ ≤

3 ∥µ∥∞
2

. (45)

Proof Fix any T satisfying (45) and suppose E1,ϵ(T ) ∩ E2,ϵ(T ) holds. Consider any t ≥ T a and
hence t ≥ 4|X0|. To show the first inequality of (45), from E2,ϵ(T ) and ϵ < 2D2△2

min/K, we have

△min(µ̂(t− 1)) ≥ △min −
2Dϵ

24D3 ∥µ∥∞
> △min −

△2
min

6K ∥µ∥∞
>
△min

2
,

where the last inequality is because△min ≤ 2D ∥µ∥∞ and D ≤ K. To show the second inequality
of (45), observe that

∥µ̂(t)∥∞ ≤ ∥µ∥∞ +
ϵ

24D3 ∥µ∥∞
< ∥µ∥∞ +

△2
min

12KD ∥µ∥∞
<

3 ∥µ∥∞
2

,

where the first inequality is because of E2,ϵ(T ), the second is due to ϵ < 2D2△2
min/K, and the last

uses△min ≤ 2D ∥µ∥∞. □

Lemma 11. Let ϵ > 0 and t ∈ N be such that (45) holds. Then, under the event E(t)1,ϵ ∩ E
(t)
2,ϵ ,{

tϕt ≤ (t− |X0|)ϕt−|X0| + 2ℓ
√
D|X0|2 if t = p(t)− 1

tϕt ≤ (t− 1)ϕt−1 + 3ϵ+ ℓ
(
ηt−1 +

K2

2tηt

)
if t ∈ [p(t), q(t)]

, (43)

where p(t) = (s(t)2 + 1)|X0|, q(t) = (s(t) + 1)2|X0| − 1, and s(t) = ⌊
√
t/|X0|⌋ − 1.

Proof The first case basically follows from the Lipschitzness of F (Appendix I), whereas the second
relies on results on stochastic smoothing (Appendix H).

Case t = p(t)− 1: In this case, round t is exactly the end (including) round of a forced-exploration
procedure. By ℓ-Lipschitzness of F (Lemma 21 in Appendix I),

F (ω̂(t))− F (ω̂(t− |X0|)) ≥ −ℓ ∥ω̂(t)− ω̂(t− |X0|)∥2 ≥ −
ℓ
√
D|X0|2

t
,

where the second inequality stems from ω̂(t) = t−|X0|
t ω̂(t−|X0|)+ |X0|

t

∑
x∈X0

x after performing

the forced exploration. It then follows that ∥ω̂(t)− ω̂(t− |X0|)∥2 ≤
√
D|X0|2

t . By maxω∈Σ F (ω) ≤
ℓ (Lemma 22 in Appendix I) and a rearrangement of the above yields

tϕt ≤ tϕt−|X0| + ℓ
√
D|X0|2 ≤ (t− |X0|)ϕt−|X0| + ℓ|X0|(

√
D|X0|+ 1).

The proof is completed after simplifying the terms.

Case: t ∈ [p(t), q(t)]: In this case, round t performs a FW update. For brevity, let z = ω̂(t) and
y = ω̂(t− 1). By ℓK

ηt
-smoothness of F̄ηt

(Proposition 2 (iii) in §4.1) and z − y = 1
t (x(t)− y),

F̄ηt
(z) ≥ (∗)− ℓK

2ηt
∥z − y∥22 ≥ (∗)− ℓK

2t2ηt
∥x(t)− y∥22 ≥ (∗)− ℓK2

2t2ηt
,
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where (∗) = F̄ηt(y) +
〈
∇F̄ηt(y), z − y

〉
= F̄ηt(y) +

1
t

〈
∇F̄ηt(y),x(t)− y

〉
. It follows from

E(t)1,ϵ ∩ E
(t)
2,ϵ and the continuity argument (Lemma 7 in Appendix G.1) that〈

∇F̄ηt
(y),x(t)− y

〉
≥
〈
∇F̄µ̂(t−1),ηt

(y),x(t)− y
〉
− ϵ

≥ max
x∈X

〈
∇F̄µ̂(t−1),ηt

(y),x− y
〉
− 2ϵ ≥ max

x∈X

〈
∇F̄ηt

(y),x− y
〉
− 3ϵ.

Then, the duality gap [Jag13] and the ℓ-Lipschitzness of F (Lemma 21 in Appendix I) yield

max
x∈X

〈
∇F̄ηt

(y),x− y
〉
≥ max

ω∈Σ
F̄ηt

(ω)− F̄ηt
(y)

≥ (F (ω⋆)− ηtℓ)− (F̄ηt−1(y) + ℓ(ηt−1 − ηt)) = ϕt−1 − ℓηt−1.

Therefore, F̄ηt
(z) ≥ F̄ηt

(y) + ϕt−1−ℓηt−1−3ϵ
t − ℓK2

2t2ηt
and subtracting F (ω⋆) on both sides,

ϕt = F (ω⋆)− F̄ηt(z)

≤ (F (ω⋆)− F̄ηt
(y)) +

−ϕt−1 + ℓηt−1 + 3ϵ

t
+

ℓK2

2t2ηt

=
t− 1

t
ϕt−1 +

1

t

(
3ϵ+ ℓ

(
ηt−1 +

K2

2tηt

))
,

which completes the proof. □
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F Upper bound of
∑∞

T=M+1 Pµ[(E1,ϵ(T ) ∩ E2,ϵ(T ))c] under P-FWS

Recall from (24) that E1,ϵ(T ) = ∩Tt=h(T )E
(t)
1,ϵ and E2,ϵ(T ) = ∩Tt=h(T )E

(t)
2,ϵ , where

E(t)1,ϵ =

{〈
∇F̄µ̂(t−1),ηt

(ω̂(t− 1)),x(t)
〉
≥ max

x∈X

〈
∇F̄µ̂(t−1),ηt

(ω̂(t− 1)),x
〉
− ϵ
}
,

E(t)2,ϵ =

{
∥µ̂(t− 1)− µ∥∞ <

ϵ

24D3 ∥µ∥∞

}
,

T ≥M and M is defined in (25). Also, recall x(t) ∈ argmaxx∈X

〈
∇F̃µ̂(t−1),ηt,nt

(ω̂(t− 1)),x
〉

,

where ∇F̃µ̂(t−1),ηt,nt
(ω̂(t− 1)) is computed by (ρt, θt)-MCP algorithm with

(ηt, nt, ρt, θt) =

(
1

4
√
t|X0|

,
⌈
t
1
4

⌉
,

1

16tD2X0
,

1

t
1
4 e

√
t

)
. (10)

Our main result Lemma 8 is built by bounding Pµ[E1,ϵ(T )] and Pµ[E2,ϵ(T )] separately with
Lemma 12 in F.1 and Lemma 14 in F.2.
Lemma 8. Let ϵ ∈ (0, 2D2△2

min/K) and M be defined as in (25) Then,
∞∑

T=M+1

Pµ[(E1,ϵ(T ) ∩ E2,ϵ(T ))c] < 2K

(
3

A1(ϵ)2+
2
a

+
2

A2(ϵ)2+
2
a

)
Γ

(
2 +

2

a

)
,

where A1(ϵ) = min{1, ϵ2

8ℓ2K3D2 }, A2(ϵ) =
ϵ2

2304D6∥µ∥2
∞

√
|X0|

, and Γ denotes the gamma function

Γ(z) =
∫∞
0
tz−1e−tdt for any z > 0.

Proof Fix ϵ > 0. For all T ≥M , we have
Pµ[(E1,ϵ(T ) ∩ E2,ϵ(T ))c] ≤ Pµ[E1,ϵ(T )c] + Pµ[E2,ϵ(T )c] .

Bounding Pµ[E1,ϵ(T )c]: This is done by using Lemma 12 with v = ω̂(t) and (η, n) = (ηt, nt).
Before applying Lemma 12, we verify that our chosen ρt in (10) satisfies the assumption of Lemma 12:

(mink∈[K] ω̂k(t)− ηt)2

D2
≥ 1

D2

(
1

2
√
t|X0|

− 1

4
√
t|X0|

)2

=
1

16tD2|X0|
= ρt,

where the inequality is because of mink∈[K] ω̂k(t) ≥ 1

2
√

t|X0|
(Lemma 14) and that ηt = 1

4
√

t|X0|
in

(10). Then, applying Lemma 12 with v = ω̂(t), (v, η, n) = ( 1

2
√

t|X0|
, 1

4
√

t|X0|
, ⌈t 1

4 ⌉) yields that:

Pµ[E1,ϵ(T )c] ≤
T∑

t=h(T )

K

(
2 exp

(
− ϵ2

√
t

8ℓ2K3D2

)
+ exp

(
−
√
t
))
≤

T∑
t=h(T )

3K exp
(
−
√
tA1(ϵ)

)
,

where A1(ϵ) = min{1, ϵ2

8ℓ2K3D2 }.
Bounding Pµ[E2,ϵ(T )c]: As Lemma 14 provides a lower bound on the number of pulls,

mink∈[K]Nk(t) ≥ 1
2

√
t

|X0| , for all arms, using this lower bound of Nk(t) as the number of i.i.d.
samples in the application of Chernoff bound leads to:

Pµ

[
|µ̂k(t)− µk| ≥

ϵ

24D3 ∥µ∥∞

]
≤ 2 exp

(
−
√
tA2(ϵ)

)
.

Hence, Pµ[E2,ϵ(T )c] ≤ 2K
∑T

t=h(T ) exp
(
−
√
tA2(ϵ)

)
. Then, we have

∞∑
T=M+1

Pµ[(E1,ϵ(T ) ∩ E2,ϵ(T ))c] ≤
∫ ∞

M+1

∫ ∞

Ta

(
3Ke−

√
tA1(ϵ) + 2Ke−

√
tA2(ϵ)

)
dt dT

≤ 2K

(
3

A1(ϵ)2+
2
a

+
2

A2(ϵ)2+
2
a

)
Γ

(
2 +

2

a

)
,

where the second inequality uses Lemma 15. □
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F.1 Lemmas for bounding Pµ[E1,ϵ(T )c]

The following lemma is a result of two concentration inequalities, one bounds how much the empirical
average deviates from the expectation (Proposition 3), and the other bounds the error incurred by
MCP (Lemma 13).

Lemma 12. Let (π,ω, θ) ∈ Λ × Σ+ × (0, 1), v ∈ (0,mink∈[K] ωk), and η ∈ (0, v). Then,
∀ϵ ∈ (0, 4K(v − η)/D),

P
[〈
∇F̄π,η(ω), x̃⋆ − ω

〉
≥ max

x∈X

〈
∇F̄π,η(ω),x− ω

〉
− ϵ
]
≥ 1−K

(
2 exp

(
− ϵ2n2

8ℓ2K3D2

)
+ nθ

)
,

where∇F̃π,η,n(ω) is computed by
(

(v−η)2

D2 , θ
)

-MCP, and x̃⋆ ∈ argmaxx∈X

〈
∇F̃π,η,n(ω),x

〉
.

Proof Let x⋆ ∈ argmaxx∈X
〈
∇F̄π,η(ω),x

〉
. From x̃⋆ ∈ argmaxx∈X

〈
∇F̃π,η,n(ω),x

〉
,〈

∇F̄π,η(ω),x⋆ − x̃⋆
〉
≤
〈
∇F̄π,η(ω),x⋆ − x̃⋆

〉
+
〈
∇F̃π,η(ω), x̃⋆ − x⋆

〉
=
〈
∇F̄π,η(ω)−∇F̃π,η,n(ω),x⋆ − x̃⋆

〉
.

Fix ϵ > 0. Recall that∇F̃π,η,n(ω) = 1
n

∑n
m=1∇ωfx̂m

(ω + ηZm,π) where each x̂m is computed

by ( (v−η)2

D2 , θ)-MCP(ω+ηZm,π), and each Zm is independently sampled from Uniform(B2). Now,
consider any fixed x = ek for any k ∈ [K]. Invoking Proposition 3 with ϵ = ϵ

4K and x = ek, we
get:

P

[∣∣∣∣∣
〈
∇F̄π,η(ω)− 1

n

n∑
m=1

∇Fπ(ω + ηZm), ek

〉∣∣∣∣∣ ≥ ϵ

4K

]
≤ 2 exp

(
− ϵ2n2

8ℓ2K3D2

)
.

Also, for∇F̃π,η,n(ω) computed by the ((v − η)2/D2, θ)-MCP algorithm, Lemma 13 with x = ek,
and θ = θ and the assumption that ϵ ∈ (0, 4K(v − η)/D) implies that:

P

[∣∣∣∣∣
〈
1

n

n∑
m=1

∇Fπ(ω + ηZm)−∇F̃π,η,n(ω), ek

〉∣∣∣∣∣ ≥ ϵ

4K

]
≤ nθ.

Combining the two inequalities leads to:

P
[∣∣∣〈∇F̄π,η(ω)−∇F̃π,η,n(ω), ek

〉∣∣∣ ≤ ϵ

2K

]
≥ 1−

(
2 exp

(
− ϵ2n2

8ℓ2K3D2

)
+ nθ

)
.

Then, an application of a union bound over all {ek}k∈[K] gives

P
[〈
∇F̄π,η(ω)−∇F̃π,η,n(ω),x⋆ − x̃⋆

〉
≤ ϵ
]
≥ 1−K

(
2 exp

(
− ϵ2n2

8ℓ2K3D2

)
+ nθ

)
. (46)

Observe
〈
−∇F̃π,η,n(ω),x⋆ − x̃⋆

〉
≥ 0 implies{〈

∇F̄π,η(ω)−∇F̃π,η,n(ω),x⋆ − x̃⋆
〉
≤ ϵ
}
⊆
{〈
∇F̄π,η(ω),x⋆ − x̃⋆

〉
≤ ϵ
}
. (47)

From (46)-(47), we conclude that the r.h.s. of (47) happens with probability at least 1 −
K
(
2 exp

(
− ϵ2n2

8ℓ2K3D2

)
+ nθ

)
. The proof is completed by simply rearranging the r.h.s. of (47).

□

Lemma 13. Let (π,ω,x, θ) ∈ Λ×Σ+×{0, 1}K×(0, 1) with ∥x∥1 ≤ D and v ∈ (0,mink∈[K] ωk).

∀(η, z) ∈ (0, v)×B2, P
[
|⟨∇ωfx⋆

(ω + ηz)−∇ωfx̂(ω + ηz),x⟩| ≤ v − η
D

]
≥ 1− θ,

where x⋆ is some action satisfying fx⋆
(ω + ηz) = Fπ(ω + ηz), and x̂ is the returned action of

((v − η)2/D2, θ)-MCP(ω + ηz,π).
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Proof This basically follows from a direct calculation. Let ϵ > 0 and fix any (π,ω,x) ∈ Λ×Σ+×
{0, 1}K , ∥x∥1 ≤ D, and any (η, z) ∈ (0, v)×B2. Then, for x̂ computed by (ρ, θ)-MCP(ω+ ηz,π)
with ρ = (v − η)2/D2, we have with probability at least 1− θ

ρ ≥ |⟨∇ωfx⋆
(ω + ηz)−∇ωfx̂(ω + ηz),ω + ηz⟩|

≥ min
k∈[K]

(ω + ηz)k ∥∇ωfx⋆(ω + ηz)−∇ωfx̂(ω + ηz)∥∞ .

Hence, remarking that mink∈[K](ω + ηz)k ≥ v − η > 0, we get: with probability at least 1− θ,

|⟨∇ωfx⋆(ω + ηz)−∇ωfx̂(ω + ηz),x⟩| ≤ ρD

v − η
=
v − η
D

,

where we used the fact that ∥x∥1 ≤ D and Hölder’s inequality. □

Proposition 3. Let (π,ω,x) ∈ Λ× Σ+ × {0, 1}K , η ∈ (0,mink∈[K] ωk), and ∥x∥1 ≤ D. Then,

∀ϵ > 0, P

[∣∣∣∣∣
〈
∇F̄π,η(ω)− 1

n

n∑
m=1

∇Fπ(ω + ηZm),x

〉∣∣∣∣∣ ≥ ϵ
]
≤ 2 exp

(
− 2ϵ2n2

ℓ2KD2

)
,

where Z1, · · · ,Zn are independently sampled from Uniform(B2).

Proof Fix (π,ω,x) ∈ Λ×Σ+×{0, 1}K where ∥x∥1 ≤ D, and fix η ∈ (0,mink∈[K] ωk). Define

ϕ(z1, · · · , zt) =

〈
∇F̄π,η(ω)− 1

n

n∑
m=1

∇Fπ(ω + ηzm),x

〉
.

Note that EZ1,··· ,Zn [ϕ(Z1, · · · ,Zn)] = 0 by definition. Now we also observe that:

max
z1,··· ,zn,z′∈B2,m∈[n]

|ϕ(z1, · · · , zn)− ϕ(z1, · · · , zm−1, z
′, zm+1, · · · , zn)| ≤

ℓD

n

due to the ℓ-Lipschitzness of Fµ̂ (Lemma 21 in Appendix I) and maxx∈X ∥x∥1 ≤ D. Hence it
follows from McDiarmid’s inequality (Lemma 16 in F.3) that

∀ϵ > 0, P[|ϕ(Z1, · · · ,Zn)| ≥ ϵ] ≤ 2 exp

(
− 2ϵ2

K( ℓDn )2

)
= 2 exp

(
− 2ϵ2n2

ℓ2KD2

)
.

□

F.2 Lemmas for bounding Pµ[E2,ϵ(T )c]

Lemma 14 (forced exploration). Let X0 ⊆ X be any set covering all arms [K] and t ≥ 4|X0|. Any
algorithm with forced-exploration procedure satisfies

ω̂(t) ∈ Σ√
1

t|X0|−
1
t

⊂ Σ 1
2

√
1

t|X0|
, ∀t ≥ 4|X0|.

Proof Fix any k ∈ [K]. By merely counting the rounds before t performing forced exploration,

Nk(t) ≥
∑

s∈[t]:⌊
√

s
|X0| ⌋∈N

∑
x∈X0

xk ≥

√
t

|X0|
− 1 ≥ 1

2

√
t

|X0|
,

where the last inequality holds for any t ≥ 4|X0|. □

F.3 Technical lemmas

Lemma 15 ([WTP21]). Let α ∈ (0, 1) and A, β > 0. Then,∫ ∞

0

(∫ ∞

Tα

e−Atβdt

)
dT =

Γ( 1
αβ + 1

β )

βA
1

αβ+ 1
β

.
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Proof The result of Lemma 5 [WTP21] is stated for α, β ∈ (0, 1) but it actually applies for the
case of β > 0 as well. Here we provide a proof for completeness.∫ ∞

0

(∫ ∞

Tα

e−Atβdt

)
dT =

∫ ∞

0

αTαe−ATαβ

dT =
1

β

∫ ∞

0

x
1

αβ+ 1
β−1e−Axdx =

Γ( 1
αβ + 1

β )

βA
1

αβ+ 1
β

.

□

The below Lemma 16, also known as bounded different inequality, can be found in many textbooks,
e.g., Theorem 6.2 in [BLM13].
Lemma 16 (McDiarmid’s inequality). Let Z = (Z1, · · · ,Zn) be independent random variables,
and ϕ : Rn 7→ R be a measurable function. Suppose ϕ(z) changes by at most ci > 0 under an
arbitrary change of the i-th coordinate. Then,

∀ϵ > 0, P[ϕ(Z)− E[ϕ(Z)] ≥ ϵ] ≤ exp

(
− 2ϵ2∑n

i=1 c
2
i

)
.
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G Continuity arguments

In this section, we establish the continuity of Fπ(ω) and ∇F̄π,η(ω) in π for any fixed ω ∈ Σ+,
where ∇F̄π,η(ω) denotes the gradient ∇ωF̄π,η(ω) taken w.r.t. the input ω. As the consequence of
the continuity of Fπ and ∇F̄π,η in π, we can show the point-wise convergence of Fµ̂(t) → Fµ and
∇F̄µ̂(t),η → ∇F̄µ,η given that µ̂(t)→ µ almost surely.

Notation. Throughout this section, we define ∇F̄π,η(ω) = 0K if η ≥ mink∈[K] ωk for any

(π,ω) ∈ Λ×Σ+. Moreover, for any (v,ω) ∈ RK×Σ+, we will use∇πFv(ω) (resp. ∇π(
∂F̄v,η(ω)

∂ωk
))

to denote the gradient of the function π 7→ Fπ(ω) (resp. π 7→ ∂F̄π,η(ω)
∂ωk

) evaluated at the point v.

The main result in this section, Lemma 7, is derived based on Lemma 17 in Appendix G.1 (which
asserts the continuity of the function ψω,x,η(π) =

〈
∇F̄π,η(ω),x− ω

〉
on RK) and Proposition 4

in Appendix G.2 (which upper bounds the length of∇fx(ω,µ)).

Lemma 7. Let µ ∈ Λ and ϵ ∈ (0, 2D
2△min(µ)2

K ). Then, any π ∈ RK with ∥π − µ∥∞ < ϵ
24D3∥µ∥∞

satisfies the following:

|Fµ(ω)− Fπ(ω)| < ϵ, ∀ω ∈ Σ+ (35)

|
〈
∇F̄π,η(ω)−∇F̄µ,η(ω),x− ω

〉
| < ϵ, ∀(ω,x) ∈ Σ+ ×X ,∀η ∈ (0, min

k∈[K]
ωk). (36)

Proof Inspired by Lemma 14 in [WTP21], we prove this lemma using Proposition 4 and applying
the mean-value theorem to ψω,x,η .

Fix (ω,µ) ∈ Σ+ × Λ, and let i⋆ = i⋆(µ) and △x = △x(µ) for any x ∈ X\{i⋆}. Fix ϵ ∈
(0,

2D2△2
min

K ) and π ∈ RK such that ∥π − µ∥∞ < ϵ
24D3∥µ∥∞

. One may check that this π satisfies
the assumption of Proposition 4 as

∥π − µ∥∞ <
ϵ

24D3 ∥µ∥∞
<

2D2△2
min

24KD3 ∥µ∥∞
=

△2
min

12KD ∥µ∥∞
≤ △min

6K
<
△min√
2KD

,

where the second inequality stems from the choice of ϵ and the second last is because △min ≤
2D ∥µ∥∞. In what follows, we will be applying the mean-value theorem to ψω,x,η (whose continuity
is stated in Lemma 17). For convenience, introduce the function r(β) = (1 − β)µ + βπ for any
β ∈ (0, 1).

Proof of (35): For any x ∈ X\{i⋆}, by the mean-value theorem, there exists a β ∈ (0, 1) such that

|fx(ω,π)− fx(ω,µ)| = |⟨∇πfx(ω, r(β)),π − µ⟩|

=

∣∣∣∣∣∣
∑

k∈[K]

ωk

〈
∇π

(
∂fx(ω, r(β))

∂ωk

)
,π − µ

〉∣∣∣∣∣∣
≤
∑

k∈[K]

ωk

∥∥∥∥∇π

(
∂fx(ω, r(β))

∂ωk

)∥∥∥∥
1

∥π − µ∥∞ < ϵ, (48)

where the last inequality uses ω ∈ Σ+, ∥π − µ∥∞ < ϵ
24D3∥µ∥∞

,
∥∥∥∇π

(
∂fx(ω,r(β))

∂ωk

)∥∥∥
1
≤

12D2 ∥µ∥∞ (Proposition 4). Hence, from a substitution of x in (48) with xe ∈ argminx ̸=i⋆ fx(ω,µ)
and the fact that Fπ(ω) ≤ fxe(ω,π), we derive

Fπ(ω)− Fµ(ω) ≤ fxe(ω,π)− fxe(ω,µ) < ϵ.

The other inequality of Fµ(ω)− Fπ(ω) < ϵ can be derived similarly. This proves (35).

Proof of (36): Recall that ψω,x,η(π) =
〈
∇F̄π,η(ω),x− ω

〉
is continuous on RK (Lemma 17). By

the mean-value theorem, there exists β ∈ (0, 1) such that

|ψω,x,η(π)− ψω,x,η(µ)| = |⟨∇πψω,x,η(r(β)),π − µ⟩|
≤ ∥∇πψω,x,η(r(β))∥1 ∥π − µ∥∞ . (49)

38



To bound ∥∇πψω,x,η(r(β))∥1, we write

∇πψω,x,η(r(β)) =
∑

k∈[K]

∇π

(
∂F̄r(β),η(ω)

∂ωk

)
(xk − ωk).

Then it follows from the fundamental theorem of calculus that: the gradient ∇π and the expectation
operators are exchangeable, i.e.,

∀k ∈ [K], ∇π

(
∂F̄r(β),η(ω)

∂ωk

)
= EZ∼Uniform(B2)

[
∇π

(
∂Fr(β)(ω + ηZ)

∂ωk

)]
.

As shown in Appendix H, ∂Fr(β)(ω+ηZ)

∂ωk
exists almost surely. When such gradient exists, Proposi-

tion 4 bounds its 1-norm length by∥∥∥∥∇π

(
∂Fr(β)(ω + ηZ)

∂ωk

)∥∥∥∥
1

≤ 12D2 ∥µ∥∞ ,

so it follows that
∥∥∥∇π

(
∂F̄r(β),η(ω)

∂ωk

)∥∥∥
1
≤ 12D2 ∥µ∥∞ as well. Hence, substituting the above back

to∇πψω,x,η(r(β)) yields:

∥∇πψω,x,η(r(β))∥1 ≤ max
k∈[K]

∥∥∥∥∇π

(
∂F̄r(β),η(ω)

∂ωk

)∥∥∥∥
1

∥x− ω∥1 ≤ 24D3 ∥µ∥∞ ,

where the first inequality use Hölder’s inequality. Finally, plugging the above into (49) and recalling
that ∥π − µ∥∞ < ϵ

24D3∥µ∥∞
, we have

|ψω,x,η(π)− ψω,x,η(µ)| < ϵ.

This concludes the proof. □

G.1 An application of the maximum theorem

Recall that ψω,x,η(π) =
〈
∇F̄π,η(ω),x− ω

〉
.

Lemma 17. For any ϵ > 0, there exists a constant ξϵ > 0 such that if ∥π − µ∥∞ < ξϵ, then
|ψω,x,η(π)− ψω,x,η(µ)| < ϵ, ∀(ω,x) ∈ Σ+ ×X , ∀η ∈ (0, min

k∈[K]
ωk). (50)

The proof of Lemma 17 replies on the celebrated maximum theorem [FKV14], which is introduced
below. After that, we then show its proof.

Maximum Theorem: Here we briefly introduce the maximum theorem and Lemma 17 will be proved
at the end of this section. The definitions and results are taken from [FKV14] (see also Appendix K.1
of [WTP21]).
Definition 1. Let U ̸= ∅ be a subset of a topological space and h : U 7→ R be a function. Define the
level sets of h for y ∈ R as

Lh(y, U) = {x ∈ U : h(x) ≤ y} and L<
h (y, U) = {x ∈ U : h(x) < y}.

The function h is said to be lower semi-continuous (resp. upper semi-continuous) on U if Lh(y, U)

are closed (resp. L<
h (y, U) are open) for all y ∈ R; h is said to be inf-compact on U if Lh(y, U)

and L<
h (y, U) are compact for all y ∈ R.

Definition 2. Let X and Y be Hausdorff topological spaces and Φ : X ⇒ S(Y) be a set-valued
function, where S(Y) is the set of non-empty subsets of Y. Define

GrU (Φ) = {(x, y) ∈ U × Y : y ∈ Φ(x)}
as the graph of Φ restricted to U . The function u : X × Y 7→ R is said to be K-inf-compact on
GrX(Φ) if for all non-empty compact subset C of X, u is inf-compact on GrC(Φ).
Theorem 6 (Maximum theorem). Suppose X is compactly generated, Φ : X ⇒ S(Y) is lower
hemicontinuous, and u : X × Y 7→ R is K-inf-compact and upper semi-continuous on GrX(Φ).
Then, the function v(x) = infy∈Φ(x) u(x, y) is continuous and the set of its optimal solutions
Φ⋆(x) = {y ∈ Φ(x) : u(x, y) = v(x)} is upper hemicontinuous and compact-valued.
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Proof of Lemma 17: Fix any µ ∈ Λ and let i⋆ = i⋆(µ). The goal is to show that for any ϵ > 0,
there exists a constant ξϵ > 0 such that if ∥π − µ∥∞ < ξϵ, then

|ψω,x,η(π)− ψω,x,η(µ)| < ϵ, ∀(ω,x) ∈ Σ+ ×X , ∀η ∈ (0, min
k∈[K]

ωk), (50)

where ψω,x,η(π) =
〈
∇F̄π,η(ω),x− ω

〉
. In what follows, we will use p to denote the probability

distribution of Uniform(B2). We will first show that ψω,x,η is continuous for each fixed (ω,x, η) ∈
Σ+ ×X × (0, 1), and then use Theorem 6 to show (50).

Continuity of ψω,x,η: Fix (ω,x, η) ∈ Σ+ ×X × (0, 1). Let Uη = {z ∈ B2 : |∂Fµ(ω + ηz)| > 1}
which is a measure-zero set under p (Lemma 20 in Appendix H). For its complement set B2\Uη,
we split B2\Uη = ∪y ̸=i⋆Bη(y) into possibly overlapping sets Bη(y) = {z ∈ B2\Uη : ∇Fπ,η(ω +
ηz) = ∇ωfy(ω + ηz,π)}, and define ψω,y,η(y, ·) =

∫
z∈Bη(y)

⟨∇ωfy(ω + ηz, ·),x− ω⟩ dp(z)
on each of these sets Bη(y). Observe that for any π ∈ RK , we have

ψω,x,η(π) =

∫
z∈B2\Uη

⟨∇Fπ,η(ω + ηz),x− ω⟩ dp(z) =
∑
y ̸=i⋆

ψω,y,η(y,π).

To show the continuity of ψω,x,η(π), it suffices to show that each ψω,x,η(y, ·) is continuous. Fix
y ∈ X\{i⋆} and any sequence {πn}∞n=1 converging to µ. Then, for any ∀z ∈ B2, we have

(i) |⟨∇ωfy(ω + ηz,πn),x− ω⟩| ≤ ∥∇ωfy(ω + ηz,πn)∥∞ ∥x− ω∥1 ≤ 2Dℓ

(ii) limn→∞ ⟨∇ωfy(ω + ηz,πn),x− ω⟩ = ⟨∇ωfy(ω + ηz,µ),x− ω⟩. This is because

∇ωfy(ω + ηz, ·) = ⟨i⋆−y,·⟩2(i⋆⊕y)⊙(ω+ηz)−2

2⟨i⋆⊕y,(ω+ηz)−1⟩2 by Lemma 19 and Proposition 1 (Ap-
pendix C.1) is obviously continuous and that function composition preserves continuity.

From (i) and (ii), the dominated convergence theorem implies that

ψω,x,η(y,µ) = lim
n→∞

∫
z∈Bη(y)

⟨∇ωfy(ω + ηz,πn),x− ω⟩ dp(z).

This shows the continuity of ψω,x,η(y, ·) for each y ̸= i⋆, and thus ψω,y,η is continuous.

Application of the maximum theorem (Theorem 6): For this part, we take the approach similar to
Lemma 6 in [WTP21]. Define

ϕ(π) = min {−|ψω,x,η(π)− ψω,x,η(µ)| : (ω,x, η) ∈ Σ+ ×X × (0, 1)} .

We prove the continuity of ϕ on S = RK\cl (Alt(µ)) by invoking Theorem 6 with the following
substitutions:

• X = S,
• Y = Σ+ ×X × (0, 1),

• Φ = Σ+ ×X × (0, 1),
• u(π,ω,x, η) = −|ψω,x,η(π)− ψω,x,η(µ)|.

Here we verify that the assumptions of Theorem 6 are satisfied. X is compactly generated as S is a
metric space; Φ is continuous as it is a constant map; u is continuous due to the continuity of ψω,x,η .
To show that u is K-inf compact, consider any compact set C ⊂ S and any y ∈ R. We see that
Lu(y, C × Σ+ × X × (0, 1)) is compact because it is bounded (as Σ+ × X × (0, 1) is bounded
and C is compact) and closed (as u is continuous and the preimage of [0, y] is closed). Hence, ϕ is
continuous on S by Theorem 6. Finally, by ϕ(µ) = 0 and the continuity of ϕ, there exists ξϵ > 0
such that ϕ(π) > −ϵ for any ∥π − µ∥∞ < ξϵ. This completes the proof of (50). □

G.2 The length of gradients

Throughout this subsection, we fix µ ∈ Λ and denote i⋆ = i⋆(µ),△x = △x(µ), and△min(µ) =
△min for short. Here we aim to present Proposition 4, in which (i) quantifies how close an estimate π
of µ should be such that i⋆(π) = i⋆, and (ii) asserts the continuity of any component of∇ωfx(ω,π)
in π, and that its gradient with respective to π is bounded.

Proposition 4. Any π ∈ RK such that ∥π − µ∥∞ < △min√
2KD

satisfies
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(i) i⋆(π) = i⋆,

(ii) ∀x ∈ X\{i⋆} and all k ∈ [K], ∂fx(ω,π)
∂ωk

is continuous in π and∥∥∥∥∇π

(
∂fx(ω,π)

∂ωk

)∥∥∥∥
1

≤ 12D2 ∥µ∥∞ .

Proof Proof of (i): Lemma 18 is equivalent to that: any π ∈ RK satisfying ∥µ− π∥∞ < △min√
2KD

implies that π /∈ cl (Alt(µ)). As closure of finite union equals union of closures,

RK\cl (Alt(µ)) = RK\
(
∪x̸=i⋆cl

(
{λ ∈ RK : ⟨i⋆ − x,λ⟩ < 0}

))
= RK\

(
∪x̸=i⋆{λ ∈ RK : ⟨i⋆ − x,λ⟩ ≤ 0}

)
= {λ ∈ RK : i⋆(λ) = i⋆}.

Thus, π /∈ cl (Alt(µ)) is equivalent to i⋆(π) = i⋆. This concludes the proof of (i).

Proof of (ii): Fix any π ∈ RK satisfying ∥µ− π∥∞ < △min√
2KD

. By Lemma 19 and i⋆(π) = i⋆,

∀k ∈ [K],
∂fx(ω,π)

∂ωk
=
⟨i⋆ − x,π⟩2 (xk ⊕ i⋆k)
2 ⟨x⊕ i⋆,ω−1⟩2 ω2

k

.

Fix k ∈ [K]. Note that the function π 7→ ∂fx(ω,π)
∂ωk

is continuous and differentiable since it consists of
inner products, element-wise products, and since its denumerator is always positive. For its derivative,∥∥∥∥∇π

(
∂fx(ω,π)

∂ωk

)∥∥∥∥
1

=

∥∥∥∥∥ (i⋆ − x) ⟨i⋆ − x,π⟩ (xk ⊕ i⋆k)
⟨x⊕ i⋆,ω−1⟩2 ω2

k

∥∥∥∥∥
1

≤ ∥(i⋆ − x) ⟨i⋆ − x,π⟩ (xk ⊕ i⋆k)∥1
≤ ∥i⋆ − x∥1 |⟨i

⋆ − x,π⟩| ≤ 4D2 ∥π∥∞ ≤ 12D2 ∥µ∥∞ ,

where the first inequality is because
〈
x⊕ i⋆,ω−1

〉
ωk ≥ 1 if (xk ⊕ i⋆k) = 1; the second is because

xk ⊕ i⋆k ≤ 1; the third uses ∥i⋆ − x∥1 ≤ 2D and |⟨i⋆ − x,π⟩| ≤ ∥i⋆ − x∥1 ∥π∥∞; the last uses the
triangle inequality:

∥π∥∞ ≤ ∥µ∥∞ + ∥µ− π∥∞ ≤ ∥µ∥∞ +
△min√
2KD

≤ 3 ∥µ∥∞ ,

where the last inequality is due to an application of Hölder’s inequality to

△min ≤ min
x̸=i⋆

∥i⋆ − x∥1 ∥µ∥∞ ≤ 2D ∥µ∥∞ .

□

Lemma 18. infλ∈Alt(µ) ∥µ− λ∥∞ ≥
△min√
2KD

.

Proof We claim that

inf
λ∈Λ:⟨λ,i⋆−x⟩<0

∥µ− λ∥22 =
△x

∥i⋆ ⊕ x∥2
, ∀x ̸= i⋆. (51)

Observe that the proof immediately follows from (51) because the facts that ∥y∥2 ≤
√
K ∥y∥∞ for

any y ∈ RK , Alt(µ) = ∪x̸=i⋆{λ ∈ Λ : ⟨λ, i⋆ − x⟩ < 0}, and ∥i⋆ ⊕ x∥2 ≤
√
2D.

Proof of (51): By solving the stationary conditions, i.e.,∇λLx(λ
⋆
x, α

⋆) = 2(µ−λ⋆
x)+α

⋆(i⋆−x) =
0 and ∇αLx(λ

⋆
x, α

⋆) = ⟨λ⋆
x, i

⋆ − x⟩ = 0, we find

λ⋆
x = µ− △x(µ)⊙ (i⋆ − x)

∥i⋆ ⊕ x∥22
is a minimizer for infλ∈Λ:⟨λ,i⋆−x⟩<0 ∥µ− λ∥2. (51) follows by plugging λ⋆

x into ∥µ− λ∥22. □

Remind that∇ωfx can be evaluated by the following Lemma 19.
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Lemma 19 (Envelope theorem). Let (ω,µ) ∈ Σ+ × Λ and x ∈ X \ {i⋆}. Define λ⋆
ω,µ(x) ∈

argminλ∈cl(Cx)

〈
ω, (µ−λ)2

2

〉
. Then,

∇ωfx(ω,µ) =
(µ− λ⋆

ω,µ(x))
2

2
=
△x(µ)

2(x⊕ i⋆)⊙ ω−2

2 ⟨x⊕ i⋆,ω−1⟩2
.

Proof The first equality is an application of Lemma 6 and Proposition 1 of [WTP21] with I = X ,
Jx = {x}, Σ = ΣK , Sx = {λ ∈ Λ : i⋆(λ) = x} (see Appendix K.2 and Appendix K.4 in
[WTP21] for more details). The second equality substitutes λ⋆

ω,µ(x) = µ+ △x(µ)(x−i⋆)⊙ω−1

⟨x⊕i⋆,ω−1⟩ by
using (11)-(14). □
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H Stochastic smoothing

This section is devoted to present Proposition 2 and verify the assumptions required for applying
Proposition 2 to our objective Fµ.

Stochastic smoothing [FKM05, DBW12] is a well-studied technique and has been widely applied
to online convex nonsmooth optimization [HK12, H+16]. Proposition 2 is a restatement of existing
results. In particular, Proposition 2 (i), (ii) and (iii) directly follow from Lemma E.2 in [DBW12] with
(L0, u) = (ℓ, η), f = −Φ and fu = −Φ̄η(·), and Proposition 2 (iv) can be established by Jensen’s
inequality as done in the proof of Theorem 2.1 [DBW12].
Proposition 2. Assume that Φ : RK

>0 7→ R is concave, ℓ-Lipschitz, and differentiable almost
everywhere. Let B2 = {v ∈ RK : ∥v∥2 ≤ 1}. For any ω ∈ Σ+ and η ∈ (0,mink∈[K] ωk), define

Φ̄η(ω) = EZ∼Uniform(B2)[Φ(ω + ηZ)] . (6)

Then, Φ̄η(ω) satisfies that:

(i) Φ(ω)− ηℓ ≤ Φ̄η(ω) ≤ Φ(ω)

(ii) ∇Φ̄µ,η(ω) = EZ∼Uniform(B2)[∇Φµ(ω + ηZ)]

(iii) Φ̄η is ℓK
η -smooth

(iv) if η > η′ > 0, then Φ̄η′(ω) ≥ Φ̄η(ω)

Now, we validate assumptions of Proposition 2 on Fµ. The concavity of Fµ, which is shown by
[WTP21], follows from the facts that each fx(·,µ) is concave and that Fµ is a minimum of these
functions fx(·,µ) over all possible x. The Lipschitzness of Fµ is shown in Lemma 21 in Appendix I).
Hence, it remains to show the almost-everywhere differentiability of Fµ. To show that the set of
non-differentiable points of Fµ, i.e.,⋃

x,x′∈X\{i⋆(µ)},x ̸=x′

{z ∈ B2 : fx((ω + ηz,µ) = fx′(ω + ηz,µ)} ,

is measure-zero under Uniform(B2), it suffices to show the following lemma.
Lemma 20. Let µ ∈ Λ and x1,x2 be distinct actions in X\{i⋆(µ)}. Then under the probability
measure of Uniform(B2),

{z ∈ B2 : fx1
(ω + ηz,µ) = fx2

(ω + ηz,µ)}

is a measure-zero set.

Proof To simplify the notation, let i⋆ = i⋆(µ) and △x = △x(µ). Thanks to the close-form
expressions of fx1 and fx2 , z ∈ B2 such that fx1(ω + ηz,µ) = fx2(ω + ηz,µ) are the points
satisfying that:

△2
x1

2 ⟨x1 ⊕ i⋆, (ω + ηz)−1⟩
=

△2
x2

2 ⟨x2 ⊕ i⋆, (ω + ηz)−1⟩
.

In other words, the set of interests isz ∈ B2 :

K∑
k=1

ak
∏
k′ ̸=k

(ωk′ + ηzk′) = 0

 , (52)

where ak = (x2 ⊕ i⋆)k△2
x1
− (x1 ⊕ i⋆)k△2

x2
for all k ∈ [K]. We claim that a is a non-zero

vector. Otherwise, ak = 0,∀k ∈ [K], which together with the fact that △2
x1
,△2

x2
> 0 directly

imply (x2 ⊕ i⋆)k = 0 if and only if (x1 ⊕ i⋆)k = 0. That means x1 = x2, but this becomes a
contradiction. Therefore, the set in (52) are the roots of a non-zero polynomial inside B2, and hence
it is a measure-zero set (see e.g. Lemma in [Oka73]). □
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I Lischitzness of Fµ and boundness of Fµ on ΣK ∩ RK
>0

In this section, we show the Lipschitzness of Fµ(v) = minx̸=i⋆ fx(v,µ) for v ∈ RK
>0. Let xe be

an equilibrium action such that Fµ(v) = fxe(v,µ). We will use the envelope theorem (Lemma 19
in Appendix G) to evaluate ∇ωfxe(v,µ) in closed-form, and then bound its length. We will also
derive an upper bound of Fµ(v) valid for any positive vector v in the (K − 1)-dimensional simplex
ΣK . In what below, we denote i⋆ = i⋆(µ) and△x = △x(µ) for any x ̸= i⋆ for short.

Lemma 21. Let µ ∈ Λ and ℓ = 2D2 ∥µ∥2∞. Then, Fµ is ℓ-Lipschitz with respect to ∥·∥∞ on RK
>0,

Proof Let v ∈ RK
>0. Recall that Fµ(v) = minx ̸=i⋆ fx(v,µ), and each fx(v,µ) is differentiable

(proven in Lemma 19 in Appendix G.2). Hence if x is the action such that Fµ(v) = fx(v,µ), the
concavity of Fµ(v) and the fact that∇ωfx(v,µ) is the subdifferential of Fµ on v yield that

∀v′ ∈ RK
>0, |Fµ(v)− Fµ(v

′)| ≤ |⟨∇ωfx(v,µ),v − v′⟩| ≤ ∥∇ωfx(v,µ)∥1 ∥v − v′∥∞ ,

where the last inequality stems from Hölder’s inequality. From the above, the ℓ-Lipschitz can be
derived by upper bounding ∥∇ωfx(v,µ)∥1 by ℓ. Now applying Lemma 19 in Appendix G.2 yields

∥∇ωfx(v,µ)∥1 =

∥∥∥∥∥ (µ− λ⋆
v,µ(x, α

⋆
x))

2

2

∥∥∥∥∥
1

=

∥∥v−2 ⊙ (x⊕ i⋆)
∥∥
1
△2

x

2 ⟨x⊕ i⋆,v−1⟩2
. (53)

To simplify the above, we observe that

〈
x⊕ i⋆,v−1

〉2
=

(
K∑

k=1

v−1
k 1{xk ̸= i⋆k}

)2

≥
K∑

k=1

v−2
k 1{xk ̸= i⋆k} =

∥∥v−2 ⊙ (x⊕ i⋆)
∥∥
1
, (54)

where the inequality uses the fact that vk > 0 for all k ∈ [K]. Also,

△x = ⟨i⋆ − x,µ⟩ ≤ ∥i⋆ − x∥1 ∥µ∥∞ ≤ 2D ∥µ∥∞ . (55)

Thus, (53)-(54)-(55) yields that ∥∇ωfx(v,µ)∥1 ≤ 2D2 ∥µ∥2∞. □

Lemma 22. Let µ ∈ Λ and ℓ = 2D2 ∥µ∥2∞. Then, maxω∈ΣK∩RK
>0
Fµ(ω) ≤ ℓ.

Proof Observe that fx(v,µ) = ⟨ω,∇ωfx(v,µ)⟩ for any x ̸= i⋆. Combining this observation
with the fact that△x ≤ 2D ∥µ∥∞ (as argued in (54) in proof of Lemma 21) implies:

Fµ(v) = min
x ̸=i⋆

△2
x

2 ⟨x⊕ i⋆,v−1⟩
≤

(2D ∥µ∥∞)2

2
= ℓ,

where the first inequality is because
〈
x⊕ i⋆,v−1

〉
≥ mink∈[K] v

−1
k ≥ 1 (as v ∈ ΣK and vk > 0

for all k ∈ [K]).The proof is completed since v is taken arbitrarily. □
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J Proofs related to combinatorial sets

Assumption 1. (i) There exists a polynomial-time algorithm identifying i⋆(v) for any v ∈ RK; (ii)
X is inclusion-wise maximal, i.e., there is no x,x′ ∈ X s.t. x < x′; (iii) for each k ∈ [K], there
exists x ∈ X such that xk = 1; (iv) |X | ≥ 2.

As claimed in §2.2, Assumption 1 holds for the following combinatorial sets:

• m-sets: X = {x ∈ {0, 1}K : ∥x∥1 = m}
• spanning forests: X is a set of all spanning forests in a given graph
• bipartite matchings: X is a set of all maximal matchings in a given bipartite graph
• s-t paths: X is the set of all source-destination paths in a directed acyclic graph

In what below, we present a simple proof for the above examples.

Proof Suppose (iii) (iv) hold (as we can always achieve (iii) by removing arms not covered by
X and (iv) holds for non-trivial sets). For (i), it is well-known that a polynomial-time LM Oracle,
i.e., i⋆(·), exists for each of the discussed combinatorial structures. For example, see Chapter 39 in
[S+03] for the greedy algorithm for matroids (applicable to m-set and spanning forests), Chapter 41
in [S+03] for the augmentation-based algorithm for 2-matroid intersection (applicable to bipartite
matchings), and algorithms such as Dijkstra’s algorithm for s-t paths.

It remains to verify (ii) the inclusion-wise maximal property of X . For X as m-sets, the inclusion-
wise maximal property clearly holds because any binary vector x′ > x (resp. x′ < x) for some
x ∈ X must have

∑
k∈[K] x

′
k > m (resp. < m) and thus x′ /∈ X . The case is similar for X as

spanning forests since the number of edges of any spanning forests of a graph is the same. For X
as maximal matchings in which the term ’maximal’ exactly refers to being inclusion-wise maximal,
(ii) directly follows from the definition. For X as the set of all source-destination paths in an acyclic
graph, if there exists any source-destination path x′ > x for some x ∈ X then x′ must contain a
cycle, so inclusion-wise maximal property holds. □

Lemma 2. Let v ∈ RK and x ∈ X . Under Assumption 1, there exists an algorithm that solves
maxx′∈X :x′ ̸=x ⟨v,x′⟩ by only making at most D queries to the LM Oracle.

Proof Fix x ∈ X . Assume v ̸= 0K (as otherwise, any x′ ̸= x is a second-best action). Inspired by
Lawler-Murty’s m-best algorithm [Law72], we will prove this lemma by considering the algorithm
described as follows. It first computes i⋆(v) by the LM Oracle, and returns it as the output if
i⋆(v) ̸= x. Otherwise, we identify the second-best action by the program below:

max
k∈[K]:xk=1

〈
v, i⋆

(
v(k)

)〉
, where v

(k)
i =

{
−3 ∥v∥1 if i = k

vi otherwise.
(56)

Intuitively, for each arm k of x, the action i⋆
(
v(k)

)
represents the best one among all actions without

k (we have a strong negative weight on the k-th component of v(k)). In the following, we will show
that at least one of {i⋆

(
v(k)

)
: k ∈ [K], xk = 1} is the second-best action.

More precisely, we will show that for any maximizer a ∈ [K] to (56), i⋆
(
v(a)

)
is a second-best

action. Consider if (i⋆
(
v(a)

)
)a = 0, then the claim follows from the fact that i⋆

(
v(a)

)
is the best

among all actions without a and also the best in {i⋆
(
v(k)

)
: k ∈ [K], xk = 1}. It suffices to show

that (i⋆
(
v(a)

)
)a = 1 cannot happen. If (i⋆

(
v(a)

)
)a = 1, then it follows from Assumption 1 (iv)

|X | ≥ 2 and (ii) the inclusion-wise maximality of X that there is another action x′ such that x′k = 0

but xk = 1 for some k ∈ [K]. So, by i⋆
(
v(a)

)
a
= 1, v ̸= 0K and the definition of v(a), we get〈

v, i⋆
(
v(a)

)〉
=

∑
j∈[K]:i⋆(v(a))

j
=1,j ̸=a

vj − 3 ∥v∥1 ≤ −2 ∥v∥1 < ⟨v,x
′⟩ ≤

〈
v, i⋆

(
v(k)

)〉
,

which contradicts the optimality of a (as it would imply that i⋆
(
v(k)

)
is better).
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Finally, as ∥x∥1 ≤ D, the number of LM Oracle calls required for solving (56) is at most D. □

Finally, we present the property of X0 briefly argued in § 4.2.
Lemma 23. Let ek is the k-th column of an identity matrix. Under Assumption 1, X0 is a [K]-
covering set and |X0| ≥ 2.

Proof Showing that X0 covers [K]: Assumption 1 (iii) ensures {x ∈ X : xk = 1} ≠ ∅, and it
follows that maxx∈X ⟨x, ek⟩ = 1, i.e., (i⋆(ek))k = 1. As (i⋆(ek))k = 1 holds for all k, the proof
is completed.

Showing that |X0| ≥ 2: Suppose on the contrary, |X0| = 1. Thanks to Assumption 1 (iv) |X | ≥ 2,
there exists x ∈ X such that xk = ⟨ek, x⟩ ≥ ⟨ek, x′⟩ = x′k for all k ∈ [K], x′ ̸= x. Together with
Assumption 1 (iii), one can easily deduce that xk = 1 for all k ∈ [K]. However, this implies x′ < x
for any x′ ̸= x and hence contradicts to Assumption 1 (ii) that X is inclusion-wise maximal. □
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K Sample complexity lower bound

In this section, we assume µ ∈ Λ and δ ∈ (0, 1) is fixed, and show Theorem 7 by adapting Lemma 19
in [KCG16].
Lemma 24 ([KCG16]). Any δ-PAC algorithm satisfies

∀λ ∈ Alt(µ),
∑

k∈[K]

∑
x∈X :xk=1

Eµ[Nx(τ)]
(µk − λk)2

2
≥ kl(δ, 1− δ). (57)

Theorem 7. Any δ-PAC strategy satisfies

Eµ[τ ] ≥ T ⋆(µ)kl(δ, 1− δ) with T ⋆(µ)−1 = sup
ω∈Σ

inf
λ∈Alt(µ)

〈
ω,

(µ− λ)2

2

〉
, (1)

where Σ = {
∑

x∈X wx : w ∈ Σ|X |} and Alt(µ) = {λ ∈ Λ : i⋆(λ) ̸= i⋆(µ)}.

Proof We have: under any algorithm,

sup
ω∈Σ

inf
λ∈Alt(µ)

∑
k∈[K]

ωk
(µk − λk)2

2
≥ inf

λ∈Alt(µ)

∑
k∈[K]

∑
x∈X :xk=1

Eµ[Nx(τ)]

Eµ[τ ]

(µk − λk)2

2
,

Hence if the algorithm is δ-PAC, by Lemma 24,

Eµ[τ ] sup
ω∈Σ

inf
λ∈Alt(µ)

∑
k∈[K]

ωk
(µk − λk)2

2
≥ inf

λ∈Alt(µ)

∑
k∈[K]

∑
x∈X :xk=1

Eµ[Nx(τ)]
(µk − λk)2

2

≥ kl(δ, 1− δ).

□

Lemma 1. For any µ ∈ Λ, T ⋆(µ) ≤ 4KD△min(µ)
−2.

Proof Take ω0 =
∑

x∈X0
x/|X0| ∈ Σ, where X0 = {i⋆(ek) : k ∈ [K]}. Observe that ω0 ≥

1K/K by Lemma 23 (which leads to
∑

x∈X0
x ≥ 1K and 1/|X0| ≥ 1/K). Thus,

Fµ(ω0) = min
x ̸=i⋆(µ)

△x(µ)
2

2
〈
x⊕ i⋆(µ),ω−1

0

〉 ≥ △min(µ)
2

4KD
,

where we used Proposition 1 in §3.1 to obtain the equality, and the last inequality is because〈
x⊕ i⋆(µ),ω−1

0

〉
≤ ∥x⊕ i⋆(µ)∥1

∥∥ω−1
0

∥∥
∞ ≤

2D

mink∈[K](ω0)k
≤ 2KD.

As T ⋆(µ)−1 = maxω∈Σ Fµ(ω) ≥ Fµ(ω0), we then have T ⋆(µ) ≤ 4KD
△min(µ)2 . □
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L Extension to the transductive setting

In this section, we extend our results to the transductive combinatorial semi-bandits. In transductive
best-arm identification with fixed confidence with semi-bandit feedback [JMKK21], the decision
maker is given an exploration set A ⊆ {0, 1}K and a decision set X ⊆ {0, 1}K (A might differ from
X ), and at each round, she selects an action in A to receive a semi-bandit feedback. Her goal is to
identify the best action in X using as few samples as possible.

Notation. LetM⊆ {0, 1}K be any set of actions. We use i⋆M(µ) to denote any maximizer inM
of the linear maximization maxx∈M ⟨x,µ⟩. We also use ΣM = {

∑
x∈M wx : w ∈ Σ|M|}.

Sample complexity lower bound. The generalization of Theorem 7 to the transductive setting has
been made in [JMKK21]: any δ-PAC algorithm satisfies

Eµ[τ ] ≥ T ⋆(µ)kl(δ, 1− δ) with T ⋆(µ)−1 = sup
ω∈ΣA

inf
λ∈Alt(µ)

〈
ω,

(µ− λ)2

2

〉
. (58)

The inner optimization is still with respect to X while the outer optimization is with respect to the
exploration set A. Refer to Appendix C in [JMKK21] for the proof.

Transductive P-FWS algorithm. Assumption 1 has to be extended. It now needs to ensure that
i⋆A(v) for any v ∈ RK can be computed in polynomial-time. The P-FWS algorithm also needs to be
adapted to the transductive setting. This is done by the following two modifications:

• [K]-covering set: X0 ← {i⋆A(ek) : k ∈ [K]}

• FW update: x(t)← i⋆A

(
∇F̃µ̂(t−1),ηt,nt

(ω̂(t− 1))
)

Analysis of P-FWS. Let DA = maxx∈A ∥x∥1. The analysis is easily extended by replacing
(D,X ) with (DA,A) in Appendix D, Appendix E, Appendix F and Appendix G whenever the
context is subject to the exploration set rather than the decision set.
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