

Towards Parameter-Efficient Automation of Data Wrangling Tasks with Prefix-Tuning

David Vos

TRL @ NeurIPS

INDE Lab, University of Amsterdam David Vos, Till Döhmen, Sebastian Schelter

Contents

- Introduction of data wrangling tasks
- Data wrangling and large language models (LLMs)
- Prefix-tuning methodology
- Our contributions
- Experimental setup
- Results, conclusion and future research

Entity Matching (EM)

Error Detection (ED)

Data Imputation (DI)

The benchmark we use consists of 7 EM, 2 ED and 1 DI datasets

Ň××

Few-shot prompting GPT-3 achieves SoTA performance on 7/10 benchmarks [1].

Format table rows using linearization

Select suitable prompt-samples (requires manual selection)

Randomly selecting results in an average drop of 14.7 F1 points

Format a prompt

Minor modifications caused an average variance of 9.4 F1 points

Parameter-efficient and SoTA performance but hard to scale due to lack of automation and privacy concerns.

Is there an automatable and privacy-friendly alternative?

Maybe finetuning?

Finetuning

Finetuning can be performed for smaller LLMs like T5.

Format table rows using linearization

Update LLM weights with full finetuning procedure

Duplicate model weights for each new task

Automatable and more privacy-friendly with similar performance but hard to scale due to expensive model duplications.

Finetuning

• Automatable

Can be optimized using standard techniques

• More privacy friendly

Can be optimized without looking at data

• Less scalable

Requires a model copy for each new task

Prompting

• Not easily automatable

Requires manual labour and expertise

• Less privacy friendly

Requires manual inspection of training samples

• Scalable

Scales to new tasks without extra parameters

Can we take the best of both prompting and finetuning?

Prefix-tuning?

LLM parameters are frozen.

Prefix-tuning learns a continuous prefix instead of engineering a discrete prompt.

Prefix-tuning learns a continuous prefix instead of defining a discrete prompt [2].

• Parameter-efficient

The prefix generation requires only 0.4% of the parameters required for finetuning.

• Automatable and privacy friendly

Prefix parametrization can be trained end-to-end similar to finetuning.

An example for entity matching:

Discrete prompt: Are entity A and Entity B the same? entity A: <entity A>, entity B <entity B>

 Prefix-tuning:
 :
 :
 :
 entity A: <entity A>, entity B: <entity B>

Finetuning (updates all LLM parameters)

Prefix-tuning (keeps LLM parameters frozen and updates the tiny prefix network)

We take prefix-tuning to data wrangling

Parameter-efficient and automatable, perfect for big data environments

We compare prefix-tuning to finetuning T5. Prefix-tuning GPT-3 is currently impossible.

Table entries are serialized:

Entity matching

"Product A: *serialize(tuple-i)*. Product B: *serialize(tuple-j)*. Are product A and product B the same?"

Error Detection

"serialize(tuple) Is there an error in attribute-i: value-i?"

Data Imputation

"serialize(tuple) attribute-i?"

- T5-base implementation by Hugging Face
- Trained for 50 epochs or 100 if there is no clear convergence
- Experimented with different learning rates

Task	Dataset	Domain	#Samples	Frac. Positive
Entity matching	Beer	food	450	15.1%
	iTunes-Amazon	music	539	24.5%
	Fodors-Zagats	food	946	11.6%
	Walmart-Amazon electronics		10,242	90.6%
	Amazon-Google	software	11,460	10.2%
	DBLP-ACM	citation	12,363	25%
	DBLP-Google	citation	28,707	18.6%
Error detection	Hospital	healthcare	19,000	2.7%
Data Imputation	Buy	electronics	651	-
_	Restaurant	address	864	-

Table 1: Datasets with their corresponding task, domain and label distribution.

We compare prefix-tuning to two other methods:

Zero-shot prompting GPT-3

Both methods are automatable, parameter-efficient and privacy friendly.

Finetuning T5

Finetuning T5 is less scalable than prefix-tuning.

Task	Dataset	Metric	Prefix-tuning T5 (220M params)	Zero-shot prompting GPT-3 (175B params)
Entity matching	DBLP-Google	F1-score	0.9517	0.646
Entity matching	DBLP-ACM	F1-score	0.981	0.935
Entity matching	iTunes-Amazon	F1-score	0.9286	0.659
Entity matching	Fodors-Zagats	F1-score	0.9767	0.872
Entity matching	Beer	F1-score	0.8571	0.786
Entity matching	Walmart-Amazon	F1-score	0.7961	0.606
Entity matching	Amazon-Google	F1-score	0.6642	0.543
Imputation	Buy	Accuracy	0.9231	0.846
Imputation	Restaurant	Accuracy	0.8488	0.709
Error detection	Hospital	F1-score	0.9766	0.069

Table 3: Prefix-tuning drastically outperforms (trainingless) zero-shot prompting across all tasks.

Table 2: Relative performance of prefix-tuning compared to finetuning on ten data wrangling tasks. In five out of ten cases, prefix-tuning is within 2.3% of the performance of finetuning, even though it leverages only 0.39% of the parameter updates required for finetuning the full model.

Task	Dataset	Metric	Prefix-tuning	Finetuning	Rel. Perf.
Entity matching	DBLP-Google	F1-score	0.9517	0.9552	99.6%
Entity matching	DBLP-ACM	F1-score	0.981	0.9876	99.3%
Error detection	Hospital	F1-score	0.9766	0.9912	98.5%
Entity matching	iTunes-Amazon	F1-score	0.9286	0.9455	98.2%
Entity matching	Fodors-Zagats	F1-score	0.9767	1.000	97.7%
Entity matching	Beer	F1-score	0.8571	0.8966	95.6%
Imputation	Buy	Accuracy	0.9231	0.9692	95.2%
Imputation	Restaurant	Accuracy	0.8488	0.8953	94.8%
Entity matching	Walmart-Amazon	F1-score	0.7961	0.8806	90.4%
Entity matching	Amazon-Google	F1-score	0.6642	0.7436	89.3%

Conclusions

- Performance is within 2.3% of finetuning for five out of ten cases
- Prefix-tuning with T5 outperforms zero-shot prompting with GPT-3
- Prefix-tuning is an excellent option for large enterprise solutions

Future Research

- Scale prefix-tuning approaches to larger models (GPT-3 or alternatives like GPT-J or Bloom)
- Develop more advanced parametrization of the prefix

My contact details

Acknowledgements

- 🖂 vos.dja@gmail.com
- www.davidvos.dev

in davidjavos

