
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GENERATING GFLOWNETS AS YOU WISH
WITH DIFFUSION PROCESS

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative Flow Networks (GFlowNets) are probabilistic samplers that learn
stochastic policies to generate diverse sets of high-reward objects, which is essen-
tial in scientific discovery tasks. However, most existing GFlowNets necessitate
training, becoming costly as the diversity of GFlowNets expands and trajectory
lengths increase. To alleviate this problem, we propose a method to Generate
high-performing GFlowNet parameters based on a given model structure, called
GenFlowNet. Specifically, we first prepare an autoencoder to extract latent rep-
resentations of GeFlowNet parameters and reconstruct them. Then, a structure
encoder is trained alongside a conditional latent diffusion model to generate the
target GFlowNet parameters based on the given structure information. To the best
of our knowledge, it is the first exploration to generate parameters of a probabilis-
tic sampler using the diffusion process. It enables us to obtain a new GFlowNet
without training, effectively reducing the trial-and-error cost during GFlowNet
development. Extensive experiments on diverse structures and tasks validate the
superiority and generalizability of our method.

1 INTODUCTION

Generative Flow Networks (GFlowNets) rooted in foundational theoretical work (Bengio et al.,
2023; Lahlou et al., 2023) and closely linked to variational inference (Malkin et al., 2022; Zim-
mermann et al., 2022; Zhang et al., 2024), represent a class of methods for sampling discrete objects
from multimodal distributions. Owing to their flexibility, GFlowNets have been effectively applied
to a wide range of problems where diverse high-quality candidates are needed, such as molecules
(Bengio et al., 2021) and biological sequences (Jain et al., 2022).

0

20

40

60

80

100
Accuracy↑

Generalizability ↑

Diversity ↑

Efficiency ↑

Quality ↑

1/Divergence↑

GenFlowNet vs Traditional training

GenFlowNet Traditional training

Figure 1: GenFlowNet demonstrates superior per-
formance over the traditional training paradigm
across multiple dimensions: accuracy, diversity,
training cost efficiency, generalizability, and over-
all quality.

They typically learn a generative policy to sam-
ple discrete objects x with a non-negative re-
ward R(x). Most existing methods are trained
using stochastic gradient descent (SGD) to op-
timize the learning objective on states or tra-
jectories sampled from a training policy (Shen
et al., 2023). Standard learning objectives en-
sure that the GFlowNet’s learned distribution
over x matches the target distribution p(x) ∝
R(x) when the training loss is globally min-
imized across all states or trajectories. How-
ever, GFlowNet can hardly ascertain the per-
formance in advance, including those across
different tasks, without training. In many prac-
tical scenarios, the object space and the asso-
ciated trajectories can be exponentially large,
which significantly increases the training bur-
den of GFlowNets.

A promising solution to overcome these bur-
dens is to bypass the training phase of
GFlowNets and directly obtain the high-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

performing parameters tailored to downstream tasks. This has been explored in previous param-
eter generation techniques (Peebles et al., 2022; Erkoç et al., 2023; Schürholt et al., 2022; Jin et al.,
2024), which can generate new parameters without training. However, these methods are specifically
tailored for traditional neural networks, not probabilistic samplers like GFlowNets. The distinction
between traditional neural networks and GFlowNets makes it challenging to adapt these methods
for generating GFlowNet parameters. Moreover, they lack the flexibility to adapt to new conditions,
failing to generalize to unknown structures and tasks during training, which hinders their practical
application. Therefore, it is critical to develop a parameter generation method for GFlowNets that
can generalize to diverse structures and tasks.

In this paper, we introduce a method to Generate GFlowNet parameters based on model structures,
termed as GenFlowNet. It comprises an autoencoder (AE) and a conditional diffusion model de-
signed to capture the distribution of GFlowNet parameters with specified structures. Initially, the
AE is trained to compress and reconstruct GFlowNets parameters across various structures. Subse-
quently, we represent GFlowNets via their structure information, which is then converted into em-
beddings by a structure encoder. These embeddings serve as conditioning inputs for a conditional
diffusion model, which generates latent parameter representations from a noise distribution. During
inference, given a specific structure, the diffusion model, in conjunction with the AE decoder, can
synthesize the desired GFlowNet parameters.

Extensive experiments on diverse structures and tasks demonstrate the following key characteristics
of our method (see Fig. 1):

• Generalizability: Our method can generate GFlowNet parameters for various unknown
structures and tasks during inference.

• High Performance: The parameters produced by our method achieve performance compa-
rable to or exceeding that of GFlowNets trained with traditional paradigms.

• Diversity and Efficiency: Our method generates diverse structures without further training,
significantly increasing the efficiency of training.

2 HOW TO GENERATE THE GFLOWNETS PARAMETERS AS YOU WISH

To enhance the controllability and flexibility of GFlowNet parameter generation, we introduce Gen-
FlowNet, a novel framework that leverages a conditional diffusion model for parameter synthesis.
The preliminaries of GFlowNets and conditional diffusion models are detailed in Sec. 2.1. Subse-
quently, we present two core components of our framework: a parameter autoencoder (Sec. 2.2) and
conditional parameter generation (Sec. 2.3). The autoencoder is designed to capture latent repre-
sentations of GFlowNet parameters, which are then decoded to reconstruct the original parameters.
Following this, a conditional latent diffusion model is trained to generate parameter latent represen-
tations conditioned on the structural characteristics of GFlowNets. An overview of our framework
is illustrated in Fig. 2.

GFlowNet Parameters

Encoder

Decoder

Padding

Diffusion Process

<latexit sha1_base64="xNUZMC6mwnjzsmkZ/ZVgQlLWhaM=">AAACyHicjVHLTsJAFD3UF+ILdemmEUxckZbEx5LoxrjCxAIJEtIOA04obdNONUjc+ANu9cuMf6B/4Z2xJCoxOk3bM+fec2buvV7ki0Ra1mvOmJtfWFzKLxdWVtfWN4qbW40kTGPGHRb6Ydzy3IT7IuCOFNLnrSjm7sjzedMbnqp484bHiQiDSzmOeGfkDgLRF8yVRDnlu65V7hZLVsXSy5wFdgZKyFY9LL7gCj2EYEgxAkcASdiHi4SeNmxYiIjrYEJcTEjoOMc9CqRNKYtThkvskL4D2rUzNqC98ky0mtEpPr0xKU3skSakvJiwOs3U8VQ7K/Y374n2VHcb09/LvEbESlwT+5dumvlfnapFoo9jXYOgmiLNqOpY5pLqrqibm1+qkuQQEadwj+IxYaaV0z6bWpPo2lVvXR1/05mKVXuW5aZ4V7ekAds/xzkLGtWKfVg5uKiWaifZqPPYwS72aZ5HqOEMdTjkLfCIJzwb50Zk3Brjz1Qjl2m28W0ZDx8LQZCG</latexit>z0

......

<latexit sha1_base64="XD73ftGQxeBKpsB4hlItLIfwLVs=">AAACyHicjVHLTsJAFD3UF+ILdemmEUxckdbEx5LoxrjChAIJEtIOA04obdNONUjc+ANu9cuMf6B/4Z2xJCoxOk3bM+fec2buvV7ki0Ra1mvOmJtfWFzKLxdWVtfWN4qbW40kTGPGHRb6Ydzy3IT7IuCOFNLnrSjm7sjzedMbnql484bHiQiDuhxHvDNyB4HoC+ZKopzyXbde7hZLVsXSy5wFdgZKyFYtLL7gCj2EYEgxAkcASdiHi4SeNmxYiIjrYEJcTEjoOMc9CqRNKYtThkvskL4D2rUzNqC98ky0mtEpPr0xKU3skSakvJiwOs3U8VQ7K/Y374n2VHcb09/LvEbESlwT+5dumvlfnapFoo8TXYOgmiLNqOpY5pLqrqibm1+qkuQQEadwj+IxYaaV0z6bWpPo2lVvXR1/05mKVXuW5aZ4V7ekAds/xzkLGgcV+6hyeHlQqp5mo85jB7vYp3keo4pz1OCQt8AjnvBsXBiRcWuMP1ONXKbZxrdlPHwAYOWQqg==</latexit>zT

......Conditional Denoising

Condition

State dim.
Size

Horizon
Num. of dim.

Cropping

...

Molecule design

Hypergrid task

(a) Parameter Autoencoder (b) Latent Diffusion model (c) Generalizable Application

𝑠!

𝑠"

𝑠!

𝑠#

𝑠!

𝑠$

𝑠%

𝑠&

𝑠'

𝑠!

𝑠"

𝑠!

𝑠#

𝑠!

𝑠$

𝑠%

𝑠&

𝑠'

𝜏

Figure 2: Overview of the proposed GenFlowNet. The autoencoder within our framework is
utilized to extract the latent representation of GFlowNet parameters. The conditional parameter
diffusion model is designed to synthesize high-performance parameters based on specific structure
conditions.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.1 PRELIMINARIES

Generative Flow Networks (GFlowNets) are designed to learn generative models over com-
plex distributions that are defined by unnormalized density functions within structured spaces.
GFlowNets model the generation of objects x within a sample space X as a sequential decision-
making process structured as an acyclic deterministic Markov Decision Process (MDP). This MDP
is defined by a set of states S ⊃ X and a set of actions A ⊆ S × S . The process initiates from a
designated initial state s0, which has no incoming actions and concludes in a set of terminal states
that coincide with the objects in X . Any object x ∈ X can be generated from s0 through a sequence
of actions s0 → s1 → · · · → sn = x, with each action (si, si+1) ∈ A. These sequences, known as
complete trajectories, are collectively denoted as T .

A (forward) policy PF is defined as a collection of distributions PF (s
′|s) over the subsequent states

for each non-terminal state s ∈ S \ X . This policy induces a distribution over the complete tra-
jectories T : PF (τ = (s0 → s1 → · · · → sn)) =

∏n−1
i=0 PF (si+1 | si). The policy enables the

sampling of objects in X by sampling a complete trajectory τ ∼ PF and returning its terminal state.
This induces a marginal distribution PT

F over X , where PT
F (x) represents the sum of PF (τ) over

all complete trajectories τ ending in x (an often intractable sum). Typically, the policy model can
be implemented using simple multi-layer perceptrons (MLPs) with a few layers, though other archi-
tectures could also be applicable. The objective of GFlowNet training is to estimate a parametric
policy PF (·|·; θ) such that the induced distribution PT

F is proportional to a non-negative given re-
ward function R : X → R≥0, i.e., P⊤

F (x) = 1
ZR(x) for ∀x ∈ X , where Z =

∑
x∈X R(x) is the

unknown normalization constant (partition function).

Conditional diffusion models extend the standard diffusion model by incorporating conditions into
both the forward and reverse processes. The conditional information, defined by c, allows the model
to generate data tailored to specific attributes or requirements.

The forward process in conditional models involves adding noise to an initial sample while con-
ditioning on c. The probability of transitioning from xt−1 to xt under condition c is modeled
as a Gaussian distribution q(xt|xt−1, c) = N (xt;

√
1− βtxt−1, βtI) where βt are the timestep-

dependent noise levels, and I represents the identity matrix. The complete forward process, condi-
tioned on c, is expressed as q(x1:T |x0, c) =

∏T
t=1 q(xt|xt−1, c). The conditional reverse process

is designed to reconstruct the original sample from its noisiest state xT conditioned on c. And it
is formulated by pθ(xt−1|xt, c) = N (xt−1;µθ(xt, t, c),Σθ(xt, t, c)). In this process, µθ and Σθ

are functions estimated by a neural network, which also processes the condition c, ensuring that the
recovery of data respects the conditional constraints.

The training procedure involves minimizing the Kullback-Leibler(KL) divergence between the for-
ward and reverse conditional distributions, specifically:

Ldm = Eq(x0,c)[DKL(q(xt−1|xt, x0, c)||pθ(xt−1|xt, c))]. (1)

During inference, the model generates new samples by conditioning on c and sequentially applying
the learned reverse transitions from a noise distribution. This approach enables the generation of
data that closely adheres to the specified conditions.

2.2 PARAMETER AUTOENCODER

The autoencoder (AE) in GenFlowNet comprises an encoder and a decoder, both of which are based
on 1D Convolutional Neural Networks (CNNs). The encoder’s role is to map GFlowNet parameters
into a latent space, which serves to reduce the computational and memory costs of the diffusion
model (Sec. 2.3). The decoder is responsible for reconstructing these latent representations back
into the original parameters.

Dataset preparation. To collect the training data for AE, we train GFlowNet models from scratch
with stochastic gradient descent (SGD) optimizer and save dense checkpoints during the final epoch,
generating a series of parameter training samples. We adopt P to indicate a single training sample.

Training Procedure. Given a parameter training sample P , we flatten it into a one-dimensional
vector Θ ∈ RD, where D is the dimension of the subset of parameters. The encoder is then trained

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

to obtain its robust latent representation, which can be used to reconstruct these flattened parameters
via the decoder. The encoding and decoding processes are formalized as follows:

Z = Encoder(Θ + ξΘ) = E(Θ + ξΘ, σ)︸ ︷︷ ︸
encoding

; Θ̂ = decoder(Z + ξZ) = D(Z + ξZ , ρ)︸ ︷︷ ︸
Decoding

,

where E(·, σ) and D(·, ρ) denote the encoder and decoder parameterized by σ and ρ, respectively.
Z represents the latent representation of the parameter matrix, and Θ̂ is the reconstruction of the
original parameter Θ. To improve the generalization and robustness of the AE, Gaussian noise
ξ is introduced into both the input and latent vectors during the training process. Consistent with
typical AE training (Kingma & Welling, 2013), the model is trained by minimizing the mean squared
error (MSE) between the original parameters Θ and the reconstructed parameters Θ̂, which can be
formulated as:

LMSE = |Θ− Θ̂|2. (2)

This optimization procedure ensures that the AE learns to compress and reconstruct high-
dimensional GFlowNet parameters, facilitating the parameter generation in the subsequent diffusion
model.

2.3 CONDITIONAL PARAMETER GENERATION

Diffusion models can inherently model conditional distributions through inputs like text (Reed et al.,
2016), semantic maps (Isola et al., 2017; Liu et al., 2019), or images (Isola et al., 2017). Inspired by
these, we design a diffusion model, taking various GFlowNet structures as conditions, to facilitate
GFlowNet parameter generation.

Generating GFlowNet via generating MLP. GFlowNet algorithms learn a policy where the prob-
ability of sampling a terminating state s is proportional to R(s).

From GFlowNet to policy: As illustrated in Fig. 3 (a), the policy generates trajectories starting in
state s0 by sampling actions at ∈ A(s) according to π(at|st) = PF (st+1|st), where PF repre-
sents the “forward” transition probability within the constructive GFlowNet process. The learnable
forward policy governs the transition and specifies the GFlowNet, which also determines the struc-
tured internal constructions as illustrated in Fig. 3 (a) to (b). Consequently, the overall GFlowNet is
predominantly determined by the forward policy.

From policy to MLP: In terms of neural architecture, the most straightforward GFlowNet employs
a neural network that is scalable depending on the available computational resources. This network
outputs a stochastic policy π(at|st), where st represents a partially constructed object and at denotes
one of the possible actions from st. As illustrated in preliminaries and Fig. 3 from (b) to (c), a
GFlowNet forward policy can be effectively learned by a simple architecture, like a multi-layer
perceptron (MLP) (Bengio et al., 2021; Liu et al., 2023). At each step, the same MLP is employed
to generate a stochastic output at, which subsequently results in the next state st+1 = T (st, at),
with T being dependent on the specific application.

Hence, the GFlowNet can be determined by an MLP. This allows us to utilize the structure of the
MLP as a condition for our GFlowNet parameter generation process.

(a) GFlowNet (b) Forward policy (c) MLP

Initial state

𝑠! 𝑠"

s#

s#
s#

s#

s#
s#

𝑠$

𝑠%

𝑠&
𝑠'

𝑠(𝑠)

𝑠*
𝑠+

𝑠"!

Terminating state

Terminal
state

(d) Structure condition embedding

GenFlowNet
input

Figure 3: The direct modeling and conditional embedding explanation for our method. The
forward policy governs the transition of the GFlowNet and is defined as an MLP in our approach.
The four structural parameters determine GFlowNet.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Conditional embedding. To effectively manage the diverse structural configurations of GFlowNets,
we introduce an encoder τstructure, (ρ; ·), where ρ represents the encoder’s parameters, designed to
encode a GFlowNet structure into a conditional embedding. Specifically, as illustrated in Fig. 3 (c) to
(d), the structure condition embedding, contains four critical structural parameters: state dimension
(s), horizon (h), number of dimensions (n), and size (d). These parameters collectively define
the architecture of the MLP within the GFlowNet. We concatenate these parameters to form the
condition vector c = [s, h, n, d] ∈ R4. Then, this vector is fed into the structure encoder and
yielding τstructure(ρ; c), which will be used to control the diffusion model to generate parameters
tailored to specific structure requirements in the following.

Parameter Generation: A straightforward strategy for generating novel parameters is by directly
synthesizing them via a diffusion model. However, the computational and memory demands for this
approach can become excessively high, particularly when dealing with high-dimensional parameter
spaces. To mitigate this, we design a conditional diffusion model to generate latent representations
of parameters tailored to the specific structural conditions c of GFlowNets.

Unlike image data, which has an inherent spatial structure, GFlowNet parameters lack such spatial
correlations. Therefore, instead of using 2D convolutions typically employed in image synthesis
tasks, we adopt 1D convolutions to construct the diffusion model ϵθ, based on U-Net arachitecu-
ture (Ronneberger et al., 2015). During the generation phase, the latent representation of parameters
is progressively refined from an initial Gaussian noise distribution through successive denoising
steps. Specifically, at each step t, the current denoised parameter latent zt and the conditioning in-
formation c are passed through the diffusion model to predict the residual noise. To handle different
GFlowNets and tasks, the conditional embedding τstructure(ρ; c) is integrated into the intermediate
features of the diffusion model ϵθ via element-wise addition. The diffusion model is trained using
the following objective function:

LLDM := Eϵ∼N (0,1),t[|ϵ− ϵθ(zt, t, τstructure(ρ; c))|2], (3)

where t is uniformly sampled from the interval [1, T], ϵθ represents the denoising network parame-
terized by θ. This formulation ensures that the model effectively learns to generate parameter latent
that adhere to specific structural constraints.

Inference procedure. During generation, we can feed random Gaussian noise, along with the spe-
cific condition c corresponding to a given structure into the diffusion model. It reverses the diffusion
process and progressively refines the initial noise based on the provided condition, ultimately syn-
thesizing a new set of parameter latent representations. Then, the pre-trained AE decoder projects it
from the latent space into new parameters, which are tailored for the GFlowNet as you wish.

3 EXPERIMENTS

In this section, we first introduce the experimental setup. Then, we present the evaluation results,
ablation study, and analysis of GenFlowNet. In our experiments, GenFlowNet effectively generates
high-performance parameters for both “known” and “unknown” GFlowNets, even “unknown” tasks.
This capability enables flexible and controllable synthesis of GFlowNet parameters, allowing us to
obtain new high-performance GFlowNets without additional training.

3.1 DATASET AND IMPLEMENTATION DETAILS

Datasets. We evaluate our approach on a diverse range of datasets, including both training and
testing sets. The training dataset comprises four distinct GFlowNet structures, each corresponding
to a unique set of structural tuples. Specifically, the four training structures are denoted as Structures
A,B,C, and D. For example, Structure A is defined as [64, 16, 4, 8], where state dimension = 64,
horizon = 16, number of dimensions = 4, and size = 8. The remaining structures are defined as
follows: Structure B: [36, 6, 6, 6]; Structure C: [25, 5, 5, 5]; and Structure D: [36, 9, 4, 6].

In parallel with the training dataset, the test dataset is designed with four distinct structures to eval-
uate generalization performance. The test dataset structures can be varied to any structural configu-
rations as required. For our experimental setup, the following structures are used in the test dataset:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Structure A∗: [9, 3, 3, 3]; Structure B∗: [16, 4, 4, 4]; Structure C∗: [36, 12, 3, 6]; and Structure
D∗: [49, 7, 7, 7]. We present results of more unknown structures in Appendix 9.

Implementation Details. Both the autoencoder and the latent diffusion model consist of 4-layer
1D convolutional neural networks (CNNs) for the encoder and decoder. We collected a total of 200
training samples for all architectures mentioned above. We utilize MLP-3, a multi-layer perceptron
with three linear layers and LeakyReLU activation functions, as the MLP within GFlowNet. Each
of these architectures is trained from scratch independently. More details are in Appendix A.1.

3.2 EXPERIMENT RESULTS FOR KNOWN GFLOWNET STRUCTURE

“Known” structures refer to those that the model has encountered during training. Our method is
evaluated on the benchmark hyper-grid exploration task as introduced by Bengio et al. (2021). For
the sake of clarity, the main experimental results are presented using Structure A, with more results
provided in the appendix A.2. In this task, an agent navigates a grid-like environment, starting from
a corner and exploring the landscape defined by the reward function R(x) = R0 +R1

∏
i I(0.25 <

|xi/H − 0.5|) +R2

∏
i I(0.3 < |xi/H − 0.5| < 0.4).

High accuracy and low divergence. We evaluate the quality of the generated parameters by mea-
suring the Jensen-Shannon (JS) divergence, KL divergence, and empirical L1 loss between the
ground truth probability distribution p(x) and the learned probability distribution pθ(x). The results,
as shown in Tab. 1 indicate that GenFlowNet consistently matches or exceeds the baseline. In this
context, the “close set” refers to GFlowNets that are present in the training set. This demonstrates
the model’s ability to effectively learn the distribution of high-performing parameters, including
new neural field representations such as MLP parameters, achieving strong performance on various
GFlowNet structures.

JS divergence ↓ KL divergence ↓ Empirical L1 loss↓ Time usage (s)↓

GenFlowNet Baseline GenFlowNet Baseline GenFlowNet Baseline GenFlowNet Baseline
Structure A 0.675↑ 0.005 0.670 7.276↑ 0.017 7.259 3.099e-05↑ 0.009e-05 3.090e-05 63↓ 463 526
Structure B 0.685↓ 0.000 0.685 7.945↓ 0.000 7.945 5.805e-05↓ 0.000 5.805e-05 43↓ 525 568
Structure C 0.644↓ 0.000 0.644 10.422↓ 0.000 10.422 0.001↓ 0.000 0.001 25↓ 480 505
Structure D 0.637↑ 0.003 0.634 9.467↓ 0.000 9.467 3.000e-04↓ 0.000 3.000e-04 60↓ 402 462

Table 1: Results of GenFlowNet on known GFlowNet structure . Our approach achieved high
accuracy, low divergence, and efficient time usage compared to traditional training. “Baseline”
means the GFlowNet with original training.
High quality. Additionally, we report the average reward during training in Fig. 4a and Fig. 4b. As
depicted in these figures, GFlowNets utilizing parameters generated by GenFlowNet consistently
outperform the original GFlowNets, particularly during the initialization phase, indicating that more
accurate flow probabilities lead to higher rewards. Beyond the superior performance in sampling dis-
tribution accuracy, as evidenced by the quantitative metrics, GenFlowNet also demonstrates strong
performance in diversity evaluation, with significant improvements in mean reward. These results
confirm that GenFlowNet is capable of generating high-performance model parameters tailored to
specific conditions, achieving generalization across diverse known GFlowNet structure scenarios.

Av
er

ag
e

re
w

ar
d

States visited count

(a) Structure A

Av
er

ag
e

re
w

ar
d

States visited count

(b) Structure B

Av
er

ag
e

re
w

ar
d

States visited count

(c) Structure C∗

Av
er

ag
e

re
w

ar
d

States visited count

(d) Structure D∗

Figure 4: Average reward of GFlowNet across structures. Relationship between average reward
and state visit counts for (a) Structure A and (b) Structure B in the known dataset, and (c) Structure
C∗ and (d) Structure D∗ in the unknown dataset.
Diversity in a generation. From an alternative perspective, the models generated by GenFlowNet
exhibit both diverse similarities and superior performance compared to the original models. This is
illustrated in Fig. 5, which displays the parameter matrices of the generated models. Specifically,
although the four models presented are representative samples derived from a set of 100 models

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

with identical structures (i.e., Structure A), the weight matrices within the same layer demonstrate
significant variations. This inherent diversity in the generated parameters enhances downstream
applications by providing a range of robust and high-performing model configurations.

Structure A dense2 weight

O
ut

pu
t d

im
en

si
on

Input dimension

(a) Model 1

Structure A dense2 weight

O
ut

pu
t d

im
en

si
on

Input dimension

(b) Model 2

Structure A dense2 weight

O
ut

pu
t d

im
en

si
on

Input dimension

(c) Model 3

Structure A dense2 weight

O
ut

pu
t d

im
en

si
on

Input dimension

(d) Model 4

Figure 5: Diversity of our generation results. The visualization of Structure A GFlowNet offers a
variety of dense2 layer’s weights.

3.3 GENERALIZATION TO UNKNOWN GFLOWNET STRUCTURE

In addition to the known GFlowNet structure, we evaluate our model in the unknown scenario as
well, where the “unknown” pertains to GFlowNet structures that have not been encountered during
training. From Tab. 2, Fig. 4c, and Fig. 4d, we observe that even with unknown structures, the gen-
erated model performs well and is comparable to the model obtained through training. The verifies
the generalization capability of our method in unknown structures. For scenarios that require
a trade-off between performance and computational cost, GenFlowNet can serve as an effective
initialization or pre-training method.

JS divergence ↓ KL divergence ↓ Empirical L1 loss↓ Time usage (s)↓

GenFlowNet Baseline GenFlowNet Baseline GenFlowNet Baseline GenFlowNet Baseline
Structure A∗ 0.452↓ 0.000 0.452 14.350↑ 0.001 14.349 0.083↓ 0.000 0.083 13↓ 510 523
Structure B∗ 0.479↓ 0.002 0.481 11.022↓ 0.003 11.025 0.009↓ 0.000 0.009 18↓ 576 594
Structure C∗ 0.495↑ 0.013 0.482 9.098↑ 0.282 8.816 0.001↓ 0.000 0.001 34↓ 437 471
Structure D∗ 0.689↓ 0.000 0.689 5.109↓ 0.000 5.109 3.297e-06↓ 0.000 3.297e-06 63↓ 533 596

Table 2: Results of GenFlowNet on unknown GFlowNet structures. Our approach achieved
high accuracy, low divergence, and efficient time usage compared to traditional training. “Baseline”
means the GFlowNet with original training.

3.4 GENERALIZATION TO BIOLOGICAL APPLICATION

In addition to the single task and the generalization across the known and unknown structures, we
generalize and evaluate our method on a new task, which is a realistic molecule synthesis setting.
The goal is to synthesize diverse molecules with desired chemical properties. We formulate molec-
ular generation as a sequential decision process and implement it using a GFlowNet. Each state
denotes a molecule graph structure, and the action space is a vocabulary of building blocks specified
by junction tree modeling (Jin et al., 2018). We follow the experimental setups including the reward
specification and episode constraints in (Bengio et al., 2021). The modules with the same MLP
structure in the original model were replaced with the one by GenFlowNet and the performance was
evaluated in Tab. 3, which shows that GenFlowNet is training free and with efficient loss con-
vergence in a new task. Between the GenFlowNet and original-trained GFlowNet, in the limited
iterations, the pre-trained model had more modes found and achieved a higher top-100 reward.

This means that before training for downstream tasks such as molecule generation on large network
architectures, it is possible to quickly predict which GFlowNet structures are likely to perform better,
allowing for more targeted and efficient training.

3.5 ABLATION STUDY

Extensive ablation studies are conducted in this section to highlight the characteristics of our pro-
posed method. We focus on evaluating the performance of the generated GFlowNet parameters on

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Training loss ↓ Test loss ↓ Top 100 reward↑ Modes found (R >7.5)↑

GenFlowNet Baseline GenFlowNet Baseline GenFlowNet Baseline GenFlowNet Baseline
I = 25,000 1.461↓ 0.036 1.534 1.574↓ 0.017 1.610 1.268↑ 0.001 1.267 0↑ 0 0
I = 100,000 0.883↓ 0.180 1.063 1.492↑ 0.038 1.454 2.674↑ 0.684 1.990 2↑ 1 1
I = 150,000 0.762↓ 0.177 0.939 1.547↓ 0.011 1.558 2.833↑ 0.030 2.803 2↑ 0 2
I = 200,000 0.721↓ 0.084 0.805 1.537↓ 0.076 1.613 3.567↑ 0.315 3.252 3↑ 0 3

Table 3: Results on GenFlowNet parameters in molecule design task. GenFlowNet demon-
strates efficient and rapid convergence in molecule generation, highlighting its strong generalization
capabilities and performance comparable to traditional training GFlowNet. “Baseline” means the
GFlowNet with original training. “I” means the iteration number of training.
Table 4: Ablation results of structure number N in training dataset. For Sturcture A and
Sturcutre A∗, where is written as A and A∗ in short, larger N can enhance performances.

Structure Num. JS divergence ↓ KL divergence ↓ Empirical L1 loss ↓ Time usage (s) ↓
A A∗ A A∗ A A∗ A A∗

N = 2 0.675 0.452 7.277 14.351 3.099e-05 0.083 39 12

N = 3 0.675 0.452 7.276 14.350 3.099e-05 0.083 63 13

N = 4 0.675 0.453 7.276 14.351 3.099e-05 0.083 65 12

N = 5 0.675 0.452 7.275 14.350 3.099e-05 0.083 63 11

Table 5: Ablation results of model number M in training dataset. For Sturcture A and Sturcutre
A∗, where is written as A and A∗ in short, larger M can enhance performances.

Model Num. JS divergence ↓ KL divergence ↓ Empirical L1 loss ↓ Time usage (s) ↓
A A∗ A A∗ A A∗ A A∗

M = 50 0.675 0.453 7.277 14.351 3.099e-05 0.083 69 11

M = 100 0.675 0.453 7.277 14.351 3.099e-05 0.083 59 12

M = 200 0.675 0.452 7.276 14.350 3.099e-05 0.083 60 13

M = 300 0.675 0.453 7.275 14.351 3.098e-05 0.083 64 12

the hyper-grid exploration task. The training setup mirrors the conditions used in the experiments
outlined in Tab. 1 and Tab. 2.

Effect of structure number: As detailed in Sec. 3.1, we utilize four distinct structures in the training
and test datasets. In Tab. 4, we examine the relationship between the number of structures, N , and
performance, using a fixed set of 200 models for training. The results indicate that varying the
number of structures has minimal impact on the performance of the parameter generator.

Number of training models: Tab. 5 varies the size of training data, i.e. the number of original
models, with a fixed number of training structures as 3. We find the performance gap of best results
in different numbers of the original models is minor.

Generalization of model size: As illustrated in both Tab. 4 and Tab. 5, it is usual that the train-
ing datasets consist of only GFlowNets with small network structures and test to generate the new
GFlowNet with larger structures. This demonstrates the generalization of the model size for the
generator. GFlowNets with smaller network structures as the training dataset, while generating
GFlowNets for larger structures, can demonstrate that the resulting performance is also comparable.

3.6 ANALYSIS

MLP parameter-space diffusion: We explain the reason why we can use the diffusion model to
generate MLP parameters well, even in unknown scenarios. Since we consider each set of MLP
parameters (weights and biases) S as a flattened 1D vector for diffusion, it enables a general formu-
lation for modeling neural fields, as the MLP parameters are agnostic to varying-dimensional data.
This makes GenFlowNet flexible to a variety of neural field representations; in particular, it general-
izes to different GFlowNet structures from the training dataset. We also observe as in Tab. 6 that the
variance across structures and models varies a little, which means that the neural field is compact
enough to be demonstrated by generative modeling of MLP representation with our diffusion model
and each layer parameters matter similarly for the final output representation. This is also observed
in (Erkoç et al., 2023). The appearance of the generated parameters is similar to the baseline, which
verifies the robustness of our method.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 6: Test parameter variance across layers & models. It evaluates that each layer in different
GFlowNets matters. The variance of parameters across multiple GFlowNet structures equals the
expected variance of the individual models for unknown GFlowNet structures generated from the
GenFlowNet. “Baseline” means the GFlowNet with original training.

Parameter Structure A∗ (50 models) Structure B∗ (50 models) Structure B∗ (100 models) Structure C∗ (100 models)
GenFlowNet Baseline GenFlowNet Baseline GenFlowNet Baseline GenFlowNet Baseline

dense1.weight 0.005 0.005 0.009 0.010 0.009 0.009 0.014 0.013

dense1.bias 0.007 0.004 0.013 0.008 0.011 0.008 0.010 0.016

dense2.weight 0.001 0.010 0.011 0.010 0.010 0.010 0.010 0.010

dense2.bias 0.012 0.009 0.012 0.011 0.012 0.009 0.010 0.014

dense3.weight 0.012 0.012 0.011 0.011 0.010 0.010 0.009 0.010

dense3.bias 0.002 0.002 0.012 0.014 0.014 0.007 0.001 0.013

Difference with vision model parameter generation: We investigate several factors contributing
to the limited generalizability observed in vision model parameter generation, as noted in prior work
(Wang et al., 2024; Jin et al., 2024). However, our analysis demonstrates that GFlowNet, when
applied across different network architectures, achieves substantial improvements in generalization
performance. Firstly, in our parameter generation, the diffusion process leverages a more direct
form of conditioning: the latent diffusion model is conditioned on a set of parameters that explicitly
define the MLP’s architecture.

Table 7: Parameter amount of different net-
works. It shows the efficient parameter amounts
of GFlowNet. Model A and model B refer
to GFlowNet for molecule design and hypergrid
task, ResNet 18 and ResNet 34, Transformer with
4 and 8 heads respectively.

Model
Total number↓

Model A Model B

MLP 193, 709 2, 339

ResNet 11, 689, 512 21, 797, 672

Transformer 3, 952, 133 12, 625, 420

Secondly, in addition to the explicit explana-
tion of the condition itself, the MLP has an ad-
vantage in terms of parameter efficiency as in
Tab. 7. The generalization of model size for the
GenFlowNet is further demonstrated by embed-
ding a GFlowNet, trained on the dataset with
a smaller network structure, into a larger net-
work structure during generalization evaluation
in Sec. 3.4. The model parameter count reflects
this scalability, highlighting the framework’s
ability to adapt effectively across GFlowNets
with different network structure sizes.

Thirdly, another contributing factor is the struc-
tural similarity of the network architecture. To
understand neural networks, researchers often
use similarity metrics to measure how similar or different two neural networks are to each other. One
of the metrics called centered kernel alignment (CKA)(Kornblith et al., 2019) can reveal pathology
in neural network representations and is equally effective at revealing relationships between lay-
ers of different architectures. Fig. 6 shows the relationship between different layers of GFlowNets,
transformers, and ResNets with two structures. The GFlowNet representations seem to be “similar”
on average and have lower variance, which can be compact for our model to learn the neural field
information from its parameters.

CKA between Transformer 𝐴	and 𝐵

Tr
an

sf
or

m
er

 𝐴
	la

ye
rs

Transformer 𝐵	layers

CKA between ResNet 18	and ResNet	34

R
es

N
et
18

la
ye

rs

ResNet 34 layers

(a) Vision Tasks: ResNet vs. ResNet and Trans-
former vs. Transformer

CKA between Structure 𝐵∗ and 𝐶∗

Po
lic

y
𝐵
∗

G
Fl

ow
N

et
la

ye
rs

Structure 𝐶∗	GFlowNet layers

CKA between Structure 𝐴	and 𝐵

Structure 𝐵	GFlowNet layers

St
ru

ct
ur

e
𝐴	

G
Fl

ow
N

et
la

ye
rs

(b) GFlowNet Tasks: Structure A vs. Structure B and
Structure B∗ vs. Structure C∗

Figure 6: Comparison of CKA performance: (a) Vision Tasks (ResNet and Transformer), (b)
GFlowNet. The visualization of the CKA demonstrates the low layer variance of GFlowNet, which
is evidence of the generalization. Additionally, ResNet 18 and ResNet 34 take the average pooling.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

4 RELATED WORK

Diffusion Models: Diffusion models have achieved outstanding results in visual generation tasks.
These methods (Ho et al., 2020; Dhariwal & Nichol, 2021; Ho et al., 2022; Peebles & Xie, 2023;
Hertz et al., 2022; Li et al., 2023) are grounded in non-equilibrium thermodynamics (Jarzynski,
1997; Sohl-Dickstein et al., 2015), following a generative process similar to GANs (Zhu et al.,
2017; Isola et al., 2017; Brock et al., 2018), VAEs (Kingma & Welling, 2013; Razavi et al., 2019),
and flow-based models (Dinh et al., 2014; Rezende & Mohamed, 2015). Broadly, diffusion models
can be classified into three main branches. The first focuses on improving synthesis quality, as
demonstrated by models such as DALL·E 2 (Ramesh et al., 2022), Imagen (Saharia et al., 2022),
and Stable Diffusion (Rombach et al., 2022). The second branch aims to accelerate sampling speeds,
featuring models like DDIM (Song et al., 2020), Analytic-DPM (Bao et al., 2022), and DPM-Solver
(Lu et al., 2022). The final branch reinterprets diffusion models from a continuous perspective,
exemplified by score-based models (Song & Ermon, 2019; Feng et al., 2023).

Conditional Generation: Conditional generation has garnered significant attention in both com-
puter vision and natural language processing. Three key frameworks dominate this area: conditional
GANs (Mirza & Osindero, 2014; Isola et al., 2017; Zhu et al., 2017), conditional VAEs (Sohn et al.,
2015; Yan et al., 2016), and conditional diffusion models (Rombach et al., 2022), all of which in-
tegrate conditions to guide the generative process. This approach facilitates the creation of visually
coherent and semantically meaningful data samples. Conditional GANs incorporate attribute or la-
bel information to condition the generation process, while conditional diffusion models advance this
further by generating high-quality images from textual descriptions. These diffusion-based models
have outperformed GANs in terms of both visual coherence and semantic accuracy. Building on the
success of conditional diffusion models, we extend this concept to the generation of neural network
parameters, conditioned on specific attributes, for efficient model tuning.

Parameter Generation: Parameter generation has seen rapid advancements, with approaches like
HyperNetworks (Ha et al., 2016) and generative models of neural network checkpoints (Peebles
et al., 2022) emerging as notable contributions. Ha et al. (2016) introduced HyperNetworks, which
generates neural network parameters by learning from an auxiliary network. Finn et al. (2017) pro-
posed Model-Agnostic Meta-Learning (MAML), a technique that learns an initialization that allows
efficient fine-tuning across tasks. More recently, Peebles et al. (2022) developed G.pt, a model de-
signed to predict parameter updates given an initial parameter vector and a prompted loss function.
Schürholt et al. (2022) trained an autoencoder on a model zoo to learn hyper-representations for
generating new model weights, while Knyazev et al. (2021) applied a GNN-based model to sam-
ple network parameters. In a similar vein, Erkoç et al. (2023) generated neural implicit fields by
leveraging synthesized MLP weights. Wang et al. (2024) extended diffusion models to generate
high-performing neural network parameters across various architectures and datasets. Unlike these
prior works, our approach focuses on conditional and controllable parameter generation, aiming to
produce high-performance parameters tailored to specific GFlowNet. Our method not only achieves
high-performance parameter generation but also demonstrates strong generalizability across differ-
ent tasks and architectures.

5 DISCUSSION AND CONCLUSION

In this work, we propose GenFlowNet, a framework for generating GFlowNet parameters based on a
given structure. Our approach combines an autoencoder with a conditional latent diffusion model to
capture the distribution of GFlowNet parameters, allowing us to obtain high-performing parameters
without further training. Our experiments demonstrate that GenFlowNet effectively generates novel,
high-quality, and diverse parameters and exhibits remarkable generalizability across diverse tasks
and structures.

Limitations and future works. However, there are still unresolved challenges, including better
GFlowNet structure design in various tasks, and ensuring the performance stability of the generated
parameters across more applications. Furthermore, integrating scientific knowledge into conditions
offers promising directions for GenFlowNet.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-dpm: an analytic estimate of the optimal
reverse variance in diffusion probabilistic models. arXiv preprint arXiv:2201.06503, 2022.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. NeurIPS, 34:
27381–27394, 2021.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio.
Gflownet foundations. JMLR, 24(1):10006–10060, 2023.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. NeurIPS,
34:8780–8794, 2021.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components esti-
mation. arXiv preprint arXiv:1410.8516, 2014.

Ziya Erkoç, Fangchang Ma, Qi Shan, Matthias Nießner, and Angela Dai. Hyperdiffusion: Generat-
ing implicit neural fields with weight-space diffusion. In ICCV, pp. 14300–14310, 2023.

Berthy T Feng, Jamie Smith, Michael Rubinstein, Huiwen Chang, Katherine L Bouman, and
William T Freeman. Score-based diffusion models as principled priors for inverse imaging. In
ICCV, pp. 10520–10531, 2023.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In ICML, pp. 1126–1135. PMLR, 2017.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or.
Prompt-to-prompt image editing with cross attention control. arXiv preprint arXiv:2208.01626,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. NeurIPS, 33:
6840–6851, 2020.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition
video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. In CVPR, pp. 1125–1134, 2017.

Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure FP
Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, et al.
Biological sequence design with gflownets. In ICML, pp. 9786–9801. PMLR, 2022.

Christopher Jarzynski. Equilibrium free-energy differences from nonequilibrium measurements: A
master-equation approach. Physical Review E, 56(5):5018, 1997.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In ICML, pp. 2323–2332. PMLR, 2018.

Xiaolong Jin, Kai Wang, Dongwen Tang, Wangbo Zhao, Yukun Zhou, Junshu Tang, and Yang You.
Conditional lora parameter generation. arXiv preprint arXiv:2408.01415, 2024.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Boris Knyazev, Michal Drozdzal, Graham W Taylor, and Adriana Romero Soriano. Parameter
prediction for unseen deep architectures. NeurIPS, 34:29433–29448, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In ICML, pp. 3519–3529. PMLR, 2019.

Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex
Hernández-Garcıa, Léna Néhale Ezzine, Yoshua Bengio, and Nikolay Malkin. A theory of con-
tinuous generative flow networks. In ICML, pp. 18269–18300. PMLR, 2023.

Alexander C Li, Mihir Prabhudesai, Shivam Duggal, Ellis Brown, and Deepak Pathak. Your diffu-
sion model is secretly a zero-shot classifier. In ICCV, 2023.

Dianbo Liu, Moksh Jain, Bonaventure FP Dossou, Qianli Shen, Salem Lahlou, Anirudh Goyal,
Nikolay Malkin, Chris Chinenye Emezue, Dinghuai Zhang, Nadhir Hassen, et al. Gflowout:
Dropout with generative flow networks. In ICML, pp. 21715–21729. PMLR, 2023.

Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong Pan. Relation-shape convolutional neural
network for point cloud analysis. In CVPR, pp. 8895–8904, 2019.

C Lu, Y Zhou, F Bao, J Chen, and C Li. A fast ode solver for diffusion probabilistic model sampling
in around 10 steps. NeurIPS, pp. 1–31, 2022.

Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward Hu, Katie Everett, Dinghuai Zhang,
and Yoshua Bengio. Gflownets and variational inference. arXiv preprint arXiv:2210.00580, 2022.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In ICCV, pp. 4195–
4205, 2023.

William Peebles, Ilija Radosavovic, Tim Brooks, Alexei A Efros, and Jitendra Malik. Learning to
learn with generative models of neural network checkpoints. arXiv preprint arXiv:2209.12892,
2022.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
vq-vae-2. NeurIPS, 32, 2019.

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and Honglak Lee.
Generative adversarial text to image synthesis. In ICML, pp. 1060–1069. PMLR, 2016.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In ICML, pp.
1530–1538. PMLR, 2015.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, pp. 10684–10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In MICCAI, pp. 234–241. Springer, 2015.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. NeurIPS, 35:36479–36494,
2022.

Konstantin Schürholt, Boris Knyazev, Xavier Giró-i Nieto, and Damian Borth. Hyper-
representations as generative models: Sampling unseen neural network weights. NeurIPS, 35:
27906–27920, 2022.

Max W Shen, Emmanuel Bengio, Ehsan Hajiramezanali, Andreas Loukas, Kyunghyun Cho, and
Tommaso Biancalani. Towards understanding and improving gflownet training. In ICML, pp.
30956–30975. PMLR, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In ICML, pp. 2256–2265. PMLR, 2015.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep
conditional generative models. NeurIPS, 28, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
NeurIPS, 32, 2019.

Kai Wang, Zhaopan Xu, Yukun Zhou, Zelin Zang, Trevor Darrell, Zhuang Liu, and Yang You.
Neural network diffusion. arXiv preprint arXiv:2402.13144, 2024.

Xinchen Yan, Jimei Yang, Kihyuk Sohn, and Honglak Lee. Attribute2image: Conditional image
generation from visual attributes. In ECCV, pp. 776–791. Springer, 2016.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron C Courville, Yoshua Bengio, and Ling Pan.
Let the flows tell: Solving graph combinatorial problems with gflownets. NeurIPS, 36, 2024.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In ICCV, pp. 2223–2232, 2017.

Heiko Zimmermann, Fredrik Lindsten, Jan-Willem van de Meent, and Christian A Naesseth. A
variational perspective on generative flow networks. arXiv preprint arXiv:2210.07992, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

Experimental settings:

• Sec. A.1: Training details of GenFlowNet and the model details.

Additional results:

• Sec. A.2: The detailed visualization and results for GenFlowNet.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.1 EXPERIMENT SETUP

In this section, we show detailed experiment setups, including dataset information and training con-
figuration.

Training recipe: We provide our basic training recipe with specific details as follows. We intro-
duce these details of general training hyperparameters, autoencoder, and conditional latent diffusion
model, respectively. It may be necessary to make adjustments to the learning rate and the training
iterations for different tasks.

Training Setting Configuration
K, i.e., the number of original models 200

batch size 200
Autoencoder

optimizer AdamW
learning rate 1e-3

training iterations 30,000
optimizer momentum betas = (0.9, 0.999)

weight decay 2e-6
ξΘ,i.e., noise added on the input parameters 0.001

ξZ ,i.e., noise added on the latent representations 0.1
Diffusion
optimizer AdamW

learning rate 1e-3
training iterations 30,000

optimizer momentum betas = (0.9, 0.999)
weight decay 2e-6

ema β 0.9999
betas start 1e-4
betas end 2e-2

betas schedule linear
T , i.e., maximum time steps in the training stage 1000

Table 8: Our basic training recipe

All the experiments are conducted on an 8-V100 GPU.

Preparation for Training Dataset: In the training process of the AE component, we utilized 200
models for each structure of the GFlowNet, with these models serving as the samples. With a total
of 4 structures included in the training dataset, this resulted in 800 samples overall. The dataset used
for training and evaluation was the hypergrid task, which was specifically chosen to align with the
requirements of our approach.

Training of Autoencoder and Conditional Parameter Diffusion: We introduce details of the
training process of the autoencoder and the diffusion models. For the autoencoder, we use the
parameter data to train the autoencoder to encode the GFlowNet parameters into a 256-dimensional
latent space. For the conditional diffusion model, we use a network structure condition extractor to
extract the MLP structure features of the GFlowNet and merge the features into the diffusion model
as condition information.

A.2 ADDITIONAL EXPERIMENT RESULTS

Additional results of GenFlowNet on unknown GFlowNet structures. For our experimental
setup, the following structures are used in the additional test dataset: Structure E∗: [4, 2, 2, 2];
Structure F ∗: [16, 8, 2, 4]; Structure G∗: [81, 27, 3, 9]; and Structure H∗: [100, 25, 4, 10].

The visualization of Structure A GFlowNet different layer weights

• Dense layer 1

• Dense layer 3

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

JS divergence ↓ KL divergence ↓ Empirical L1 loss↓ Time usage (s)↓

GenFlowNet Baseline GenFlowNet Baseline GenFlowNet Baseline GenFlowNet Baseline
Structure E∗ 0.001↓ 0.000 0.001 0.002↑ 0.001 0.001 0.020↓ 0.000 0.020 13↓ 510 488
Structure F∗ 0.424↓ 0.003 0.427 2.391↓ 0.001 2.390 0.025↑ 0.003 0.022 19↓ 549 568
Structure G∗ 0.625↑ 0.001 0.624 8.244↓ 0.000 8.244 1.000e-04↓ 0.000 1.000e-04 43↓ 586 629
Structure H∗ 0.685↓ 0.000 0.685 5.544↓ 0.000 5.544 5.000e-05↓ 0.000 5.000e-05 54↓ 643 697

Table 9: Results of GenFlowNet on unknown GFlowNet structures. Our approach achieved
high accuracy, low divergence, and efficient time usage compared to traditional training. “Baseline”
means the GFlowNet with original training.

O
ut

pu
t d

im
en

si
on

Structure A dense1 weight

Input dimension

(a) Model 1

O
ut

pu
t d

im
en

si
on

Structure A dense1 weight

(b) Model 2

Structure A dense1 weight

Input dimension

O
ut

pu
t d

im
en

si
on

(c) Model 3

O
ut

pu
t d

im
en

si
on

Structure A dense1 weight

Input dimension

(d) Model 4

Figure 7: Diversity of our generation results. The visualization of Structure A GFlowNet offers a
variety of dense1 layer’s weights.

Ablation results of structure number N in training dataset.

• Structure B and Structure B∗

Table 10: Ablation results of structure number N in training dataset. For Structure B and
Structure B∗, where is written as B and B∗ in short, larger N can enhance performances.

Structure Num. JS divergence ↓ KL divergence ↓ Empirical L1 loss ↓ Time usage (s) ↓
B B∗ B B∗ B B∗ B B∗

N = 2 0.685 0.479 7.948 11.022 5.805e-05 0.009 39 18

N = 3 0.685 0.479 7.946 11.022 5.805e-05 0.009 43 18

N = 4 0.685 0.479 7.947 11.021 5.805e-05 0.009 41 19

N = 5 0.685 0.479 7.946 11.021 5.805e-05 0.009 45 19

• Structure C and Structure C∗

• Structure D and Structure D∗

Ablation results of model number M in training dataset.

• Structure B and Structure B∗

• Structure C and Structure C∗

• Structure D and Structure D∗

Visualization of hypergrid task

• Training for structure B

The uncertainty evaluation of GenFlowNet. We list the results for uncertainty evaluation in the
training dataset in Table 16. The results are presented in terms of best, average, and median perfor-
mance.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

O
ut

pu
t d

im
en

si
on Forward policy dense3 weight

Input dimension

Structure A dense3 weight

Input dimension

(a) Model 1

Input dimension

O
ut

pu
t d

im
en

si
on

Structure A dense3 weight

Input dimension

(b) Model 2

O
ut

pu
t d

im
en

si
on Structure A dense3 weight

Input dimension

(c) Model 3

O
ut

pu
t d

im
en

si
on

Input dimension

Structure A dense3 weight

(d) Model 4

Figure 8: Diversity of our generation results. The visualization of Structure A GFlowNet offers a
variety of dense3 layer’s weights.

Table 11: Ablation results of structure number N in training dataset. For Structure C and
Structure C∗, where is written as C and C∗ in short, larger N can enhance performances.

Structure Num. JS divergence ↓ KL divergence ↓ Empirical L1 loss ↓ Time usage (s) ↓
C C∗ C C∗ C C∗ C C∗

N = 2 0.644 0.452 10.422 14.351 0.001 0.083 26 32

N = 3 0.644 0.452 10.422 14.350 0.001 0.083 25 34

N = 4 0.644 0.453 10.421 14.351 0.001 0.083 28 34

N = 5 0.643 0.452 10.422 14.350 0.001 0.083 38 35

Visualization of hypergrid task by GenFlowNetVisualization of hypergrid task by original training GFlowNet

Figure 9: The visualization of hypergrid task for Structure B via original training GFlowNet(left)
and GenFlowNet(right). “samples” means the generated results while “environments” means the
ground truth. The color gets more closer to yellow, the more accurate the result is.

Table 12: Ablation results of structure number N in training dataset. For Structure D and
Structure D∗, where is written as D and D∗ in short, larger N can enhance performances.

Structure Num. JS divergence ↓ KL divergence ↓ Empirical L1 loss ↓ Time usage (s) ↓
D D∗ D D∗ D D∗ D D∗

N = 2 0.638 0.689 9.467 5.109 3.000e-04 3.297e-06 56 63

N = 3 0.637 0.689 9.467 5.109 3.000e-04 3.297e-06 60 63

N = 4 0.637 0.489 9.467 5.109 3.000e-04 3.297e-06 58 62

N = 5 0.637 0.489 9.466 5.109 3.000e-04 3.297e-06 61 63

Table 13: Ablation results of model number M in training dataset. For Structure B and Structure
B∗, where is written as B and B∗ in short, larger M can enhance performances.

Model Num. JS divergence ↓ KL divergence ↓ Empirical L1 loss ↓ Time usage (s) ↓
B B∗ B B∗ B B∗ B B∗

M = 50 0.686 0.479 7.946 11.022 5.805e-05 0.009 43 25

M = 100 0.685 0.479 7.946 11.022 5.805e-05 0.009 42 25

M = 200 0.685 0.479 7.945 11.022 5.805e-05 0.009 43 30

M = 300 0.685 0.479 7.945 11.022 5.805e-05 0.009 44 28

Table 14: Ablation results of model number M in training dataset. For Structure C and Structure
C∗, where is written as C and C∗ in short, larger M can enhance performances.

Model Num. JS divergence ↓ KL divergence ↓ Empirical L1 loss ↓ Time usage (s) ↓
C C∗ C C∗ C C∗ C C∗

M = 50 0.644 0.453 10.422 14.351 0.001 0.083 26 32

M = 100 0.644 0.453 10.422 14.351 0.001 0.083 25 32

M = 200 0.644 0.452 10.422 14.350 0.001 0.083 25 34

M = 300 0.644 0.453 10.422 14.351 0.001 0.083 25 33

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 15: Ablation results of model number M in training dataset. For Structure D and Structure
D∗, where is written as D and D∗ in short, larger M can enhance performances.

Model Num. JS divergence ↓ KL divergence ↓ Empirical L1 loss ↓ Time usage (s) ↓
D D∗ D D∗ D D∗ D D∗

M = 50 0.637 0.453 9.468 14.351 3.000e-04 3.297e-06 69 60

M = 100 0.637 0.689 9.468 5.109 3.000e-04 3.297e-06 59 58

M = 200 0.637 0.689 9.467 5.109 3.000e-04 3.297e-06 60 63

M = 300 0.636 0.453 9.467 14.351 3.000e-04 3.297e-06 57 63

Structure JS Divergence ↓ KL Divergence ↓ Empirical L1 Loss ↓
Structure A 0.674/0.675/0.677 7.275/7.276/7.275 3.097e-05/3.099e-05/3.099e-05
Structure B 0.685/0.685/0.686 7.942/7.945/7.943 5.803e-06/5.805e-05/5.804e-05
Structure C 0.641/0.644/0.643 10.421/10.422/10.422 0.001/0.001/0.001
Structure D 0.636/0.637/0.637 9.463/9.467/9.466 3.000e-04/3.000e-04/3.000e-04

Table 16: Uncertainty measure on Divergence Metrics and Empirical L1 Loss

18

	Intoduction
	How to generate the GFlowNets parameters as you wish
	Preliminaries
	Parameter autoencoder
	Conditional parameter generation

	Experiments
	Dataset and implementation details
	Experiment results for known GFlowNet structure
	Generalization to unknown GFlowNet structure
	Generalization to biological application
	Ablation study
	Analysis

	Related work
	Discussion and conclusion
	Appendix
	Experiment Setup
	Additional experiment results

