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ABSTRACT

Generative Flow Networks (GFlowNets) are probabilistic samplers that learn
stochastic policies to generate diverse sets of high-reward objects, which is essen-
tial in scientific discovery tasks. However, most existing GFlowNets necessitate
training, becoming costly as the diversity of GFlowNets expands and trajectory
lengths increase. To alleviate this problem, we propose a method to Generate
high-performing GFlowNet parameters based on a given model structure, called
GenFlowNet. Specifically, we first prepare an autoencoder to extract latent rep-
resentations of GeFlowNet parameters and reconstruct them. Then, a structure
encoder is trained alongside a conditional latent diffusion model to generate the
target GFlowNet parameters based on the given structure information. To the best
of our knowledge, it is the first exploration to generate parameters of a probabilis-
tic sampler using the diffusion process. It enables us to obtain a new GFlowNet
without training, effectively reducing the trial-and-error cost during GFlowNet
development. Extensive experiments on diverse structures and tasks validate the
superiority and generalizability of our method.

1 INTODUCTION

Generative Flow Networks (GFlowNets) rooted in foundational theoretical work (Bengio et al.,
2023; Lahlou et al., 2023) and closely linked to variational inference (Malkin et al., 2022; Zim-
mermann et al., 2022; Zhang et al., 2024), represent a class of methods for sampling discrete objects
from multimodal distributions. Owing to their flexibility, GFlowNets have been effectively applied
to a wide range of problems where diverse high-quality candidates are needed, such as molecules
(Bengio et al., 2021) and biological sequences (Jain et al., 2022).
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Figure 1: GenFlowNet demonstrates superior per-
formance over the traditional training paradigm
across multiple dimensions: accuracy, diversity,
training cost efficiency, generalizability, and over-
all quality.

They typically learn a generative policy to sam-
ple discrete objects x with a non-negative re-
ward R(x). Most existing methods are trained
using stochastic gradient descent (SGD) to op-
timize the learning objective on states or tra-
jectories sampled from a training policy (Shen
et al., 2023). Standard learning objectives en-
sure that the GFlowNet’s learned distribution
over x matches the target distribution p(x) ∝
R(x) when the training loss is globally min-
imized across all states or trajectories. How-
ever, GFlowNet can hardly ascertain the per-
formance in advance, including those across
different tasks, without training. In many prac-
tical scenarios, the object space and the asso-
ciated trajectories can be exponentially large,
which significantly increases the training bur-
den of GFlowNets.

A promising solution to overcome these bur-
dens is to bypass the training phase of
GFlowNets and directly obtain the high-
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performing parameters tailored to downstream tasks. This has been explored in previous param-
eter generation techniques (Peebles et al., 2022; Erkoç et al., 2023; Schürholt et al., 2022; Jin et al.,
2024), which can generate new parameters without training. However, these methods are specifically
tailored for traditional neural networks, not probabilistic samplers like GFlowNets. The distinction
between traditional neural networks and GFlowNets makes it challenging to adapt these methods
for generating GFlowNet parameters. Moreover, they lack the flexibility to adapt to new conditions,
failing to generalize to unknown structures and tasks during training, which hinders their practical
application. Therefore, it is critical to develop a parameter generation method for GFlowNets that
can generalize to diverse structures and tasks.

In this paper, we introduce a method to Generate GFlowNet parameters based on model structures,
termed as GenFlowNet. It comprises an autoencoder (AE) and a conditional diffusion model de-
signed to capture the distribution of GFlowNet parameters with specified structures. Initially, the
AE is trained to compress and reconstruct GFlowNets parameters across various structures. Subse-
quently, we represent GFlowNets via their structure information, which is then converted into em-
beddings by a structure encoder. These embeddings serve as conditioning inputs for a conditional
diffusion model, which generates latent parameter representations from a noise distribution. During
inference, given a specific structure, the diffusion model, in conjunction with the AE decoder, can
synthesize the desired GFlowNet parameters.

Extensive experiments on diverse structures and tasks demonstrate the following key characteristics
of our method (see Fig. 1):

• Generalizability: Our method can generate GFlowNet parameters for various unknown
structures and tasks during inference.

• High Performance: The parameters produced by our method achieve performance compa-
rable to or exceeding that of GFlowNets trained with traditional paradigms.

• Diversity and Efficiency: Our method generates diverse structures without further training,
significantly increasing the efficiency of training.

2 HOW TO GENERATE THE GFLOWNETS PARAMETERS AS YOU WISH

To enhance the controllability and flexibility of GFlowNet parameter generation, we introduce Gen-
FlowNet, a novel framework that leverages a conditional diffusion model for parameter synthesis.
The preliminaries of GFlowNets and conditional diffusion models are detailed in Sec. 2.1. Subse-
quently, we present two core components of our framework: a parameter autoencoder (Sec. 2.2) and
conditional parameter generation (Sec. 2.3). The autoencoder is designed to capture latent repre-
sentations of GFlowNet parameters, which are then decoded to reconstruct the original parameters.
Following this, a conditional latent diffusion model is trained to generate parameter latent represen-
tations conditioned on the structural characteristics of GFlowNets. An overview of our framework
is illustrated in Fig. 2.
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Figure 2: Overview of the proposed GenFlowNet. The autoencoder within our framework is
utilized to extract the latent representation of GFlowNet parameters. The conditional parameter
diffusion model is designed to synthesize high-performance parameters based on specific structure
conditions.
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2.1 PRELIMINARIES

Generative Flow Networks (GFlowNets) are designed to learn generative models over com-
plex distributions that are defined by unnormalized density functions within structured spaces.
GFlowNets model the generation of objects x within a sample space X as a sequential decision-
making process structured as an acyclic deterministic Markov Decision Process (MDP). This MDP
is defined by a set of states S ⊃ X and a set of actions A ⊆ S × S . The process initiates from a
designated initial state s0, which has no incoming actions and concludes in a set of terminal states
that coincide with the objects in X . Any object x ∈ X can be generated from s0 through a sequence
of actions s0 → s1 → · · · → sn = x, with each action (si, si+1) ∈ A. These sequences, known as
complete trajectories, are collectively denoted as T .

A (forward) policy PF is defined as a collection of distributions PF (s
′|s) over the subsequent states

for each non-terminal state s ∈ S \ X . This policy induces a distribution over the complete tra-
jectories T : PF (τ = (s0 → s1 → · · · → sn)) =

∏n−1
i=0 PF (si+1 | si). The policy enables the

sampling of objects in X by sampling a complete trajectory τ ∼ PF and returning its terminal state.
This induces a marginal distribution PT

F over X , where PT
F (x) represents the sum of PF (τ) over

all complete trajectories τ ending in x (an often intractable sum). Typically, the policy model can
be implemented using simple multi-layer perceptrons (MLPs) with a few layers, though other archi-
tectures could also be applicable. The objective of GFlowNet training is to estimate a parametric
policy PF (·|·; θ) such that the induced distribution PT

F is proportional to a non-negative given re-
ward function R : X → R≥0, i.e., P⊤

F (x) = 1
ZR(x) for ∀x ∈ X , where Z =

∑
x∈X R(x) is the

unknown normalization constant (partition function).

Conditional diffusion models extend the standard diffusion model by incorporating conditions into
both the forward and reverse processes. The conditional information, defined by c, allows the model
to generate data tailored to specific attributes or requirements.

The forward process in conditional models involves adding noise to an initial sample while con-
ditioning on c. The probability of transitioning from xt−1 to xt under condition c is modeled
as a Gaussian distribution q(xt|xt−1, c) = N (xt;

√
1− βtxt−1, βtI) where βt are the timestep-

dependent noise levels, and I represents the identity matrix. The complete forward process, condi-
tioned on c, is expressed as q(x1:T |x0, c) =

∏T
t=1 q(xt|xt−1, c). The conditional reverse process

is designed to reconstruct the original sample from its noisiest state xT conditioned on c. And it
is formulated by pθ(xt−1|xt, c) = N (xt−1;µθ(xt, t, c),Σθ(xt, t, c)). In this process, µθ and Σθ

are functions estimated by a neural network, which also processes the condition c, ensuring that the
recovery of data respects the conditional constraints.

The training procedure involves minimizing the Kullback-Leibler(KL) divergence between the for-
ward and reverse conditional distributions, specifically:

Ldm = Eq(x0,c)[DKL(q(xt−1|xt, x0, c)||pθ(xt−1|xt, c))]. (1)

During inference, the model generates new samples by conditioning on c and sequentially applying
the learned reverse transitions from a noise distribution. This approach enables the generation of
data that closely adheres to the specified conditions.

2.2 PARAMETER AUTOENCODER

The autoencoder (AE) in GenFlowNet comprises an encoder and a decoder, both of which are based
on 1D Convolutional Neural Networks (CNNs). The encoder’s role is to map GFlowNet parameters
into a latent space, which serves to reduce the computational and memory costs of the diffusion
model (Sec. 2.3). The decoder is responsible for reconstructing these latent representations back
into the original parameters.

Dataset preparation. To collect the training data for AE, we train GFlowNet models from scratch
with stochastic gradient descent (SGD) optimizer and save dense checkpoints during the final epoch,
generating a series of parameter training samples. We adopt P to indicate a single training sample.

Training Procedure. Given a parameter training sample P , we flatten it into a one-dimensional
vector Θ ∈ RD, where D is the dimension of the subset of parameters. The encoder is then trained
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to obtain its robust latent representation, which can be used to reconstruct these flattened parameters
via the decoder. The encoding and decoding processes are formalized as follows:

Z = Encoder(Θ + ξΘ) = E(Θ + ξΘ, σ)︸ ︷︷ ︸
encoding

; Θ̂ = decoder(Z + ξZ) = D(Z + ξZ , ρ)︸ ︷︷ ︸
Decoding

,

where E(·, σ) and D(·, ρ) denote the encoder and decoder parameterized by σ and ρ, respectively.
Z represents the latent representation of the parameter matrix, and Θ̂ is the reconstruction of the
original parameter Θ. To improve the generalization and robustness of the AE, Gaussian noise
ξ is introduced into both the input and latent vectors during the training process. Consistent with
typical AE training (Kingma & Welling, 2013), the model is trained by minimizing the mean squared
error (MSE) between the original parameters Θ and the reconstructed parameters Θ̂, which can be
formulated as:

LMSE = |Θ− Θ̂|2. (2)

This optimization procedure ensures that the AE learns to compress and reconstruct high-
dimensional GFlowNet parameters, facilitating the parameter generation in the subsequent diffusion
model.

2.3 CONDITIONAL PARAMETER GENERATION

Diffusion models can inherently model conditional distributions through inputs like text (Reed et al.,
2016), semantic maps (Isola et al., 2017; Liu et al., 2019), or images (Isola et al., 2017). Inspired by
these, we design a diffusion model, taking various GFlowNet structures as conditions, to facilitate
GFlowNet parameter generation.

Generating GFlowNet via generating MLP. GFlowNet algorithms learn a policy where the prob-
ability of sampling a terminating state s is proportional to R(s).

From GFlowNet to policy: As illustrated in Fig. 3 (a), the policy generates trajectories starting in
state s0 by sampling actions at ∈ A(s) according to π(at|st) = PF (st+1|st), where PF repre-
sents the “forward” transition probability within the constructive GFlowNet process. The learnable
forward policy governs the transition and specifies the GFlowNet, which also determines the struc-
tured internal constructions as illustrated in Fig. 3 (a) to (b). Consequently, the overall GFlowNet is
predominantly determined by the forward policy.

From policy to MLP: In terms of neural architecture, the most straightforward GFlowNet employs
a neural network that is scalable depending on the available computational resources. This network
outputs a stochastic policy π(at|st), where st represents a partially constructed object and at denotes
one of the possible actions from st. As illustrated in preliminaries and Fig. 3 from (b) to (c), a
GFlowNet forward policy can be effectively learned by a simple architecture, like a multi-layer
perceptron (MLP) (Bengio et al., 2021; Liu et al., 2023). At each step, the same MLP is employed
to generate a stochastic output at, which subsequently results in the next state st+1 = T (st, at),
with T being dependent on the specific application.

Hence, the GFlowNet can be determined by an MLP. This allows us to utilize the structure of the
MLP as a condition for our GFlowNet parameter generation process.

(a) GFlowNet (b) Forward policy (c) MLP 
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Figure 3: The direct modeling and conditional embedding explanation for our method. The
forward policy governs the transition of the GFlowNet and is defined as an MLP in our approach.
The four structural parameters determine GFlowNet.
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Conditional embedding. To effectively manage the diverse structural configurations of GFlowNets,
we introduce an encoder τstructure, (ρ; ·), where ρ represents the encoder’s parameters, designed to
encode a GFlowNet structure into a conditional embedding. Specifically, as illustrated in Fig. 3 (c) to
(d), the structure condition embedding, contains four critical structural parameters: state dimension
(s), horizon (h), number of dimensions (n), and size (d). These parameters collectively define
the architecture of the MLP within the GFlowNet. We concatenate these parameters to form the
condition vector c = [s, h, n, d] ∈ R4. Then, this vector is fed into the structure encoder and
yielding τstructure(ρ; c), which will be used to control the diffusion model to generate parameters
tailored to specific structure requirements in the following.

Parameter Generation: A straightforward strategy for generating novel parameters is by directly
synthesizing them via a diffusion model. However, the computational and memory demands for this
approach can become excessively high, particularly when dealing with high-dimensional parameter
spaces. To mitigate this, we design a conditional diffusion model to generate latent representations
of parameters tailored to the specific structural conditions c of GFlowNets.

Unlike image data, which has an inherent spatial structure, GFlowNet parameters lack such spatial
correlations. Therefore, instead of using 2D convolutions typically employed in image synthesis
tasks, we adopt 1D convolutions to construct the diffusion model ϵθ, based on U-Net arachitecu-
ture (Ronneberger et al., 2015). During the generation phase, the latent representation of parameters
is progressively refined from an initial Gaussian noise distribution through successive denoising
steps. Specifically, at each step t, the current denoised parameter latent zt and the conditioning in-
formation c are passed through the diffusion model to predict the residual noise. To handle different
GFlowNets and tasks, the conditional embedding τstructure(ρ; c) is integrated into the intermediate
features of the diffusion model ϵθ via element-wise addition. The diffusion model is trained using
the following objective function:

LLDM := Eϵ∼N (0,1),t[|ϵ− ϵθ(zt, t, τstructure(ρ; c))|2], (3)

where t is uniformly sampled from the interval [1, T ], ϵθ represents the denoising network parame-
terized by θ. This formulation ensures that the model effectively learns to generate parameter latent
that adhere to specific structural constraints.

Inference procedure. During generation, we can feed random Gaussian noise, along with the spe-
cific condition c corresponding to a given structure into the diffusion model. It reverses the diffusion
process and progressively refines the initial noise based on the provided condition, ultimately syn-
thesizing a new set of parameter latent representations. Then, the pre-trained AE decoder projects it
from the latent space into new parameters, which are tailored for the GFlowNet as you wish.

3 EXPERIMENTS

In this section, we first introduce the experimental setup. Then, we present the evaluation results,
ablation study, and analysis of GenFlowNet. In our experiments, GenFlowNet effectively generates
high-performance parameters for both “known” and “unknown” GFlowNets, even “unknown” tasks.
This capability enables flexible and controllable synthesis of GFlowNet parameters, allowing us to
obtain new high-performance GFlowNets without additional training.

3.1 DATASET AND IMPLEMENTATION DETAILS

Datasets. We evaluate our approach on a diverse range of datasets, including both training and
testing sets. The training dataset comprises four distinct GFlowNet structures, each corresponding
to a unique set of structural tuples. Specifically, the four training structures are denoted as Structures
A,B,C, and D. For example, Structure A is defined as [64, 16, 4, 8], where state dimension = 64,
horizon = 16, number of dimensions = 4, and size = 8. The remaining structures are defined as
follows: Structure B: [36, 6, 6, 6]; Structure C: [25, 5, 5, 5]; and Structure D: [36, 9, 4, 6].

In parallel with the training dataset, the test dataset is designed with four distinct structures to eval-
uate generalization performance. The test dataset structures can be varied to any structural configu-
rations as required. For our experimental setup, the following structures are used in the test dataset:
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Structure A∗: [9, 3, 3, 3]; Structure B∗: [16, 4, 4, 4]; Structure C∗: [36, 12, 3, 6]; and Structure
D∗: [49, 7, 7, 7]. We present results of more unknown structures in Appendix 9.

Implementation Details. Both the autoencoder and the latent diffusion model consist of 4-layer
1D convolutional neural networks (CNNs) for the encoder and decoder. We collected a total of 200
training samples for all architectures mentioned above. We utilize MLP-3, a multi-layer perceptron
with three linear layers and LeakyReLU activation functions, as the MLP within GFlowNet. Each
of these architectures is trained from scratch independently. More details are in Appendix A.1.

3.2 EXPERIMENT RESULTS FOR KNOWN GFLOWNET STRUCTURE

“Known” structures refer to those that the model has encountered during training. Our method is
evaluated on the benchmark hyper-grid exploration task as introduced by Bengio et al. (2021). For
the sake of clarity, the main experimental results are presented using Structure A, with more results
provided in the appendix A.2. In this task, an agent navigates a grid-like environment, starting from
a corner and exploring the landscape defined by the reward function R(x) = R0 +R1

∏
i I(0.25 <

|xi/H − 0.5|) +R2

∏
i I(0.3 < |xi/H − 0.5| < 0.4).

High accuracy and low divergence. We evaluate the quality of the generated parameters by mea-
suring the Jensen-Shannon (JS) divergence, KL divergence, and empirical L1 loss between the
ground truth probability distribution p(x) and the learned probability distribution pθ(x). The results,
as shown in Tab. 1 indicate that GenFlowNet consistently matches or exceeds the baseline. In this
context, the “close set” refers to GFlowNets that are present in the training set. This demonstrates
the model’s ability to effectively learn the distribution of high-performing parameters, including
new neural field representations such as MLP parameters, achieving strong performance on various
GFlowNet structures.

JS divergence ↓ KL divergence ↓ Empirical L1 loss↓ Time usage (s)↓

GenFlowNet Baseline GenFlowNet Baseline GenFlowNet Baseline GenFlowNet Baseline
Structure A 0.675↑ 0.005 0.670 7.276↑ 0.017 7.259 3.099e-05↑ 0.009e-05 3.090e-05 63↓ 463 526
Structure B 0.685↓ 0.000 0.685 7.945↓ 0.000 7.945 5.805e-05↓ 0.000 5.805e-05 43↓ 525 568
Structure C 0.644↓ 0.000 0.644 10.422↓ 0.000 10.422 0.001↓ 0.000 0.001 25↓ 480 505
Structure D 0.637↑ 0.003 0.634 9.467↓ 0.000 9.467 3.000e-04↓ 0.000 3.000e-04 60↓ 402 462

Table 1: Results of GenFlowNet on known GFlowNet structure . Our approach achieved high
accuracy, low divergence, and efficient time usage compared to traditional training. “Baseline”
means the GFlowNet with original training.
High quality. Additionally, we report the average reward during training in Fig. 4a and Fig. 4b. As
depicted in these figures, GFlowNets utilizing parameters generated by GenFlowNet consistently
outperform the original GFlowNets, particularly during the initialization phase, indicating that more
accurate flow probabilities lead to higher rewards. Beyond the superior performance in sampling dis-
tribution accuracy, as evidenced by the quantitative metrics, GenFlowNet also demonstrates strong
performance in diversity evaluation, with significant improvements in mean reward. These results
confirm that GenFlowNet is capable of generating high-performance model parameters tailored to
specific conditions, achieving generalization across diverse known GFlowNet structure scenarios.
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Figure 4: Average reward of GFlowNet across structures. Relationship between average reward
and state visit counts for (a) Structure A and (b) Structure B in the known dataset, and (c) Structure
C∗ and (d) Structure D∗ in the unknown dataset.
Diversity in a generation. From an alternative perspective, the models generated by GenFlowNet
exhibit both diverse similarities and superior performance compared to the original models. This is
illustrated in Fig. 5, which displays the parameter matrices of the generated models. Specifically,
although the four models presented are representative samples derived from a set of 100 models
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with identical structures (i.e., Structure A), the weight matrices within the same layer demonstrate
significant variations. This inherent diversity in the generated parameters enhances downstream
applications by providing a range of robust and high-performing model configurations.
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Figure 5: Diversity of our generation results. The visualization of Structure A GFlowNet offers a
variety of dense2 layer’s weights.

3.3 GENERALIZATION TO UNKNOWN GFLOWNET STRUCTURE

In addition to the known GFlowNet structure, we evaluate our model in the unknown scenario as
well, where the “unknown” pertains to GFlowNet structures that have not been encountered during
training. From Tab. 2, Fig. 4c, and Fig. 4d, we observe that even with unknown structures, the gen-
erated model performs well and is comparable to the model obtained through training. The verifies
the generalization capability of our method in unknown structures. For scenarios that require
a trade-off between performance and computational cost, GenFlowNet can serve as an effective
initialization or pre-training method.

JS divergence ↓ KL divergence ↓ Empirical L1 loss↓ Time usage (s)↓

GenFlowNet Baseline GenFlowNet Baseline GenFlowNet Baseline GenFlowNet Baseline
Structure A∗ 0.452↓ 0.000 0.452 14.350↑ 0.001 14.349 0.083↓ 0.000 0.083 13↓ 510 523
Structure B∗ 0.479↓ 0.002 0.481 11.022↓ 0.003 11.025 0.009↓ 0.000 0.009 18↓ 576 594
Structure C∗ 0.495↑ 0.013 0.482 9.098↑ 0.282 8.816 0.001↓ 0.000 0.001 34↓ 437 471
Structure D∗ 0.689↓ 0.000 0.689 5.109↓ 0.000 5.109 3.297e-06↓ 0.000 3.297e-06 63↓ 533 596

Table 2: Results of GenFlowNet on unknown GFlowNet structures. Our approach achieved
high accuracy, low divergence, and efficient time usage compared to traditional training. “Baseline”
means the GFlowNet with original training.

3.4 GENERALIZATION TO BIOLOGICAL APPLICATION

In addition to the single task and the generalization across the known and unknown structures, we
generalize and evaluate our method on a new task, which is a realistic molecule synthesis setting.
The goal is to synthesize diverse molecules with desired chemical properties. We formulate molec-
ular generation as a sequential decision process and implement it using a GFlowNet. Each state
denotes a molecule graph structure, and the action space is a vocabulary of building blocks specified
by junction tree modeling (Jin et al., 2018). We follow the experimental setups including the reward
specification and episode constraints in (Bengio et al., 2021). The modules with the same MLP
structure in the original model were replaced with the one by GenFlowNet and the performance was
evaluated in Tab. 3, which shows that GenFlowNet is training free and with efficient loss con-
vergence in a new task. Between the GenFlowNet and original-trained GFlowNet, in the limited
iterations, the pre-trained model had more modes found and achieved a higher top-100 reward.

This means that before training for downstream tasks such as molecule generation on large network
architectures, it is possible to quickly predict which GFlowNet structures are likely to perform better,
allowing for more targeted and efficient training.

3.5 ABLATION STUDY

Extensive ablation studies are conducted in this section to highlight the characteristics of our pro-
posed method. We focus on evaluating the performance of the generated GFlowNet parameters on
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Training loss ↓ Test loss ↓ Top 100 reward↑ Modes found (R >7.5)↑

GenFlowNet Baseline GenFlowNet Baseline GenFlowNet Baseline GenFlowNet Baseline
I = 25,000 1.461↓ 0.036 1.534 1.574↓ 0.017 1.610 1.268↑ 0.001 1.267 0↑ 0 0
I = 100,000 0.883↓ 0.180 1.063 1.492↑ 0.038 1.454 2.674↑ 0.684 1.990 2↑ 1 1
I = 150,000 0.762↓ 0.177 0.939 1.547↓ 0.011 1.558 2.833↑ 0.030 2.803 2↑ 0 2
I = 200,000 0.721↓ 0.084 0.805 1.537↓ 0.076 1.613 3.567↑ 0.315 3.252 3↑ 0 3

Table 3: Results on GenFlowNet parameters in molecule design task. GenFlowNet demon-
strates efficient and rapid convergence in molecule generation, highlighting its strong generalization
capabilities and performance comparable to traditional training GFlowNet. “Baseline” means the
GFlowNet with original training. “I” means the iteration number of training.
Table 4: Ablation results of structure number N in training dataset. For Sturcture A and
Sturcutre A∗, where is written as A and A∗ in short, larger N can enhance performances.

Structure Num. JS divergence ↓ KL divergence ↓ Empirical L1 loss ↓ Time usage (s) ↓
A A∗ A A∗ A A∗ A A∗

N = 2 0.675 0.452 7.277 14.351 3.099e-05 0.083 39 12

N = 3 0.675 0.452 7.276 14.350 3.099e-05 0.083 63 13

N = 4 0.675 0.453 7.276 14.351 3.099e-05 0.083 65 12

N = 5 0.675 0.452 7.275 14.350 3.099e-05 0.083 63 11

Table 5: Ablation results of model number M in training dataset. For Sturcture A and Sturcutre
A∗, where is written as A and A∗ in short, larger M can enhance performances.

Model Num. JS divergence ↓ KL divergence ↓ Empirical L1 loss ↓ Time usage (s) ↓
A A∗ A A∗ A A∗ A A∗

M = 50 0.675 0.453 7.277 14.351 3.099e-05 0.083 69 11

M = 100 0.675 0.453 7.277 14.351 3.099e-05 0.083 59 12

M = 200 0.675 0.452 7.276 14.350 3.099e-05 0.083 60 13

M = 300 0.675 0.453 7.275 14.351 3.098e-05 0.083 64 12

the hyper-grid exploration task. The training setup mirrors the conditions used in the experiments
outlined in Tab. 1 and Tab. 2.

Effect of structure number: As detailed in Sec. 3.1, we utilize four distinct structures in the training
and test datasets. In Tab. 4, we examine the relationship between the number of structures, N , and
performance, using a fixed set of 200 models for training. The results indicate that varying the
number of structures has minimal impact on the performance of the parameter generator.

Number of training models: Tab. 5 varies the size of training data, i.e. the number of original
models, with a fixed number of training structures as 3. We find the performance gap of best results
in different numbers of the original models is minor.

Generalization of model size: As illustrated in both Tab. 4 and Tab. 5, it is usual that the train-
ing datasets consist of only GFlowNets with small network structures and test to generate the new
GFlowNet with larger structures. This demonstrates the generalization of the model size for the
generator. GFlowNets with smaller network structures as the training dataset, while generating
GFlowNets for larger structures, can demonstrate that the resulting performance is also comparable.

3.6 ANALYSIS

MLP parameter-space diffusion: We explain the reason why we can use the diffusion model to
generate MLP parameters well, even in unknown scenarios. Since we consider each set of MLP
parameters (weights and biases) S as a flattened 1D vector for diffusion, it enables a general formu-
lation for modeling neural fields, as the MLP parameters are agnostic to varying-dimensional data.
This makes GenFlowNet flexible to a variety of neural field representations; in particular, it general-
izes to different GFlowNet structures from the training dataset. We also observe as in Tab. 6 that the
variance across structures and models varies a little, which means that the neural field is compact
enough to be demonstrated by generative modeling of MLP representation with our diffusion model
and each layer parameters matter similarly for the final output representation. This is also observed
in (Erkoç et al., 2023). The appearance of the generated parameters is similar to the baseline, which
verifies the robustness of our method.
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Table 6: Test parameter variance across layers & models. It evaluates that each layer in different
GFlowNets matters. The variance of parameters across multiple GFlowNet structures equals the
expected variance of the individual models for unknown GFlowNet structures generated from the
GenFlowNet. “Baseline” means the GFlowNet with original training.

Parameter Structure A∗ (50 models) Structure B∗ (50 models) Structure B∗ (100 models) Structure C∗ (100 models)
GenFlowNet Baseline GenFlowNet Baseline GenFlowNet Baseline GenFlowNet Baseline

dense1.weight 0.005 0.005 0.009 0.010 0.009 0.009 0.014 0.013

dense1.bias 0.007 0.004 0.013 0.008 0.011 0.008 0.010 0.016

dense2.weight 0.001 0.010 0.011 0.010 0.010 0.010 0.010 0.010

dense2.bias 0.012 0.009 0.012 0.011 0.012 0.009 0.010 0.014

dense3.weight 0.012 0.012 0.011 0.011 0.010 0.010 0.009 0.010

dense3.bias 0.002 0.002 0.012 0.014 0.014 0.007 0.001 0.013

Difference with vision model parameter generation: We investigate several factors contributing
to the limited generalizability observed in vision model parameter generation, as noted in prior work
(Wang et al., 2024; Jin et al., 2024). However, our analysis demonstrates that GFlowNet, when
applied across different network architectures, achieves substantial improvements in generalization
performance. Firstly, in our parameter generation, the diffusion process leverages a more direct
form of conditioning: the latent diffusion model is conditioned on a set of parameters that explicitly
define the MLP’s architecture.

Table 7: Parameter amount of different net-
works. It shows the efficient parameter amounts
of GFlowNet. Model A and model B refer
to GFlowNet for molecule design and hypergrid
task, ResNet 18 and ResNet 34, Transformer with
4 and 8 heads respectively.

Model
Total number↓

Model A Model B

MLP 193, 709 2, 339

ResNet 11, 689, 512 21, 797, 672

Transformer 3, 952, 133 12, 625, 420

Secondly, in addition to the explicit explana-
tion of the condition itself, the MLP has an ad-
vantage in terms of parameter efficiency as in
Tab. 7. The generalization of model size for the
GenFlowNet is further demonstrated by embed-
ding a GFlowNet, trained on the dataset with
a smaller network structure, into a larger net-
work structure during generalization evaluation
in Sec. 3.4. The model parameter count reflects
this scalability, highlighting the framework’s
ability to adapt effectively across GFlowNets
with different network structure sizes.

Thirdly, another contributing factor is the struc-
tural similarity of the network architecture. To
understand neural networks, researchers often
use similarity metrics to measure how similar or different two neural networks are to each other. One
of the metrics called centered kernel alignment (CKA)(Kornblith et al., 2019) can reveal pathology
in neural network representations and is equally effective at revealing relationships between lay-
ers of different architectures. Fig. 6 shows the relationship between different layers of GFlowNets,
transformers, and ResNets with two structures. The GFlowNet representations seem to be “similar”
on average and have lower variance, which can be compact for our model to learn the neural field
information from its parameters.
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Figure 6: Comparison of CKA performance: (a) Vision Tasks (ResNet and Transformer), (b)
GFlowNet. The visualization of the CKA demonstrates the low layer variance of GFlowNet, which
is evidence of the generalization. Additionally, ResNet 18 and ResNet 34 take the average pooling.
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4 RELATED WORK

Diffusion Models: Diffusion models have achieved outstanding results in visual generation tasks.
These methods (Ho et al., 2020; Dhariwal & Nichol, 2021; Ho et al., 2022; Peebles & Xie, 2023;
Hertz et al., 2022; Li et al., 2023) are grounded in non-equilibrium thermodynamics (Jarzynski,
1997; Sohl-Dickstein et al., 2015), following a generative process similar to GANs (Zhu et al.,
2017; Isola et al., 2017; Brock et al., 2018), VAEs (Kingma & Welling, 2013; Razavi et al., 2019),
and flow-based models (Dinh et al., 2014; Rezende & Mohamed, 2015). Broadly, diffusion models
can be classified into three main branches. The first focuses on improving synthesis quality, as
demonstrated by models such as DALL·E 2 (Ramesh et al., 2022), Imagen (Saharia et al., 2022),
and Stable Diffusion (Rombach et al., 2022). The second branch aims to accelerate sampling speeds,
featuring models like DDIM (Song et al., 2020), Analytic-DPM (Bao et al., 2022), and DPM-Solver
(Lu et al., 2022). The final branch reinterprets diffusion models from a continuous perspective,
exemplified by score-based models (Song & Ermon, 2019; Feng et al., 2023).

Conditional Generation: Conditional generation has garnered significant attention in both com-
puter vision and natural language processing. Three key frameworks dominate this area: conditional
GANs (Mirza & Osindero, 2014; Isola et al., 2017; Zhu et al., 2017), conditional VAEs (Sohn et al.,
2015; Yan et al., 2016), and conditional diffusion models (Rombach et al., 2022), all of which in-
tegrate conditions to guide the generative process. This approach facilitates the creation of visually
coherent and semantically meaningful data samples. Conditional GANs incorporate attribute or la-
bel information to condition the generation process, while conditional diffusion models advance this
further by generating high-quality images from textual descriptions. These diffusion-based models
have outperformed GANs in terms of both visual coherence and semantic accuracy. Building on the
success of conditional diffusion models, we extend this concept to the generation of neural network
parameters, conditioned on specific attributes, for efficient model tuning.

Parameter Generation: Parameter generation has seen rapid advancements, with approaches like
HyperNetworks (Ha et al., 2016) and generative models of neural network checkpoints (Peebles
et al., 2022) emerging as notable contributions. Ha et al. (2016) introduced HyperNetworks, which
generates neural network parameters by learning from an auxiliary network. Finn et al. (2017) pro-
posed Model-Agnostic Meta-Learning (MAML), a technique that learns an initialization that allows
efficient fine-tuning across tasks. More recently, Peebles et al. (2022) developed G.pt, a model de-
signed to predict parameter updates given an initial parameter vector and a prompted loss function.
Schürholt et al. (2022) trained an autoencoder on a model zoo to learn hyper-representations for
generating new model weights, while Knyazev et al. (2021) applied a GNN-based model to sam-
ple network parameters. In a similar vein, Erkoç et al. (2023) generated neural implicit fields by
leveraging synthesized MLP weights. Wang et al. (2024) extended diffusion models to generate
high-performing neural network parameters across various architectures and datasets. Unlike these
prior works, our approach focuses on conditional and controllable parameter generation, aiming to
produce high-performance parameters tailored to specific GFlowNet. Our method not only achieves
high-performance parameter generation but also demonstrates strong generalizability across differ-
ent tasks and architectures.

5 DISCUSSION AND CONCLUSION

In this work, we propose GenFlowNet, a framework for generating GFlowNet parameters based on a
given structure. Our approach combines an autoencoder with a conditional latent diffusion model to
capture the distribution of GFlowNet parameters, allowing us to obtain high-performing parameters
without further training. Our experiments demonstrate that GenFlowNet effectively generates novel,
high-quality, and diverse parameters and exhibits remarkable generalizability across diverse tasks
and structures.

Limitations and future works. However, there are still unresolved challenges, including better
GFlowNet structure design in various tasks, and ensuring the performance stability of the generated
parameters across more applications. Furthermore, integrating scientific knowledge into conditions
offers promising directions for GenFlowNet.
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A APPENDIX

Experimental settings:

• Sec. A.1: Training details of GenFlowNet and the model details.

Additional results:

• Sec. A.2: The detailed visualization and results for GenFlowNet.
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A.1 EXPERIMENT SETUP

In this section, we show detailed experiment setups, including dataset information and training con-
figuration.

Training recipe: We provide our basic training recipe with specific details as follows. We intro-
duce these details of general training hyperparameters, autoencoder, and conditional latent diffusion
model, respectively. It may be necessary to make adjustments to the learning rate and the training
iterations for different tasks.

Training Setting Configuration
K, i.e., the number of original models 200

batch size 200
Autoencoder

optimizer AdamW
learning rate 1e-3

training iterations 30,000
optimizer momentum betas = (0.9, 0.999)

weight decay 2e-6
ξΘ,i.e., noise added on the input parameters 0.001

ξZ ,i.e., noise added on the latent representations 0.1
Diffusion
optimizer AdamW

learning rate 1e-3
training iterations 30,000

optimizer momentum betas = (0.9, 0.999)
weight decay 2e-6

ema β 0.9999
betas start 1e-4
betas end 2e-2

betas schedule linear
T , i.e., maximum time steps in the training stage 1000

Table 8: Our basic training recipe

All the experiments are conducted on an 8-V100 GPU.

Preparation for Training Dataset: In the training process of the AE component, we utilized 200
models for each structure of the GFlowNet, with these models serving as the samples. With a total
of 4 structures included in the training dataset, this resulted in 800 samples overall. The dataset used
for training and evaluation was the hypergrid task, which was specifically chosen to align with the
requirements of our approach.

Training of Autoencoder and Conditional Parameter Diffusion: We introduce details of the
training process of the autoencoder and the diffusion models. For the autoencoder, we use the
parameter data to train the autoencoder to encode the GFlowNet parameters into a 256-dimensional
latent space. For the conditional diffusion model, we use a network structure condition extractor to
extract the MLP structure features of the GFlowNet and merge the features into the diffusion model
as condition information.

A.2 ADDITIONAL EXPERIMENT RESULTS

Additional results of GenFlowNet on unknown GFlowNet structures. For our experimental
setup, the following structures are used in the additional test dataset: Structure E∗: [4, 2, 2, 2];
Structure F ∗: [16, 8, 2, 4]; Structure G∗: [81, 27, 3, 9]; and Structure H∗: [100, 25, 4, 10].

The visualization of Structure A GFlowNet different layer weights

• Dense layer 1

• Dense layer 3
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JS divergence ↓ KL divergence ↓ Empirical L1 loss↓ Time usage (s)↓

GenFlowNet Baseline GenFlowNet Baseline GenFlowNet Baseline GenFlowNet Baseline
Structure E∗ 0.001↓ 0.000 0.001 0.002↑ 0.001 0.001 0.020↓ 0.000 0.020 13↓ 510 488
Structure F∗ 0.424↓ 0.003 0.427 2.391↓ 0.001 2.390 0.025↑ 0.003 0.022 19↓ 549 568
Structure G∗ 0.625↑ 0.001 0.624 8.244↓ 0.000 8.244 1.000e-04↓ 0.000 1.000e-04 43↓ 586 629
Structure H∗ 0.685↓ 0.000 0.685 5.544↓ 0.000 5.544 5.000e-05↓ 0.000 5.000e-05 54↓ 643 697

Table 9: Results of GenFlowNet on unknown GFlowNet structures. Our approach achieved
high accuracy, low divergence, and efficient time usage compared to traditional training. “Baseline”
means the GFlowNet with original training.
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Figure 7: Diversity of our generation results. The visualization of Structure A GFlowNet offers a
variety of dense1 layer’s weights.

Ablation results of structure number N in training dataset.

• Structure B and Structure B∗

Table 10: Ablation results of structure number N in training dataset. For Structure B and
Structure B∗, where is written as B and B∗ in short, larger N can enhance performances.

Structure Num. JS divergence ↓ KL divergence ↓ Empirical L1 loss ↓ Time usage (s) ↓
B B∗ B B∗ B B∗ B B∗

N = 2 0.685 0.479 7.948 11.022 5.805e-05 0.009 39 18

N = 3 0.685 0.479 7.946 11.022 5.805e-05 0.009 43 18

N = 4 0.685 0.479 7.947 11.021 5.805e-05 0.009 41 19

N = 5 0.685 0.479 7.946 11.021 5.805e-05 0.009 45 19

• Structure C and Structure C∗

• Structure D and Structure D∗

Ablation results of model number M in training dataset.

• Structure B and Structure B∗

• Structure C and Structure C∗

• Structure D and Structure D∗

Visualization of hypergrid task

• Training for structure B

The uncertainty evaluation of GenFlowNet. We list the results for uncertainty evaluation in the
training dataset in Table 16. The results are presented in terms of best, average, and median perfor-
mance.
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Figure 8: Diversity of our generation results. The visualization of Structure A GFlowNet offers a
variety of dense3 layer’s weights.

Table 11: Ablation results of structure number N in training dataset. For Structure C and
Structure C∗, where is written as C and C∗ in short, larger N can enhance performances.

Structure Num. JS divergence ↓ KL divergence ↓ Empirical L1 loss ↓ Time usage (s) ↓
C C∗ C C∗ C C∗ C C∗

N = 2 0.644 0.452 10.422 14.351 0.001 0.083 26 32

N = 3 0.644 0.452 10.422 14.350 0.001 0.083 25 34

N = 4 0.644 0.453 10.421 14.351 0.001 0.083 28 34

N = 5 0.643 0.452 10.422 14.350 0.001 0.083 38 35

Visualization of hypergrid task by GenFlowNetVisualization of hypergrid task by original training GFlowNet

Figure 9: The visualization of hypergrid task for Structure B via original training GFlowNet(left)
and GenFlowNet(right). “samples” means the generated results while “environments” means the
ground truth. The color gets more closer to yellow, the more accurate the result is.

Table 12: Ablation results of structure number N in training dataset. For Structure D and
Structure D∗, where is written as D and D∗ in short, larger N can enhance performances.

Structure Num. JS divergence ↓ KL divergence ↓ Empirical L1 loss ↓ Time usage (s) ↓
D D∗ D D∗ D D∗ D D∗

N = 2 0.638 0.689 9.467 5.109 3.000e-04 3.297e-06 56 63

N = 3 0.637 0.689 9.467 5.109 3.000e-04 3.297e-06 60 63

N = 4 0.637 0.489 9.467 5.109 3.000e-04 3.297e-06 58 62

N = 5 0.637 0.489 9.466 5.109 3.000e-04 3.297e-06 61 63

Table 13: Ablation results of model number M in training dataset. For Structure B and Structure
B∗, where is written as B and B∗ in short, larger M can enhance performances.

Model Num. JS divergence ↓ KL divergence ↓ Empirical L1 loss ↓ Time usage (s) ↓
B B∗ B B∗ B B∗ B B∗

M = 50 0.686 0.479 7.946 11.022 5.805e-05 0.009 43 25

M = 100 0.685 0.479 7.946 11.022 5.805e-05 0.009 42 25

M = 200 0.685 0.479 7.945 11.022 5.805e-05 0.009 43 30

M = 300 0.685 0.479 7.945 11.022 5.805e-05 0.009 44 28

Table 14: Ablation results of model number M in training dataset. For Structure C and Structure
C∗, where is written as C and C∗ in short, larger M can enhance performances.

Model Num. JS divergence ↓ KL divergence ↓ Empirical L1 loss ↓ Time usage (s) ↓
C C∗ C C∗ C C∗ C C∗

M = 50 0.644 0.453 10.422 14.351 0.001 0.083 26 32

M = 100 0.644 0.453 10.422 14.351 0.001 0.083 25 32

M = 200 0.644 0.452 10.422 14.350 0.001 0.083 25 34

M = 300 0.644 0.453 10.422 14.351 0.001 0.083 25 33
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Table 15: Ablation results of model number M in training dataset. For Structure D and Structure
D∗, where is written as D and D∗ in short, larger M can enhance performances.

Model Num. JS divergence ↓ KL divergence ↓ Empirical L1 loss ↓ Time usage (s) ↓
D D∗ D D∗ D D∗ D D∗

M = 50 0.637 0.453 9.468 14.351 3.000e-04 3.297e-06 69 60

M = 100 0.637 0.689 9.468 5.109 3.000e-04 3.297e-06 59 58

M = 200 0.637 0.689 9.467 5.109 3.000e-04 3.297e-06 60 63

M = 300 0.636 0.453 9.467 14.351 3.000e-04 3.297e-06 57 63

Structure JS Divergence ↓ KL Divergence ↓ Empirical L1 Loss ↓
Structure A 0.674/0.675/0.677 7.275/7.276/7.275 3.097e-05/3.099e-05/3.099e-05
Structure B 0.685/0.685/0.686 7.942/7.945/7.943 5.803e-06/5.805e-05/5.804e-05
Structure C 0.641/0.644/0.643 10.421/10.422/10.422 0.001/0.001/0.001
Structure D 0.636/0.637/0.637 9.463/9.467/9.466 3.000e-04/3.000e-04/3.000e-04

Table 16: Uncertainty measure on Divergence Metrics and Empirical L1 Loss
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