A Social Impact

Deep Neural Networks (DNNis) are extensively applied in today’s society especially for some safety-
critical scenarios like autonomous driving and face verification. However, the data-hungry nature of
these algorithms requires operators to collect massive amounts of data from diverse sources, making
source tracing difficult and increasing the risk of potential malicious issues. For example, attackers
can blend poisoned data into benign samples and embed backdoors into models without training
control, posing a significant threat to model deployment. Therefore, to mitigate these risks, defenders
must remove potential backdoors from models before real-world deployment, ensuring safety and
trustworthiness. Our work focuses on a lightweight plug-and-play defense strategy applicable in real
scenarios with minimal modifications to existing pipelines. We hope to appeal to the community to
prioritize practical defensive strategies that enhance machine learning security.

B Experimental Settings

B.1 Datasets and Models.

Following previous works [17, 36, 37, 38] in backdoor literature, we conduct our experiments on
four widely used datasets including CIFAR-10, GTSRB, Tiny-ImageNet, and CIFAR-100.

* CIFAR-10 and GTSRB are two widely used datasets in backdoor literature containing
images of 32 x 32 resolution of 10 and 43 categories respectively. Following [37, 41], we
separate 2% clean samples from the whole training dataset for backdoor defense and leave
the rest training images to implement backdoor models. For these two datasets, we utilize
the ResNet-18 to construct the backdoor models.

* CIFAR-100 and Tiny-ImageNet are two datasets with larger scales compared to the CIFAR-
10 and GTSRB which contain images with 64 * 64 resolution of 100 and 200 categories
respectively. For these two datasets, we enlarge the split ratio and utilize 5% of the training
dataset as backdoor defense since a smaller defense set is likely to hurt the model perfor-
mance. For these two datasets, we utilize the pre-trained SwinTransformer (pre-trained
weights on ImageNet are provided by PyTorch) to implement backdoor attacks since we
find that training these datasets on ResNet-18 from scratch would yield a worse model
performance with C-Acc (< 70%) on average and therefore is not practical in real scenarios.

B.2 Attack Configurations

We conducted all the experiments with 4 NVIDIA 3090 GPUs.

We implement 6 representative poisoning-based attacks and an adaptive attack called Adaptive-
Blend [26]. For 6 representative attacks, most of them are built with the default configurations” in
BackdoorBench [36]. For the BadNet, we utilize the checkerboard patch as backdoor triggers and
stamp the pattern at the lower right corner of the image; for the Blended, we adopt the Hello-Kitty
pattern as triggers and set the blend ratio as 0.2 for both training and inference phase; for WaNet, we
set the size of the backward warping field as 4 and the strength of the wrapping field as 0.5; for SIG,
we set the amplitude and frequency of the sinusoidal signal as 40 and 6 respectively; for SSBA and
LC, we adopt the pre-generated invisible trigger from BackdoorBench. For the extra adaptive attack,
we utilize the official implementation * codes and set both the poisoning rate and cover rate as 0.003
following the original paper. The visualization of the backdoored images is shown in Figure 9.

For CIFAR-10 and GTSRB, we train all the backdoor models with an initial learning rate of 0.1 except
for the WaNet since we find a large initial learning rate would make the attack collapse, and therefore
we decrease the initial learning rate to 0.01. All the backdoor models are trained for 100 epochs and
50 epochs for CIFAR-10 and GTSRB respectively. For CIFAR-100 and Tiny-ImageNet, we adopt a
smaller learning rate of 0.001 and fine-tune each model for 10 epochs since the SwinTransformer is
already pre-trained on ImageNet and upscale the image size up to 224 x 224 before feeding the image
to the network.

*https://github.com/SCLBD/backdoorbench
*https://github.com/Unispac/Circumventing-Backdoor-Defenses
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Original : BadNet Blended

Figure 9: Example images of backdoored samples from CIFAR-10 dataset with 6 attacks.

B.3 Baseline Defense Configurations

We evaluate 4 tuning-based defenses and 2 extra state-of-the-art defense strategies including both
ANP and I-BAU for comparison. For tuning-based defenses, we mainly consider 2 recent works
including FT+SAM and NGF, and we also compare another 2 baseline tuning strategies including
FE-tuning and FT-init proposed in our paper. For all defense settings, we set the batch size as 128
on CIFAR10 and GTSRB and set the batch size as 32 on CIFAR-100 and Tint-ImageNet due to the
memory limit.

FT+SAM: Upon completion of our work, the authors of [42] had not yet made their source
code publicly available. Therefore, we implemented a simplified version of their FI-SAM
algorithm, where we replaced the optimizer with SAM in the original FT algorithm and
called it FT+SAM. For both CIFAR-10 and GTSRB, we set the initial learning rate as
0.01 and fine-tune models with 100 epochs. We set the p as 8 and 10 for CIFAR-10 and
GTSRB respectively since we find the original settings (p = 2 for CIFAR-10 and p = 8 for
GTSRB) are not sufficient for backdoor purification in our experiments. For CIFAR-100
and Tiny-ImageNet, we set the initial learning rate as 0.001 and p as 6, and fine-tune the
backdoor model for 20 epochs for fair comparison.

NGF: We adopt the official implementation * for NGF. For CIFAR-10 and GTSRB, we set
the tuning epochs as 100 and the initial learning rate as 0.015 and 0.05 respectively. While
for CIFAR-100 and Tiny-ImageNet, we set the tuning epochs as 20 and the initial learning
rate as 0.002.

FE-tuning: For FE-tuning, we first re-initialize and freeze the parameters in the head. We
then only fine-tune the remaining feature extractor. For CIFAR-10 and GTSRB, we set the
initial learning rate as 0.01 and fine-tune the backdoor model with 100 epochs; while for
CIFAR-100 and Tiny-ImageNet, we set the initial learning rate as 0.005 and fine-tune the
backdoor model with 20 epochs.

FT-init: For FT-init, we randomly re-initialize the linear head and fine-tune the whole model
architecture. For CIFAR-10 and GTSRB, we set the initial learning rate as 0.01 and fine-tune
the backdoor model with 100 epochs; while for CIFAR-100 and Tiny-ImageNet, we set the
initial learning rate as 0.005 and fine-tune the backdoor model with 20 epochs.

ANP: We follow the implementation in BackdoorBench and set the perturbation budget as
0.4 and the trade-off coefficient as 0.2 following the original configuration. We find that
within a range of thresholds, the model performance and backdoor robustness are related to
the selected threshold. Therefore, we set a threshold range (from 0.4 to 0.9) and present the
purification results with low ASR and meanwhile maintain the model’s performance.

I-BAU: We follow the implementation in BackdoorBench and set the initial learning rate as
le~* and utilize 5 iterations for fixed-point approximation.

*https://github.com/kr-anonymous/ngf - animus
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Figure 10: The Evaluation of vanilla FT and LP: (a) ResNet-50 on CIFAR-10. (b) Dense-161 on CIFAR-10. (c)
ResNet-18 on GTSRB.

C Additional Experimental results

C.1 Additional Results of Revisiting Fine-tuning

In this section, we provide additional experimental results for Section 3 to explore the potential
influence of the dataset and model selection. Specifically, in addition to our initial experiments of
revisiting fine-tuning on CIFAR-10 with ResNet-18, we further vary the model capacity (ResNet-50
on CIFAR-10), the model architecture (DenseNet-161 on CIFAR-10), and the dataset (ResNet-18 on
GTSRB). As mentioned in Section 3.1, we mainly focus on defense performance with a satisfactory
clean accuracy level (92% on CIFAR-10, 97% on GTSRB). We tune hyperparameters based on this
condition. All the experimental results are shown in Figure 10 respectively. These additional results
also demonstrate that Vanilla FT and LP could purify backdoored models for high poisoning rates but
fail to defend against low poisoning rates attacks. The only exception is the SSBA results since the
original backdoored models have a relatively low ASR, as mentioned in Section 3.1.

C.2 Additional Results of High Poisoning Rates

Our previous experiments in Section 5.2 have demonstrated our FST’s superior defense capacity
against backdoor attacks with low poisoning rates. In this section, we further extend our attack
scenarios with more poisoning samples by increasing the poisoning rate to 10%, 20%, and 30%. We
conduct experiments on CIFAR-10 and GTSRB with ResNet-18 and present the experimental results
in Table 5. We observe that the FST could easily eliminate the embedded backdoor as expected while
preserving a high clean accuracy of the models.

C.3 Additional Results on CIFAR-100 Dataset

We evaluate our FST on the CIFAR-100 dataset with the results shown in Table 6. Since some attacks
show less effectiveness under a low poisoning rate with ASR < 25%, we hence only report the
results where the backdoor attack is successfully implemented (original ASR > 25%). We note that
our FST could achieve excellent purification performance across all attack types on the CIFAR-100
dataset with an average ASR 0.36% which is 65.9% and 9.46% lower than the ASR of two other
tuning strategies, FT+SAM and NGF respectively. Although the FE-tuning could achieve a lower
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Table 5: Defense results under high poisoning rate settings. All the metrics are measured in percentage (%).

| Poisoning | CIFAR-10 | GTSRB
Attack at
| rate | No defense | FST | No defense | FST
| | C-Ace(t) ASR() | C-Ace(f) ASR() | C-Ace(t) ASR() | C-Ace(t) ASR()
BadNet 10% 93.11 100 92.29 0.01 94.83 100 94.98 0.03
20% 92.80 100 91.82 0.30 97.81 100 94.09 0.01
30% 91.55 100 90.91 0.00 96.62 100 94.89 0.01
Blended 10% 94.36 99.93 93.10 0.34 96.33 97.40 96.52 0.00
20% 94.21 100 92.97 0.23 91.96 98.56 95.53 0.02
30% 93.64 100 92.54 3.33 98.46 99.97 96.37 0.00
WaNet 10% 90.86 97.26 92.63 0.14 97.08 94.21 95.61 0.02
20% 90.12 98.73 91.19 0.19 97.10 98.36 95.65 0.02
30% 80.58 97.32 90.37 0.71 94.20 99.63 93.42 0.03
SSBA 10% 94.34 98.91 93.41 0.39 97.26 99.32 96.67 0.02
20% 93.47 99.66 92.72 0.23 96.42 96.15 96.03 0.01
30% 93.27 99.97 92.07 0.11 97.71 99.20 97.03 0.00

Table 6: Defense results under various poisoning rate settings. The experiments are conducted on the CIFAR-
100 dataset. All the metrics are measured in percentage (%). The best results are bold.

Attack | Poisoning No defense | I-BAU | FT+SAM | NGF | FE-tuning (Qurs) | FT-init (Qurs) | FST (Ours)
| T | C-Ace(t) ASR() | C-Acc(t) ASR() | C-Ace(t) ASR() | C-Ace(t) ASR() | C-Ace(t) ASR() | C-Ace(t) ASR() | C-Ace(l) ASR()

BadNet 5% 85.47 100 83.10 99.89 82.89 99.41 70.22 0.68 72.19 0.05 80.02 0.03 78.99 0.00
1% 85.85 99.96 83.27 99.22 83.00 95.30 70.11 0.49 72.25 0.03 80.33 0.03 79.54 0.00
0.5% 84.71 99.61 82.70 92.78 83.02 87.89 69.95 0.47 71.75 0.00 80.63 0.02 80.11 0.01
Blended 5% 85.75 100 83.11 99.99 83.14 97.86 70.20 20.89 72.25 0.54 80.27 0.87 80.36 0.83
1% 85.73 99.93 83.14 99.48 83.14 93.70 69.85 14.72 72.52 0.53 80.55 0.82 80.57 0.74
0.5% 85.71 99.71 83.12 98.81 82.79 95.97 69.95 24.58 72.62 0.68 80.58 0.45 80.2 0.31
SSBA 5% 85.13 92.79 82.94 29.49 83.06 4.12 69.18 0.36 71.94 0.20 80.40 0.23 79.97 0.17
1% 85.15 54.52 83.55 4.16 83.01 0.19 70.64 0.32 72.05 0.19 79.33 0.20 80.4 0.20
SIG ‘ 1% ‘ 85.48 40.12 ‘ 82.98 29.00 ‘ 82.63 21.71 ‘ 69.88 25.68 ‘ 72.79 0.71 ‘ 80.14 0.77 ‘ 79.91 0.83
Average ‘ 85.44 87.40 ‘ 83.10 72.54 ‘ 82.96 66.24 ‘ 70.00 9.80 ‘ 72.26 32.56 ‘ 80.25 0.38 ‘ 80.01 0.34
Standard Deviation |  0.38 23.13 | 023 3947 | 017 4367 | 039 1148 | 033 029 | 040 036 | 049 0.36

ASR compared to FST, we note that its C-Acc gets hurt severely since it freezes the re-initialized
linear head during fine-tuning which restricts its feature representation space. For the other two
state-of-the-art defenses, we find that they are less effective in purifying the larger backdoor models.

We further observe that the FT-init could achieve comparable purification results as the FST with even
a slightly higher C-Acc. Compared to our previous experiments on the small-scale dataset (CIFAR-10
and GTSRB) and model (ResNet-18), we find that FT-init is more effective on the large model
(SwinTransformer) with the large-scale dataset (CIFAR-100 and Tiny-ImageNet) which decreases
the average ASR by 32.31%.

C.4 Additional Results of Adaptive Attacks

In addition to the Adaptive-Blend attack, we also  Adaptive-Patch AsR:61.23% FST ASR: 2.21%
provide evaluations of a parallel attack proposed in : :
[26] called Adaptive-Patch. To further reduce latent
separability and improve adaptiveness against latent
separation-based defenses, we also use more regular-
ization samples, following ablation study of Section
6.3 [26]. The experimental results are presented in
Table 7 and demonstrate that our FST could purify
both attack types with various regularization samples.
We also demonstrate a T-SNE visualization of the

Adaptive-Patch in Figure | 1. It aligns with the results  Figure 11:  The T-SNE visualizations of
of Adaptive-Blend attack. Adaptive-Patch attack (150 payload and 300 reg-

ularization samples). Each color denotes each
To further assess stability of FST, we also test FST class, and Black points represent backdoored sam-
against training-control adaptive attacks [30]. The au- ples. The targeted class is O (Red). The left figure
thors [30] utilize an adversarial network regularization ~represents the original backdoored model and the
during the training process to minimize differences right represents the model purified with FST.

between backdoor and clean features in latent representations. Since the authors do not provide
source code, we follow their original methodology and implement their Adversarial Embedding
attack with two types of trigger, namely the checkboard patch (Bypass-Patch) and Hello-Kitty pattern
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Table 7: Defense results of Adaptive-Blend and Adaptive-Patch attacks with various regularization samples.
The metrics C-ACC and ASR are measured in percentage.

Attack | Regularization | No defense \ FST
samples
| | C-Ace(t) ASR()) | C-Acc(t) ASR())

. 150 9455 9677 | 9358 028
Adaptive-Paich 300 9459 6123 | 9199 221
450 0452 5423 | 9141 542

. 150 9486 83.03 | 9435 137
Adaptive-Blend 200 9433 7840 | 9208 0.8
300 9412 6899 | 9229 139

Table 8: Defense results of Bypass attacks with three different poisoning rates.

Attack | Poisoning | No defense | FST
| T | CAce(t) ASR(]) | C-Acc(t) ASR(])

Byoass-Patch 5% 89.81 96.28 87.85 0.02
M 1% 90.04 93.90 87.83 0.03
0.5% 89.50 58.83 87.61 0.73

Byoass_Blend 5% 87.79 99.54 89.14 0.13
yp 1% 89.70 83.66 88.11 0.08
0.5% 89.47 85.52 87.13 0.12

(Bypass-Blend). All the experimental results along with three poisoning rates are shown in Table
8. The results reveal that our FST could still mitigate the Bypass attack which emphasizes the
importance of feature shift in backdoor purification.

C.5 Additional Results of Projection Constraint Analysis

In this section, we first provide additional analysis of the projection constraint with more attacks
(WaNet, SSBA, SIG, and LC) on the CIFAR-10 dataset. We show the experimental results in Figure
12. We get the same observations shown in Section 5.3, where the inclusion of the projection term
plays a crucial role in stabilizing and accelerating the convergence process of the FST. This results in
a rapid and satisfactory purification of the models within a few epochs.

D Extra Ablation Studies

D.1 Efficiency Analysis

We compare the backdoor purification efficiency of our FST with other tuning methods on the
remaining three datasets including GTSRB, CIFAR-100, and Tiny-ImageNet. We select three
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Figure 12: We demonstrate the experimental results with and without projection constraint (w/ C and w/o C,
respectively) of four backdoor attacks, namely the WaNet, SSBA, SIG, and LC. The experiments are conducted
with three poisoning rates (5%, 1%, and 0.5%) and varying tuning epochs.
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representative attacks (BadNet, Blend, and SSBA) with poisoning rate 1% which could be successfully
implemented across three datasets and we present our experimental results in Figure 13, 14 and 15.
The experimental results demonstrate that our FST is efficient compared to the other 4 tuning-based
backdoor defense which could constantly depress the ASR under a low-value range (usually < 5%)
with only a few epochs. Besides, we also note that in the GTSRB dataset, both the ASR of FE-tuning
and FT-init would increase as the tuning epoch increases indicating the model is gradually recovering
the previous backdoor features. Our FST, however, maintains a low ASR along the tuning process
which verifies the stability of our method.

D.2 Diverse Model Architecture

We conduct comprehensive evaluations on three model architectures (VGG19-BN, ResNet-50, and
DenseNet-161) on the CIFAR-10 dataset with all 6 representative poisoning-based backdoor attacks
and one adaptive attack, and our experimental results are shown in Table 9, 10 and 1 1. During our
initial experiments, we note that our method is less effective for VGG19-BN. One possible reason is
that the classifier of VGG19-BN contains more than one layer which is slightly different from our
previously used structure ResNet-18. Therefore, one direct idea is to extend our original last-layer
regularization to all the last linear layers of VGG19-BN. For implementation, we simply change
the original «o <'w, w"”> toay., <wi, fwf”> where 7 indicates each linear layer. Based on this,
we obtain an obvious promotion of backdoor defense performances (shown in Figure 16) without
sacrificing clean accuracy.

Following the results in Table 9, our FST could achieve better and much more stable performance
across all attack settings with an average ASR of 6.18% and a standard deviation of 11.64%. Com-
pared with the four tuning-based defenses, our FST could achieve 29% lower on ASR average across
all the attack settings; compared with the other two state-of-the-art defensive strategies, our FST
achieves a much lower ASR while getting a much smaller C-Acc drop (< 3.5%). For the other two
architectures, we note that our FST could achieve the best performance across all attack settings with
an average ASR of 2.7% and maintain clean accuracy (the drop of C-Acc < 1.9%).
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Figure 13: The ASR results of three representative attacks with various tuning epochs. Our experiments are
conducted on GTSRB with ResNet-18.
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Figure 14: The ASR results of three representative attacks with various tuning epochs. Our experiments are
conducted on CIFAR-100 with SwinTransformer.
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Table 9: Defense results under various poisoning rates. The experiments are conducted on the CIFAR-10 dataset
with VGG19-BN. All the metrics are measured in percentage (%). The best results are bold.

g Poisoning No defense ANP 1-BAU FT+SAM NGF FE-tuning (Ours) FT-init (Ours) FST (Ours)
Attack
| ™€ | CAce() ASRW) | C-Ace(t) ASR() | C-Ace(l) ASR() | C-Ace(1) ASR() | C-Ace(t) ASR() | C-Ace() ASR() | C-Ace(t) ASR() | C-Ace(t) ASR()

BadNet 5% 90.69 100 8200 000 | 8603 492 680 | 8340 539 | 8466 6221 | 8405 367 | 8633 001
adie 1% 91.86 100 8542 457 | 8647 9971 7671 | 8178 881 8560 9571 | 8409 7799 | 87.30  0.00
0.5% 91.88 100 8681 9996 | 8344 9848 7137 | 8344 4462 | 8526 9991 | 8441 9819 | 8727 070
Blended 5% 9179 9941 | 8557  53.53 34.54 1221 | 8258  7.58 | 8548 3867 | 8447 1701 | 8615 271
ende 1% 9207 9387 | 8667  39.30 18.32 3112 | 8442 1612 | 8543 2944 | 8477 2241 | 8683 231
0.5% 9204 8509 | 9124 7622 30.60 3498 | 8428 1750 | 8509 3392 | 8479 4024 | 8789 618
WaNet | 5% | 8811 9400 | 8938  0.69 | 129 | 136 | 88.77 178 | 8929 822 | 8920 1031 | 89.66 1.69
SSBA 5% 9110 89.08 | 8850 098 7.08 27 8359 338 | 8497 621 8349 248 | 8557 277
1% 9185 4060 | 90.01 166 313 258 | 8362 242 | 8491 294 | 8500 290 | 8771 1.79
SIG 5% 9174 9741 | 8985 258 251 610 | 8320 062 | 8519 2398 | 84.74 190 | 8606 001
1% 9176 9333 | 8802 2623 49.12 4496 | 8296 4620 | 8559 7324 | 8481 4726 | 863 1828
0.5% 9200 8242 | 8933 1696 40.89 920 | 8395 2047 | 8581 3222 | 8551 3341 | 8684 288
Lo 5% 9159 100 8466 4057 7099 1360 | 8395 2032 | 8549 9103 | 8484 5087 | 8622 010
1% 91.79 100 84.16 9726 99.76 3627 | 8377 5167 | 8525  99.68 | 8481  97.09 | 8670 088
0.5% 92.07 100 847  89.68 86.64 4954 | 8392 6926 | 8530 9901 | 8505 9341 | 87.58  13.09
AdaptiveBlend | 03% | 9211 6684 | 8979 5402 | 2738 | 1457 | 8903 3348 | 9026 4486 | 9071 5182 | 9006 4544
Average | 9153 9013 | 87.26 3776 | 21 | 2590 | 8407 2185 | 8585 5258 | 8530 4069 | 8.15 618
Standard Deviation | 0.99 1601 | 265 3694 | 3744 | 2445 | 196 2107 | 157 3598 | 190 3518 | 124 1164

Table 10: Defense results under various poisoning rates. The experiments are conducted on the CIFAR-10
dataset with ResNet-50. All the metrics are measured in percentage (%). The best results are bold.

Attack | Poisoning | Nodefense | ANP | 1-BAU | FT+SAM | NGF | FE-tuning (Ours) |  FT-init (Ours) | FST (Ours)
| ™€ | CAce() ASRW) | C-Ace(l) ASR() | C-Ace(f) ASR() | C-Ace(t) ASR() | C-Ace(l) ASR() | C-Ace() ASR() | C-Ace(t) ASR() | C-Ace(t) ASR()

BadNet 5% 94.02 100 88.42 0.56 9165 233 90.29 4.17 87.87 3.4 91.63 2.14 92.84 338 93.02 0.24
adie 1% 9430 99.99 | 9097 1.76 89.17 251 90.41 5.93 87.47 5.62 90.94 147 92.33 632 92.65 0.26
0.5% 9475 9986 | 8716 6.89 90.42 2.03 90.95 3.96 87.73 4.18 91.28 199 93.22 444 93.03 0.87
Blended 5% 9438 99.62 | 9195 222 91.69 6.72 90.35 1453 | 8729 7.58 9128 1023 | 9279 5224 | 9282 220
1% 9490 9751 88.59 9.82 91.06 3786 | 9L16  27.14 | 8811 4.90 9147 2571 9321 5789 | 9311 6.29
0.5% 9408 90.54 | 8995 2079 | 9099 4261 9037 17.38 | 8798 1028 | 9139 2591 9257 5223 | 9371 0.3
WaNet 5% 9203 8786 | 84.00 1.82 89.21 258 91.84 0.92 90.24 1.80 9223 L1 92.66 0.80 92.43 031
b 1% 9111 7381 91.79 0.79 88.36 1.68 91.09 0.89 90.28 1.40 92.02 0.89 9221 0.67 9221 0.39
0.5% 8979  59.16 | 8551 1.08 87.76 0.56 91.39 1.09 89.56 1.49 91.81 113 92.57 0.99 9241 0.70
SSBA 5% 9381 9757 | 8801 0.36 91.27 6.49 90.29 1.56 87.93 238 90.93 8.76 9219 1320 | 9223 043
1% 9423 7368 | 9059 111 91.28 2.8 90.38 2.00 87.69 193 90.90 236 9256 3.08 9241 0.37
0.5% 9434 4342 | 9019 0.72 9178 120 90.98 174 87.66 227 91.06 1.86 92.74 2.82 92.96 117
SIG 5% 9449 9882 | 9297 7.83 91.89 676 90.90 4.88 87.42 051 9106 3016 | 9294 6534 | 9243 0.02
1% 9404 9276 | 9334 7970 | 9012 2844 | 8974 5939 | 87.84 0.80 9034 6879 | 9253 9014 | 89.03 356
0.5% 9468 8691 9293 7867 | 9164 779 9089 1167 | 87.36 0.24 90.23 1988 | 9294 5393 | 89.17 9.82
Lc 5% 9461 9992 | 9412 620 9170 1694 | 8975 232 87.91 671 9153 1990 | 9327 6927 | 93.17 381
1% 9430  99.87 | 89.17 1549 | 9150 1757 | 9060 1171 8790 1184 | 9135 1848 | 9283 89.16 92.6 151
0.5% 9463 9999 | 9030 6214 | 9073 5.66 90.57 5599 | 8730 1324 | 9145 1952 | 9330  77.02 | 9277 1722
Adaptive-Blend | 03% | 9436 7457 | 89.75 1457 | 90.51 3202 | 9240 2371 | 89.18 17.54 | 9114 1141 | 9418 1949 | 9295 142
Average | 9383 8820 | 89.98 1645 | 90.67 1179 | 9076 1321 | 8814 515 | 9127 1430 | 9284 3486 | 9237 2.68
Standard Deviation | 1.35 1620 | 266 2625 | 122 13.54 | 066 1755 | 094 491 | 050 1656 | 0.47 3362 | 121 4.32

Table 11: Defense results under various poisoning rates. The experiments are conducted on the CIFAR-10
dataset with DenseNet-161. All the metrics are measured in percentage (%). The best results are bold.

Attack | Poisoning | Nodefense | ANP | 1-BAU | FT+SAM | NGF | FE-tuning Ours) |  FTinit (Ours) | FST (Ours)
| ™€ [ CAce(t) ASR() | C-Ace() ASR() | C-Ace() ASRW) | C-Ace(l) ASR() | C-Ace(l) ASR() | C-Ace() ASR() | C-Ace(l) ASR() | C-Ace(t) ASR()

BadNet 5% 8938 9999 | 8846  99.70 5.00 1453 | 8394 249 | 8603 248 | 8796 532 | 87.62 14
adie 1% 89.86 9993 | 8534 9742 28.07 376 | 8453 1173 | 8574 197 | 8837 4350 | 8822 163
0.5% 89.62 9958 | 8850  98.00 5031 430 | 8368 1946 | 8516 928 | 8778 4586 | 8716 553

Blended 5% 89.93 9913 | 8535 657 631 443 | 8356 247 | 8488 203 | 8776 4061 | 8681  0.02
1% 89.82 9260 | 8362 6444 497 376 | 8382 284 | 8474 162 | 8785 2334 | 8719 047

0.5% 90.15 8244 | 8561 9.28 2376 443 845 114 | 8620 133 | 8853 2178 | 8833 031

WaNet | 5% | 8276 6486 | 83.77 179 | 348 | 171 | 8403 151 | 8368 251 | 8522 170 | 8502 092
SSBA | 5% | 8871 8109 | 8749 148 | 544 | 232 | 8260 267 | 8350 166 | 8673 342 | 8639 LI
SIG 5% 89.74 9771 | 8901 054 24.43 079 | 8395 091 8515 034 | 8733 1506 | 8775  0.10
i 1% 89.04 9534 | 869 791 2377 776 | 8305 3362 | 8385 492 | 8701 8791 | 8616 411
0.5% 8946 7617 | 8232 6193 6730 886 | 8394 1108 | 8493 1091 | 8782 6051 | 8460  4.00

Lo 5% 89.56 9971 | 8939 9816 1.68 421 8362 481 8453 537 | 8747 396 | 8646  3.67
1% 8976 9996 | 8967  99.72 90.44 379 | 8321 1402 | 8483 1287 | 8696 9790 | 8715 252
0.5% 88.24  99.04 | 8840 9852 60.78 583 | 8172 2126 | 8238 197 | 8564  74.03 | 8463 1368

Adaptive-Blend | 03% | 8818 5177 | 8574 2356 | 787 | 1519 | 8509 405 | 8370 237 | 8910 395 | 864l 133
Average | 8895 8929 | 8664 5127 | 2691 | 571 | 8369 894 | 8462 526 | 8744 3526 | 8666 272
Standard Deviation | 1.81 1502 | 230 4443 | 2775 | 424 | 083 9.60 | 1.04 541 | 103 3248 | LI8 347
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Figure 15: The ASR results of three representative attacks with various tuning epochs. Our experiments are
conducted on Tiny-ImageNet with SwinTransformer.
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Figure 16: We compare regularizing the whole linear layers (denoted as -all) with regularizing only the last
linear layer (denoted as -last). We evaluate on CIFAR-10 dataset using BadNet and Blended attacks with
3 poisoning rate settings. Experimental results demonstrate that we could achieve a superior purification
performance by regularizing the whole linear layers than the last-layer-only regularization without sacrificing
the model performance.
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