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A Algorithm for General-Self-Concordant Functions

In this section we will show how to use our algorithms for the following classes of general-self-
concordant functions.

1. 6 >v>2: fis (N,v)-gs.c. and L-smooth.
2. v < 2: fis(N,v)-gs.c., L-smooth and p-strongly convex.

We will use the following result to reduce these problems to (M, 2)-g.s.c. problems and use our
algorithms.

Lemma A.1 (Prop 4. [STD19)). Let f be (M, v)-g.s.c. withv > 0. Then:

(a) Ifv € (0,3] and f is also strongly convex with strong convexity parameter (1 > 0 in £2-norm,
; _M -
then f is also (\/ﬁs_y,?)) g.5.c.
(b) If v > 2 and Vf is Lipschitz continuous with finite Lipschitz constant L in £3-norm, then f
is also (ML%_l, 2) -g.5.C.

‘We thus have the following result.

Theorem A.2. For§ > 0, f (N,v)-g.s.c. 6 > v > 2 and L-smooth, let T be the solution returned
by Algorithm(with e = 1) applied to f(x). Now, Algorithm|2|with starting solution z0) =,
applied to f finds T such that Ax = band )y, f(Px;) < >, f(Px}) + 0 in at most

O m1/3NL";2Rlog<f(cc(0)) ;f(:li*)))

calls to a linear system solver.

Proof. From Lemma , fis (NL=2)/2 2).g.5.c. We now use Lemma with M = NL(=2)/2
followed by Theorem|[4.6) O

Theorem A.3. For§ > 0, f (N,v)-g.s.c. 2 > v > 0 and L-smooth u-strongly convex, let T be
the solution returned by Algorithm|I\(with e = 1) applied to f (x). Now, Algorithm with starting
solution z() = T, applied to f finds T such that AT = band Y, f(Pxz;) <>, f(Pz}) + 4 in

at most
o[ mi/a - 112 Rlog<f(w(0>)—f(w*))>

4

calls to a linear system solver.

Proof. From Lemma fis (Np="3“LY2,2)-gsc. We now use Lemma ith M =
Ny~ LV/? followed by Theorem 0

B Missing Proofs

B.1 Proofs from Section[2]

Definition B.1. [Hessian Stability] For distance r € R>q and function d : R>o — R>q acting on r,
a function f is (r, d(r))-hessian stable w.r.t. a norm || - || if for all ,y such that ||z — y|| <,
1

2 V@) X V) < )V (@)

Lemma B.2 (Lemma 11 [CIJT20]). If f is a univariate M-quasi-self-concordant (q.s.c.) function,
then f(z) =Y, f(z;) is (r,eM") hessian stable in the {~-norm.
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Lemma 2.4. For ¢ > 0, resistances v (Definition[2.3), with corresponding weights w, we have
U(r) < (1+€)P(w).
In addition, letting || P ||min = minag—p || Px||2 and || A|| denote the operator norm of A, we have

€@(w) || P2 lb]13 def
v > LERE = d(w)L.
(r) = mR? || Al (w)

Proof. Let A be the minimizer of ¥ (r) and * be the optimum of (1).

U(r) = Z ri(PA)? < Z ri(Pz*)?

=3 (7w - ) PR

R2
D(w) .
< " i € . S P * 0o < R
<3 f )+ ince | Po* | <
= @(w)(1+¢)
We next look at a lower bound for W. We note that, any solution to the oracle must satisfy AA =b.
This implies, || A||[|A|l2 > ||b]|2, where || - || denotes the operator norm. Now,
€@(w) Hxp2 o QW) o xpe o €R(w) [Pl [IBI5
U(r) > PA|; > P lAlG > I .
(T) = mR2 || ||2 = mR2 || ||n11n|| ||2 = mR2 ||AH2
O
Lemma B.3. _
S F(w)| PAJ; < (1 + €)RD(w)
Proof.
Zf”(w,;)|PE|i < \/Zf”(wi) Zf”(wMPE\? Cauchy Schwarz
< VO (w)\/R2U(r)
< RV/®(w)/(1+ €)®(w) From Lemma[2.4]
= R(1+ €)®(w).
O

B.2 Proofs from Section[3]

Change in ¥
Lemma 3.1. Let U be as defined in After t flow steps and k width reduction steps, we have,
k
‘Il(r(t,k)) > \II(T(O»O)) 14 76272 if f' non-decreasing in w
= (1+¢€)?m ’
k
k €72 "
\p(r(t, )) < \I,(T(O,O)) 1— m if f" non-increasing in w.

Proof. We show this by induction. It is clear that this holds for ¢ = k£ = 0. We know from Lemma
for r’ > 7,

U(r') > U(r)+ Y (1 - :) ri(PA)2.
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Since the weights are only increasing, this corresponds to the case f” is an increasing function.
Similarly, when f” is a non-increasing function, we have the following bound: for ' < 7 from

Lemma[C.T]

/!

(') < W(r) — ;Z<1 - :) ri(PA)2.

3

We first consider a flow step. We note that our weights w are increasing, and if £ is increasing then
D > () Similarly if f” is decreasing, »(*+1%) < r(t%) We can use the above relations to
now get U (7(t+15)) > W (5 (EF)) for the first case and W(r(tH1R)) < W((t5)) for the second. We
next consider a width reduction step. Let ¢ be one edge that has \P£Z| > Rt. We have,
e®(w®k) e®d(w®r) er?
’m R?m T= (1+¢€e)m
where the last inequality follows from Lemma Now, since we are changing our resistances by a
factor of (1 + €), we get the following bounds for the two cases,

ri"(PA)? > |PAJ? > T(rtR)y,

G (rtRHDY > (R 4 (1 T er? W(r®Ry = w(rt) 1 4 €272
- (1+e)r; ) (1+e)m (1+¢€)2m )’
2 2,2
\Ij(r(t,k+1)) < \Il(r(t,k))_} 1_ TV/(l + 6) €T \I/('r(t"k)) _ \I/(T(t’k)) 1 €T
- 2 r; (I+€e)m 2(1+€)?m
With these two relations we conclude our proof. O

Change in ¢

Lemma 3.2. Suppose f is M-q.s.c. Let o and T be such that ot < M ™. After t flow steps and k
width reduction steps, our potential ® satisfies

t k
d(w®H) < (1 +e(l+ 6)2aM> (1 +e(1+ €)T71> ®(wo) if f" non-decreasing in w,

t k
d(w®h) > (1 —e(1+ e)QaM) (1 —e(1+ 6)7'_1) O(wo) if f non-increasing in w.

Proof. We first show the case when f” is increasing. The same calculation will work for the other
case too by just considering the sign of ®’.

We will use induction. It is easy to see the claim holds for the initial iteration, t = k = 0. We
next assume that it holds for some w (). If the next step is a flow step, we update to w(*+1:F) <
w®F) 4 ear. Since ar < M !, we have that ® is (M 1, e€) hessian stable around this update. We
will use w to denote w“*) for simplicity. We thus have,

O(w ) :q)(w + 6}3‘|P§|)
—®(w) + %W(ympm
(For some y between w and w + «|PA|)
eQ ~
=d(w) + 5 3 1"(y)|PA,
EX 7 ~
<®(w) + EMZ:f (y:)| PAJ;
(Since f is M-q.s.c.)
e, I ~
<®(w) + 4 Me Z;f (w;)|PAJ;

(Since f is hessian stable in this range)
<®(w) + €1+ €)2aMd(w)
(From Lemma
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We thus get the following bound,

S(wT1R)) < B (w®h) (1 +e(1+ 6)2aM).

Now, suppose the next step is a width reduction step.

,w(fk+1) Z(I)wz +Zq)( t+1))

gL €T
Y 0w+ 35 (0 )
i¢T €T
<D B(wi) + (146 f(wi)
i¢T i€l
<®(w)+ = Y f"(w)| PA];
i€l

<®(w) + 5= Y f"(w)| PA];
i
1
<®(w) + wq)(w)
T
From Lemma|[B_.3]
We thus get the following bound,

B(wtF D) < P(wth) (1 Fe(l+ 6)7—1).

B.3 Proofs from Section[4]
Iterative Refinement

Lemma B.4. Let f be a (r,d(r))-hessian stable function in lo-norm, and * = x + A such that
|Allco < 7. We then have,

%ATV%(&')A < (@) - f(x) - Vf(2) A <dr)ATVf(z)A

Proof. We have for some z along the line joining  and «,
f(@)=f(2) + Vf(x) A+ ATVf(2)A

Since ||z — Z]|oo < ||Z — &||oo < 7, from hessian stability, we have,

1
%VQf(m) < Vf(z) =2 d(r)V?f(=).

Using this relation in the above, we get our lemma. O

Lemma B.5. Let A be any feasible solution to the residual problem at x. We then have,
fl@) = flx— D) <res(d), flx)—flz—e?A)>e? res(d),
Proof. Since our function is M-q.s.c., from Lemmasand for all A such that ||PA|e <
M1,
“HPA) V2 (2)PA < f(x — A) — f(z) + Vf(x) PA < e(PA)'V2f(z)PA
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The first bound directly follows from the left inequality. For the second bound, we first note that
e 2||PA|| < M~'. We can now use the right inequality.

f(x) — f(z—e2A) > e 2Vf(z) " PA — e 2(PA)TV2f(z)PA
=2 (Vf(m)TPA - e‘l(PA)TVQf(a:)PA)

= e ?res(A).
O

Lemma B.6. Assume f is M-q.s.c. Let x* denote the minimizer of Problem (1) and A* the optimizer
of Problem (3) at *). We then have,

res(A%) > == (f(2®) — f(a")).

Proof. Let £® be such that Az®) = b and z* is the optimum of . Note that we have

|[Pz®]| < R and therefore, ® — Pg*|| <2R. Letr = andz = (1- 3)z®) +
SET*. Let A=z — g = 7= (2 — *). We have,
P [N A AT

and _ ,
AA = A(z® —z) = Sp(—Az" + AzW) =0

We next show that HP& - zH < L

2
oS

=

r
o ) _ _
2RP:): 2RP$ z

We will do a case by case analysis. Consider some coordinate 7.

s -

(oo}

oo

1. ngt) — ﬁ < —R: From the definition of z;, we note that z; = R — ﬁ + P:Bz(t) and

~R< Pz <-R+ 717 Suppose Pzl = —R+ aforsome 0 < a < 717 We have,
‘PZ—zi: 27.;2(13 2V — pa? -z
1
I CR-Pay—a1- )+
2R 2R)  2M
1
<—.
—2M
The last inequality follows since —2R < —R — Pz} < 0.
2. P (t) + 2M > R: From the definition of z;, we note that z; = — R + ﬁ + P(IIZ(-t) and
R - W < Pa:l(.t) < R. Suppose P:):(»t) =R —aforsome(0 <a< 2M We have,
‘Pﬁ— z| = 2R(P ® — Px}) — z;
r 1
T 1
= P 1—— | ——
2R(R 2i)+ ( 23) oM
1
<—.
—2M

The last inequality follows since 0 < R — Pz} < 2R.
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3. —R+ ﬁ < P:cl(-t) < —ﬁR: In this case z; = 0.

1
<r=

PA — -
‘ # oM

T *

We thus conclude, that £ — £ is a feasible solution for the residual problem and from convexity,
55 (F @) = F@) < £@V) - f(a).
Let A* denote the optimum of the residual problem at ) (3). From Lemma
5= (@)~ £@) < £(@?) — (@) <res(a?) —a) < res(A*),
O

Lemma 4.2. [Iterative Refinement] Let f be M-q.s.c. and AW g K-approximate solution to the
residual problem at ") (Problem (3)). Starting from z© such that Az®) = b, ||z loo <R, and

~ T
iterating as ") = £® — e2AW®  after at most O (nMR log (W)) iterations we

get x such that Az = band f(z) < f(z*) + e

Proof. From Lemma[B.6|
~ 1
res(AM) > Zres(A*) >
K

Now, from Lemma|B.5

-2

(@) — f(z*) < £(2®) — (%) — e 2res(AD) < (1 ‘ ) (f(m(t)) —f(ﬂ@*))

~ 4kMR
Inductively applying the above equation,

—2

T
F(@®) — f@") < (1 4jMR> (F®) - f(a").

Binary Search

Lemma 4.3. Let v be such that f(z®) — f(x*) € (v/2,v] and A* denote the optimum of the

residual problem at £ ). Then, res(A*) € (s> €*v].

Proof. The lower bound follows form [B.6] For the upper bound, from[B.5]
v>f(@W) —f() = f(@V) — flz —e7?A%) = e Pres(A”).
O
Lemma 4.4. Let ¢ be such that res(A*) € (¢/2,(] and A* the optimum of the residual problem.
Then, (PA*)TV2f(z)PA* <e- (.
Proof. Consider scaling A* by O(1) > X > 0. We must have,
d
—res(AA* = 0.
[d)\res( )} - 0
This implies,
Vf(z)  PA* — 2¢ Y (PA*) V2 f(x) PA* =0,
or
e Y PA*)TV2f(2)PA* = Vf(z) PA* — e H(PAY)TV2f(z) PA* = res(A*) < (.
O
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Width Reduction

Lemma 4.5. Let ¢ be such that res(A*) € (¢/2,(]. Algorlthml 3| returns y such that Ay = 0,

[Py — 2z||oc < 537 and res(y) > gh5res(A*) in O(m!/3) calls to a linear system solver.

Proof. This algorithm is basically an implementation of the width-reduced MWU algorithm from
ICKM™11]. We will give a proof for completeness. For the purpose of this proof, we denote,

— : " 2 ||wH1 N2
\I}(T)_AA:O,Vfr&l)r}rPA:C/2 ; f (:c])(PA +Z4M( — ) (PA - 2)3,

P(w) = [Jwl]s.
Let A be the solution returned by . We first note that, for A* the optimum of the residual problem,

) < Z f/(x;)(PA*)? +Z4M2< ”wm”1> (PA* — 2)?

<e-C+ X:ZIM2 ('wj + W) (PA* — 2)?, From Lemmal4.4]
J
1

<e-(+ ||lw]i + ®(w), Since |[PA* — 2|/ < Y

< (e+2)®(w).
‘We note that,

ij (4M)(PA - z); \/ijzwj (AM)2(PA — 2)? < \/®(w)¥(r) < Ve + 20(w).
“)

For a flow step, from the above calculation, note that,

ve+2

) = T T PE-2) < o) Y

a®(w®) = d(w®)(1 + a).

For a width reduction step let Z denote the indices which have the weights doubled,

wt ) =" 123" wl? < e(w®) + Zw§t>(2M)|P£—z|j

j¢T JjET jeI
vV 2
< d(w) + i<I>(w) < @(w(t)(l + 37_1).
T

We can bound the number of Wldth reduction steps by O(m/7?) similar to Lemma We now
show that our final solution has ||+ Py — z||sc < 577. After T iterations, let j denote the index with

max value in vector w. For a7 < 1, (1 + %M|PA - z|j) > eXp( aM|PA — z|; )

10¢ > d(w”) > w" > S0l (1 + SM|PAY — zl;»)
m

> %exp <za(2M) > |PA® — z|j> = ﬂiexp(ga(QM)(Py - Tz)j>.

t
We thus have for all coordinates j and T > o~ 1O (log m),
|Py —Tz|; < O(M~11ogm) < 1
T - ol - 2M
It remains to show that y/(1007") has the required value for the residual. First note that,

T Y T ¢
Vi®) 007 1OOTZVf PA® T 2.100°
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We next look at the quadratic term.

1 1" 2 1 g < 2
W;f (w))y; = sz (wj)<2|pA( )j>

t

1
t t
< aigp 27 LA @AY = i 3 )
t

T(e+2)®(w™)) < 10(e +2)

= = T(100)2

T(100)2 ¢

Choose ¢ such that we have,

_ 1 " 2 C
¢ 1(100)2 > f(@)y; < ¢

J

‘We thus have,

L — T Y -1 1 ” - 2> C - L .
res<100T> = Vf(z) 100T e (100)272 zj:f (x;)y; > 1100 = 4007”65(A ).

B.4 Proofs from Section[3]

Sum of exponential, soft-max and /. regression

Theorem 5.2. Let x* denote the optimum of the {-regression problem, min gz—p || P ||0o- Algo-

rithmwhen applied to the function f(Px) =5, (e@ tem o H ) forv =Q (@) returns T

such that AT = b and

[1PZ|[co < (14 €)[|Pzo0,

in at most O(m/3¢=5/3) calls to a linear system solve.

Proof. Let Q = [PP] . We note that f(z) =) . e P4 Let & denote the optimum of f, which is

also the optimum of smax, (Qx). We have the following relation,
Ve, |Pzlo < smaz,(Qz) < ||Pz||w + v1ogm.

Let R = || Px*|| o (We can find this up to € error using binary search), then the above relation implies
smaz,(QT) < R(1 + ¢). From Theorem
|1PZ| oo < smaz,(QZ) < R(1+€) = ||Pz*||oo(l+e). O
Theorem 5.3. For § > 0, let T be the solution returned by Algorzthml(wzth € = 1) applied to
f(Px)=>"e o . Now, Algonthmwzth startmg solution (©) = &, applied to f finds T such
that AT = band )", et < <(140)> e e O(m1/3R2u 2log(i)) calls to a
linear system solver.

Proof. From Lemma Algorithm [1| returns & in O(m!/3) iterations such that AZ = b

(T )
and | PZ|oc < MR|wTH)|. Since LY. e7 7 = &(wTH)) < d(wp)e®, we have
[|w T || < 5v. This gives, || PZE||« < 5R. We next bound the function value.

e wT ) mr
D M
If MR < 1, then f(P%) < 120(w ™)) < m. Otherw1se,

MR MR
(T K) (T K)
f(PzZ) < Z( ) Ze v < (2@ (wTE)ME < O(mME),

Now, we use Algorlthml 2| Using the above calculated bounds in Theorem we get our result. [

21



¢,-Regression

Theorem 5.4. For§ > 0andp > 3, let T be the solution returned by Algorithm( with e = 1) applied
to f(Px) = || Px|b+pul|Px|3. Now, Algorithmwith starting solution (©) =, applied to f finds
Z such that AT = b and f(Pz) < f(Px*) + § in at most O(pQu_l/(p_Q)ml/:gRlog(pT;%))

calls to a linear system solver.

Proof. From Lemma we get Z such that |Z||o, < RM|wT%)]||,.. We now want to bound
f(@).
F(@) = (RM)||w 8+ p(RM)?||w 3.

We next note that for w (") > wy =1,
O (w! ™) = p(p = 1)[w T3 + 21 < D(wg)eW.
This implies that w(™%) < O(1)wg and ||w ™% | ., < O(1). Therefore,
f(@) < ((O(1)RM)"m.

Now, using this bound on f(Z) and T as a starting solution for Algorithm we get our result by
applying Theorem[4.6| O

B.4.1 Logistic Regression

Theorem 5.5. For § > 0, let T be the solution returned by Algorithm ( with ¢ = 1) applied
to f(Pz) = ), log(l+ e(P2)i). Now, Algorithm |2|with starting solution (°) = Z, applied
to f finds T such that A% = b and Y, log(1 + eF®)¢) < 3" log(1 + eP®)i) + § in at most

O <m1/3R log (mfi)) calls to a linear system solver.

Proof. From Lemma we get T such that |Z||oo < RM |lw ™). We now want to bound
f(@).

F@ = log(l + ™™y <2RM Y w0,
We next note that for w7 %) > w,,

(T

e _
Pt = = e

This implies that w("") < O(1)w . Therefore,
f(®) < O(Rm).

Now, using this bound on f (%) and T as a starting solution for Algorithm we get our result by
applying Theorem|4.6 O

C Energy Lemma

Lemma C.1. Let A = arg mingq,—. 2" P"RPx. Then one has for any T and 7' such that v’ < r,
/

T(r') < U(r) — - 2(1 - ”) ri(PA);.

7

Proof.
U(r)= min z' P’ RPz.

r=c
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Constructing the Lagrangian and noting that strong duality holds,
U(r) =minmax ' P' RPz+2y (c— Ax)
Ty
—maxmin ' P'RPz+2y'(c— Ax).
Yy T

Optimality conditions with respect to x give us,
2P"RPz*=2A"y.

Substituting this in ¥ gives us,

—1
U(r) =max 2y c— yTA(PTRP) ATy.
y

Optimality conditions with respect to y now give us,
% = 2A<PTRP>_1AT *
which upon re-substitution gives,
U(r)=c' (A(PTRP) _1AT> e
We also note that
o = (PTRP)_IAT (A(PTRP)_lAT)lc. (5)
We now want to see what happens when we change r. Let R denote the diagonal matrix with entries

randlet R = R — S, where § is the diagonal matrix with the changes in the resistances. We will
use the following version of the Sherman-Morrison-Woodbury formula multiple times,

(X+UcCcVv)'=x"'-Xx'U/ct+vxlu)tvx?t

We begin by applying the above formula for X = P'RP, C = —I, U = PTSY2and vV =
S'/2P. We thus get,

(PTR’P)_I - (PTRP)_1 n (PTRP)_lstl/2
(I _ 31/2P(PTRP)1PT31/2> _131/2P(PTRP)1. 6)
‘We next observe that,
I- 51/2P<PTRP)71PT51/2 <1,
which gives us,
(PTR’P)_1 - (PTRP)_l + (PTRP>_1PTSP(PTRP)_1. 7
This further implies,
A(PTR’P)AAT - A(PTRP)AAT n A(PTRP)APTSP (PTRP)AAT ®)
We apply the Sherman-Morrison formula again for, X = A(PTRP)AAT, C =1,

—1 —1
U = A(PTRP) PTSY2 and V = Sl/2P(PTRP) AT, Let us look at the term
cl'+vxlu.

Cl+VX'U=T+ 51/2P<PTRP>_1AT(A(PTRP)_1AT)‘1A(PTRP)_1PT51/2
=TI+ Sl/zP(PTRP)ﬂPTSlm

< I+ SY?R'8Y/2
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Using this, we get,
(A(PTR’P)_lAT> o <X ' XU+ SRSV vy x !,
which on multiplying by ¢ and ¢ gives,
U(r') <U(r)— "X 'UT+ SRSV TIVX e
We note from Equation (5) that * = (PTRP) 71ATX71(}. We thus have,
U(r') < U(r) — () PTSY2(I + SY2R1§Y%) 1812 pg+

=¥(r)— Z(re — r’e)(l gy Te” r/e>1(P:c*)e

Te

€
!/

—W(r) - Z (2";_";) ro(Pz*),

<W(r) - % Z(“reré)re(m*)e

Where the last line follows from the fact 2r, — v/, < 2r.. O

The next lemma is Lemma C.4 in [ABKS21] which is included here for completeness.

Lemma C.2. Let A = argmin gp—, " P RPx. Then one has for any ' and v such that v’ > 7,

(r') > U(r) + Z<1 - :Z)re(PZ)g.

Proof.
U(r) = min ' P' RPx.
Constructing the Lagrangian and noting that strong duality holds,
U(r) =minmax z' P' RPxz+2y' (c— Ax)
Ty

—maxmin ' P'RPz+2y' (c— Ax).
Yy T

Optimality conditions with respect to x give us,
2P "RPz*=2A"y.

Substituting this in ¥ gives us,
-1
U(r) =max 2y c— yTA(PTRP) ATy
y
Optimality conditions with respect to y now give us,
-1
2¢=24(P"RP) ATy,
which upon re-substitution gives,
-1 -1
U(r)=c' (A(PTRP) AT) c.
We also note that

T = (PTRP)ilAT (A(PTRP)lAT) _lc. 9)
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We now want to see what happens when we change r. Let R denote the diagonal matrix with entries
randlet R' = R + S, where S is the diagonal matrix with the changes in the resistances. We will
use the following version of the Sherman-Morrison-Woodbury formula multiple times,

(X+uvecv)yl=x'-x'vect+vx'u)lvx "

We begin by applying the above formulafor X = P'TRP,C =1, U = PTSY?2and v = §Y/2p.
We thus get,

—1 —1 —1
(PTR’P) - (PTRP) - (PTRP) PTSY?
—1 -1 ~1
<I+sl/2P(PTRP) PT51/2) Sl/QP(PTRP) . (10)
‘We next claim that
—1
I+ sl/QP(PTRP) PTSY2 <14 SY2R18Y/2,
which gives us,
-1 1
(PTR’P) < (PTRP) -
—1 —1
(PTRP) PT.S’l/Q(I—i—Sl/QR_l,S’l/Q)‘lsl/zP(PTRP) . an
This further implies,
—1 —1
A(PTR’P) ATjA(PTRP) AT-
-1 -1
A(PTRP) PT51/2(1+51/23—151/2)—151/219(PTRP) AT, (12
-1
We apply the Sherman-Morrison formula again for, X = A(PTRP) AT C = —(I +

-1 -1
S2R-1§Y%)1 U = A(PTRP) PTSY2 and V = SI/QP(PTRP) AT Let us
look at the term C ! + VX ' U.

~(ct+vx U)_l —(r+s*R7's"2 - vx ! U)_l = (I+8V2R™18Y2)7L,
Using this, we get,
(A (PTR,P)IAT> -1 = X' XU+ SYV2RISYY) Tty x !,
which on multiplying by ¢ and ¢ gives,
U(r')>U(r)+ ¢ XU+ SV2PRTISVH)TlvX e
We note from Equation @ that z* = (PTRP) _1ATX710. We thus have,
U(r') > U(r) + (z*) P SV (I+ S/*R7' %) 7182 Pa*

= U(r) + Z(r;;ere)re(Pm*)e.

(&
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