
Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [N/A]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 2
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix for

complete proofs
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [N/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

A Algorithm for General-Self-Concordant Functions

In this section we will show how to use our algorithms for the following classes of general-self-
concordant functions.

1. 6 > ⌫ � 2: f is (N, ⌫)-g.s.c. and L-smooth.
2. ⌫ < 2: f is (N, ⌫)-g.s.c., L-smooth and µ-strongly convex.

We will use the following result to reduce these problems to (M, 2)-g.s.c. problems and use our
algorithms.
Lemma A.1 (Prop 4. [STD19]). Let f be (M, ⌫)-g.s.c. with ⌫ > 0. Then:

(a) If ⌫ 2 (0, 3] and f is also strongly convex with strong convexity parameter µ > 0 in `2-norm,
then f is also

⇣
Mp
µ
3�⌫ , 3

⌘
-g.s.c.

(b) If ⌫ � 2 and rf is Lipschitz continuous with finite Lipschitz constant L in `2-norm, then f
is also

�
ML

⌫
2�1

, 2
�
-g.s.c.

We thus have the following result.
Theorem A.2. For � > 0, f (N, ⌫)-g.s.c. 6 > ⌫ � 2 and L-smooth, let x be the solution returned
by Algorithm 1 (with ✏ = 1) applied to f (x). Now, Algorithm 2 with starting solution x (0) = x ,
applied to f finds ex such that Aex = b and

P
i
f (Pex i) 

P
i
f (Px ?

i
) + � in at most

O

0

@m
1/3

NL
⌫�2
2 R log

f (x (0))� f (x ?))

�

!1

A

calls to a linear system solver.

Proof. From Lemma A.1, f is (NL
(⌫�2)/2

, 2)-g.s.c. We now use Lemma 3.3 with M = NL
(⌫�2)/2

followed by Theorem 4.6.

Theorem A.3. For � > 0, f (N, ⌫)-g.s.c. 2 > ⌫ � 0 and L-smooth µ-strongly convex, let x be
the solution returned by Algorithm 1 (with ✏ = 1) applied to f (x). Now, Algorithm 2 with starting
solution x (0) = x , applied to f finds ex such that Aex = b and

P
i
f (Pex i) 

P
i
f (Px ?

i
) + � in

at most

O

0

@m
1/3

Nµ
� 3�⌫

2 L
1/2

R log

f (x (0))� f (x ?))

�

!1

A

calls to a linear system solver.

Proof. From Lemma A.1, f is (Nµ
� 3�⌫

2 L
1/2

, 2)-g.s.c. We now use Lemma 3.3with M =

Nµ
� 3�⌫

2 L
1/2 followed by Theorem 4.6.

B Missing Proofs

B.1 Proofs from Section 2

Definition B.1. [Hessian Stability] For distance r 2 R�0 and function d : R�0 ! R�0 acting on r,
a function f is (r,d(r))-hessian stable w.r.t. a norm k · k if for all x ,y such that kx � yk  r,

1

d(r)
r2f (x) � r2f (y) � d(r)r2f (x)

Lemma B.2 (Lemma 11 [CJJ+20]). If f is a univariate M -quasi-self-concordant (q.s.c.) function,
then f (x) =

P
i
f (x i) is (r, eMr) hessian stable in the `1-norm.

14

Lemma 2.4. For ✏ > 0, resistances r (Definition 2.3), with corresponding weights w , we have

 (r)  (1 + ✏)�(w).

In addition, letting kPkmin = minAx=b kPxk2 and kAk denote the operator norm of A, we have

 (r) � ✏�(w)

mR2

kPk2minkbk22
kAk2

def
= �(w)L.

Proof. Let e� be the minimizer of (r) and x ? be the optimum of (1).

 (r) =
X

i

r i(P e�)2
i

X

i

r i(Px ?)2
i

=
X

i

✓
f 00(w i) +

✏�(w)

m

◆
(Px ?)2

i

R2


X

i

f 00(w i) +
✏�(w)

m
·m, Since kPx ?k1  R

= �(w)(1 + ✏)

We next look at a lower bound for . We note that, any solution to the oracle must satisfy Ae� = b .
This implies, kAkke�k2 � kbk2, where k · k denotes the operator norm. Now,

 (r) � ✏�(w)

mR2
kP e�k22 � ✏�(w)

mR2
kPk2minke�k22 � ✏�(w)

mR2

kPk2minkbk22
kAk2 .

Lemma B.3. X

i

f 00(w i)|P e�|i  (1 + ✏)R�(w)

Proof.
X

i

f 00(w i)|P e�|i 
sX

i

f 00(w i)
X

i

f 00(w i)|P e�|2
i

Cauchy Schwarz


p
�(w)

p
R2 (r)

 R

p
�(w)

p
(1 + ✏)�(w) From Lemma 2.4

= R(1 + ✏)�(w).

B.2 Proofs from Section 3

Change in

Lemma 3.1. Let be as defined in 2.3. After t flow steps and k width reduction steps, we have,

 (r (t,k)) � (r (0,0))

1 +

✏
2
⌧
2

(1 + ✏)2m

!k

if f 00 non-decreasing in w ,

 (r (t,k))  (r (0,0))

1� ✏

2
⌧
2

2(1 + ✏)2m

!k

if f 00 non-increasing in w .

Proof. We show this by induction. It is clear that this holds for t = k = 0. We know from Lemma
C.2, for r 0 � r ,

 (r 0) � (r) +
X

i

1� r i

r 0
i

!
r i(P e�)2

i
.

15

Since the weights are only increasing, this corresponds to the case f 00 is an increasing function.
Similarly, when f 00 is a non-increasing function, we have the following bound: for r 0  r from
Lemma C.1,

 (r 0)  (r)� 1

2

X

i

✓
1� r 0

i

r i

◆
r i(P e�)2

i
.

We first consider a flow step. We note that our weights w are increasing, and if f 00 is increasing then
r (t+1) � r (t). Similarly if f 00 is decreasing, r (t+1,k)  r (t,k). We can use the above relations to
now get (r (t+1,k)) � (r (t,k)) for the first case and (r (t+1,k))  (r (t,k)) for the second. We
next consider a width reduction step. Let i be one edge that has |P e�i| � R⌧ . We have,

r (t,k)
i

(P e�)2
i
� ✏�(w (t,k))

R2m
|P e�|2

i
� ✏�(w (t,k))

R2m
R

2
⌧
2 � ✏⌧

2

(1 + ✏)m
 (r (t,k)),

where the last inequality follows from Lemma 2.4. Now, since we are changing our resistances by a
factor of (1 + ✏), we get the following bounds for the two cases,

 (r (t,k+1)) � (r (t,k)) +

✓
1� r i

(1 + ✏)r i

◆
✏⌧

2

(1 + ✏)m
 (r (t,k)) = (r (t,k))

1 +

✏
2
⌧
2

(1 + ✏)2m

!
,

 (r (t,k+1))  (r (t,k))�1

2

✓
1� r i/(1 + ✏)

r i

◆
✏⌧

2

(1 + ✏)m
 (r (t,k)) = (r (t,k))

1� ✏

2
⌧
2

2(1 + ✏)2m

!
.

With these two relations we conclude our proof.

Change in �

Lemma 3.2. Suppose f is M -q.s.c. Let ↵ and ⌧ be such that ↵⌧  M
�1. After t flow steps and k

width reduction steps, our potential � satisfies

�(w (t,k)) 
⇣
1 + ✏(1 + ✏)2↵M

⌘t⇣
1 + ✏(1 + ✏)⌧�1

⌘k
�(w0) if f 00 non-decreasing in w ,

�(w (t,k)) �
⇣
1� ✏(1 + ✏)2↵M

⌘t⇣
1� ✏(1 + ✏)⌧�1

⌘k
�(w0) if f 00 non-increasing in w .

Proof. We first show the case when f 00 is increasing. The same calculation will work for the other
case too by just considering the sign of �0.

We will use induction. It is easy to see the claim holds for the initial iteration, t = k = 0. We
next assume that it holds for some w (t,k). If the next step is a flow step, we update to w (t+1,k) 
w (t,k) + ✏↵⌧ . Since ↵⌧  M

�1, we have that � is (M�1
, e

✏) hessian stable around this update. We
will use w to denote w (t,k) for simplicity. We thus have,

�(w (t+1)) =�

✓
w +

✏↵

R
|P e�|

◆

=�(w) +
✏↵

R
r�(y)>|P e�|

(For some y between w and w + ↵|P�|)

=�(w) +
✏↵

R

X

i

f 000(y i)|P e�|i

�(w) +
✏↵

R
M

X

i

f 00(y i)|P e�|i

(Since f is M -q.s.c.)

�(w) +
✏↵

R
Me

✏
X

i

f 00(w i)|P e�|i

(Since f is hessian stable in this range)

�(w) + ✏(1 + ✏)2↵M�(w)

(From Lemma B.3)

16

We thus get the following bound,

�(w (t+1,k))  �(w (t,k))
⇣
1 + ✏(1 + ✏)2↵M

⌘
.

Now, suppose the next step is a width reduction step.

�(w (t,k+1)) =
X

i/2I

�(w i) +
X

i2I
�
⇣
w (t+1)

i

⌘

=
X

i/2I

�(w i) +
X

i2I
f 00
⇣
w (t+1)

i

⌘


X

i/2I

�(w i) + (1 + ✏)
X

i2I
f 00(w i)

�(w) +
✏

R⌧

X

i2I
f 00(w i)|P e�|i

�(w) +
✏

R⌧

X

i

f 00(w i)|P e�|i

�(w) +
✏(1 + ✏)

⌧
�(w)

From Lemma B.3

We thus get the following bound,

�(w (t,k+1))  �(w (t,k))
⇣
1 + ✏(1 + ✏)⌧�1

⌘
.

B.3 Proofs from Section 4

Iterative Refinement

Lemma B.4. Let f be a (r, d(r))-hessian stable function in `1-norm, and ex = x +� such that
k�k1  r. We then have,

1

d(r)
�>r2f (x)�  f (ex)� f (x)�rf (x)>�  d(r)�>r2f (x)�,

Proof. We have for some z along the line joining x and ex ,

f (ex) = f (x) +rf (x)>�+�>r2f (z)�.

Since kz � xk1  kex � xk1  r, from hessian stability, we have,

1

d(r)
r2f (x) � r2f (z) � d(r)r2f (x).

Using this relation in the above, we get our lemma.

Lemma B.5. Let � be any feasible solution to the residual problem at x . We then have,

f (x)� f (x ��)  res(�), f (x)� f (x � e
�2�) � e

�2 · res(�),

Proof. Since our function is M -q.s.c., from Lemmas B.4 and B.2, for all � such that kP�k1 
M

�1,

e
�1(P�)>r2f (x)P�  f (x ��)� f (x) +rf (x)>P�  e(P�)>r2f (x)P�.

17

The first bound directly follows from the left inequality. For the second bound, we first note that
e
�2kP�k  M

�1. We can now use the right inequality.
f (x)� f (x � e

�2�) � e
�2rf (x)>P�� e

�3(P�)>r2f (x)P�

= e
�2
⇣
rf (x)>P�� e

�1(P�)>r2f (x)P�
⌘

= e
�2

res(�).

Lemma B.6. Assume f is M -q.s.c. Let x ? denote the minimizer of Problem (1) and�? the optimizer
of Problem (3) at x (t). We then have,

res(�?) � 1

4MR

⇣
f (x (t))� f (x ?)

⌘
.

Proof. Let x (t) be such that Ax (t) = b and x ? is the optimum of (1). Note that we have
kPx (t)k1  R and therefore,

���Px (t) �Px ?

���
1

 2R. Let r = 1
2M and x =

�
1� r

2R

�
x (t) +

r

2Rx ?. Let e� = x (t) � x = r

2R (x (t) � x ?). We have,
���P e�

���
1

=
���Px (t) �Px

���
1

=
r

2R

���Px (t) �Px ?

���
1

 r,

and
Ae� = A(x (t) � x) =

r

2R
(�Ax ? +Ax (t)) = 0.

We next show that
���P e�� z

���
1

 1
2M .

���P e�� z
���
1

=

����
r

2R
Px (t) � r

2R
Px ? � z

����
1

We will do a case by case analysis. Consider some coordinate i.

1. Px (t)
i

� 1
2M < �R: From the definition of z i, we note that z i = R � 1

2M +Px (t)
i

and
�R < Px (t)

i
 �R+ 1

2M . Suppose Px (t)
i

= �R+ a for some 0  a <
1

2M . We have,
���P e�� z

���
i

=

����
r

2R
(Px (t)

i
�Px ?

i
)� z i

����

=

����
r

2R
(�R+ a�Px ?

i
)� a+

1

2M

����

=

�����
r

2R
(�R�Px ?

i
)� a

✓
1� r

2R

◆
+

1

2M

�����

 1

2M
.

The last inequality follows since �2R  �R�Px ?

i
 0.

2. Px (t)
i

+ 1
2M > R: From the definition of z i, we note that z i = �R + 1

2M +Px (t)
i

and
R� 1

2M < Px (t)
i

 R. Suppose Px (t)
i

= R� a for some 0  a <
1

2M . We have,
���P e�� z

���
i

=

����
r

2R
(Px (t)

i
�Px ?

i
)� z i

����

=

����
r

2R
(R� a�Px ?

i
) + a� 1

2M

����

=

�����
r

2R
(R�Px ?

i
) + a

✓
1� r

2R

◆
� 1

2M

�����

 1

2M
.

The last inequality follows since 0  R�Px ?

i
 2R.

18

3. �R+ 1
2M  Px (t)

i
 � 1

2MR: In this case z i = 0.
���P e�� z

���
i

=

����
r

2R
(Px (t)

i
�Px ?

i
)

����  r =
1

2M
.

We thus conclude, that x � x (t) is a feasible solution for the residual problem and from convexity,
r

2R

⇣
f (x (t))� f (x ?)

⌘
 f (x (t))� f (x).

Let �? denote the optimum of the residual problem at x (t) (3). From Lemma B.5,
r

2R

⇣
f (x (t))� f (x ?)

⌘
 f (x (t))� f (x)  res

⇣
x (t) � x

⌘
 res(�?).

Lemma 4.2. [Iterative Refinement] Let f be M -q.s.c. and e�(t) a -approximate solution to the
residual problem at x (t) (Problem (3)). Starting from x (0) such that Ax (0) = b , kx (0)k1  R, and

iterating as x (t+1) = x (t) � e
�2 e�(t), after at most O

MR log

✓
f (x (0))�f (x?)

✏

◆!
iterations we

get x such that Ax = b and f (x)  f (x ?) + ✏.

Proof. From Lemma B.6,

res(e�(t)) � 1


res(�?) � 1

4MR

⇣
f (x (t))� f (x ?)

⌘
.

Now, from Lemma B.5,

f (x (t+1))� f (x ?)  f (x (t))� f (x ?)� e
�2

res(e�(t)) 

1� e

�2

4MR

!⇣
f (x (t))� f (x ?)

⌘
.

Inductively applying the above equation,

f (x (T))� f (x ?) 

1� e

�2

4MR

!T⇣
f (x (0))� f (x ?)

⌘
.

Binary Search

Lemma 4.3. Let ⌫ be such that f (x (t)) � f (x ?) 2 (⌫/2, ⌫] and �? denote the optimum of the
residual problem at x (t). Then, res(�?) 2

�
⌫

8MR
, e

2
⌫
⇤
.

Proof. The lower bound follows form B.6. For the upper bound, from B.5,

⌫ � f (x (t))� f (x ?) � f (x (t))� f (x � e
�2�?) � e

�2
res(�?).

Lemma 4.4. Let ⇣ be such that res(�?) 2 (⇣/2, ⇣] and �? the optimum of the residual problem.
Then, (P�?)>r2f (x)P�?  e · ⇣.

Proof. Consider scaling �? by O(1) > � > 0. We must have,

d

d�
res(��?)

�

�=1

= 0.

This implies,
rf (x)>P�? � 2e�1(P�?)>r2f (x)P�? = 0,

or

e
�1(P�?)>r2f (x)P�? = rf (x)>P�? � e

�1(P�?)>r2f (x)P�? = res(�?)  ⇣.

19

Width Reduction

Lemma 4.5. Let ⇣ be such that res(�?) 2 (⇣/2, ⇣]. Algorithm 3 returns y such that Ay = 0,
kPy � zk1  1

2M and res(y) � 1
400res(�

?) in O(m1/3) calls to a linear system solver.

Proof. This algorithm is basically an implementation of the width-reduced MWU algorithm from
[CKM+11]. We will give a proof for completeness. For the purpose of this proof, we denote,

 (r) = min
A�=0,rf (x)>P�=⇣/2

X

j

0

@f 00(x j)(P�)2
j
+
X

j

4M2

✓
w j +

kwk1
m

◆1

A(P�� z)2
j
,

�(w) = kwk1.
Let e� be the solution returned by . We first note that, for �? the optimum of the residual problem,

 (r) 
X

j

0

@f 00(x j)(P�
?)2

j
+
X

j

4M2

✓
w j +

kwk1
m

◆1

A(P�? � z)2
j

 e · ⇣ +
X

j

4M2

✓
w j +

kwk1
m

◆
(P�? � z)2

j
, From Lemma 4.4

 e · ⇣ + kwk1 + �(w), Since kP�? � zk1  1

2M
 (e+ 2)�(w).

We note that,
X

j

w j(4M)(P e�� z)j 
sX

j

w j

X

j

w j(4M)2(P e�� z)2
j

p
�(w) (r) 

p
e+ 2�(w).

(4)
For a flow step, from the above calculation, note that,

�(w (t+1)) =
X

j

w j+
↵

2

X

j

w jM(P e��z)j  �(w (t))+

p
e+ 2

8
↵�(w (t)) = �(w (t))(1 + ↵).

For a width reduction step let I denote the indices which have the weights doubled,

�(w (t+1)) =
X

j /2I

w (t)
j

+ 2
X

j2I
w (t)

j
 �(w (t)) +

2

⌧

X

j2I
w (t)

j
(2M)|P e�� z |j

 �(w (t)) +

p
e+ 2

⌧
�(w)  �(w (t)

⇣
1 + 3⌧�1

⌘
.

We can bound the number of width reduction steps by O(m/⌧
2) similar to Lemma 3.1. We now

show that our final solution has k 1
T
Py � zk1  1

2M . After T iterations, let j denote the index with

max value in vector w . For ↵⌧  1,
⇣
1 + ↵

2M |P e�� z |j
⌘
� exp

⇣
3
4↵M |P e�� z |j

⌘
.

10⇣ � �(wT) � w (T)
j

� ⇣

m
⇧T

t=1

✓
1 +

↵

2
M |P e�(t) � z |j

◆

� ⇣

m
exp

3

8
↵(2M)

X

t

|P e�(t) � z |j

!
=

⇣

m
exp

✓
3

8
↵(2M)(Py � Tz)j

◆
.

We thus have for all coordinates j and T � ↵
�1

O(logm),

|Py � Tz |
j

T
 O(M�1 logm)

↵T
 1

2M
.

It remains to show that y/(100T) has the required value for the residual. First note that,

rf (x)>
y

100T
=

1

100T

X

t

rf (x)>P e�(t) =
⇣

2 · 100 .

20

We next look at the quadratic term.

1

(100)2T 2

X

j

f 00(x j)y
2
j
=

1

T 2(100)2

X

j

f 00(x j)

X

t

|P e�(t)|j

!2

 1

T 2(100)2

X

j

T

X

t

f 00(x j)|P e�(t)|2
j
=

1

T (100)2

X

t

 (r (t))

 1

T (100)2
T (e+ 2)�(w (T))  10(e+ 2)

(100)2
⇣.

Choose c such that we have,

e
�1 1

(100)2

X

j

f 00(x j)y
2
j
 ⇣

4 · 100 .

We thus have,

res

✓
y

100T

◆
= rf (x)>

y

100T
� e

�1 1

(100)2T 2

X

j

f 00(x j)y
2
j
� ⇣

4 · 100 � 1

400
res(�?).

B.4 Proofs from Section 5

Sum of exponential, soft-max and `1regression

Theorem 5.2. Let x ? denote the optimum of the `1-regression problem, minAx=b kPxk1. Algo-
rithm 1 when applied to the function f (Px) =

P
i

⇣
e

(Px)i
⌫ + e

�(Px)i
⌫

⌘
for ⌫ = ⌦

⇣
✏

logm

⌘
, returns ex

such that Aex = b and
kPexk1  (1 + ✏)kPx ?k1,

in at most eO(m1/3
✏
�5/3) calls to a linear system solve.

Proof. Let Q =


P

�P

�
. We note that f (x) =

P
i
e

(Qx)i
⌫ . Let x denote the optimum of f , which is

also the optimum of smax⌫(Qx). We have the following relation,
8x , kPxk1  smax⌫(Qx)  kPxk1 + ⌫ logm.

Let R = kPx ?k1 (we can find this up to ✏ error using binary search), then the above relation implies
smax⌫(Qx)  R(1 + ✏). From Theorem 5.1,

kPexk1  smax⌫(Qex)  R(1 + ✏) = kPx ?k1(1 + ✏).

Theorem 5.3. For � > 0, let x be the solution returned by Algorithm 1 (with ✏ = 1) applied to
f (Px) =

P
i
e

(Px)i
⌫ . Now, Algorithm 2 with starting solution x (0) = x , applied to f finds ex such

that Aex = b and
P

i
e

(Pex)i
⌫  (1 + �)

P
i
e

(Px?)i
⌫ in at most O

⇣
m

1/3
R

2
⌫
�2 log

�
m

�

�⌘
calls to a

linear system solver.

Proof. From Lemma 3.3, Algorithm 1 returns x in O(m1/3) iterations such that Ax = b

and kPxk1  MRkw (T,K)k1. Since 1
⌫2

P
i
e

w
(T,K)
i

⌫ = �(w (T,K))  �(w0)e5, we have
kw (T,K)k1  5⌫. This gives, kPxk1  5R. We next bound the function value.

f (Px) =
X

i

e
Pxi
⌫ 

X

i

e

w
(T,K)
i MR

⌫ .

If MR  1, then f (Px)  ⌫
2�(w (T,K))  m. Otherwise,

f (Px) 
X

i

e

w
(T,K)
i

⌫

!MR



0

@
X

i

e

w
(T,K)
i

⌫

1

A
MR

 (⌫2�(w (T,K)))MR  O(mMR).

Now, we use Algorithm 2. Using the above calculated bounds in Theorem 4.6, we get our result.

21

`p-Regression

Theorem 5.4. For � > 0 and p � 3, let x be the solution returned by Algorithm 1 (with ✏ = 1) applied
to f (Px) = kPxkp

p
+µkPxk22. Now, Algorithm 2 with starting solution x (0) = x , applied to f finds

ex such that Aex = b and f (Pex)  f (Px ?) + � in at most O
✓
p
2
µ
�1/(p�2)

m
1/3

R log
⇣

pmR

µ�

⌘◆

calls to a linear system solver.

Proof. From Lemma 3.3, we get x such that kxk1  RMkw (T,K)k1. We now want to bound
f (x).

f (x) = (RM)pkw (T,K)kp
p
+ µ(RM)2kw (T,K)k22.

We next note that for w (T,K) � w0 = 1,

�(w (T,K)) = p(p� 1)kw (T,K)kp�2
p�2 + 2µ  �(w0)e

O(1)
.

This implies that w (T,K)  O(1)w0 and kw (T,K)k1  O(1). Therefore,

f (x) 
�
(O(1)RM

�p
m.

Now, using this bound on f (x) and x as a starting solution for Algorithm 2, we get our result by
applying Theorem 4.6.

B.4.1 Logistic Regression

Theorem 5.5. For � > 0, let x be the solution returned by Algorithm 1 (with ✏ = 1) applied
to f (Px) =

P
i
log(1 + e

(Px)i). Now, Algorithm 2 with starting solution x (0) = x , applied
to f finds ex such that Aex = b and

P
i
log(1 + e

(Pex)i) 
P

i
log(1 + e

(Px?)i) + � in at most

O

✓
m

1/3
R log

⇣
mR

�

⌘◆
calls to a linear system solver.

Proof. From Lemma 3.3, we get x such that kxk1  RMkw (T,K)k1. We now want to bound
f (x).

f (x) =
X

i

log(1 + e
RMw(T,K)

i)  2RM

X

i

w (T,K)
i

.

We next note that for w (T,K) � w0,

�(w (T,K)) =
X

i

e
w(T,K)

i

(1 + ew
(T,K)
i)2

� �(w0)e
�O(1)

.

This implies that w (T,K)  O(1)w0 . Therefore,

f (x)  O(Rm).

Now, using this bound on f (x) and x as a starting solution for Algorithm 2, we get our result by
applying Theorem 4.6.

C Energy Lemma

Lemma C.1. Let e� = argminAx=c x>P>RPx . Then one has for any r and r 0 such that r 0  r ,

 (r 0)  (r)� 1

2

X

i

✓
1� r 0

i

r i

◆
r i(P e�)i.

Proof.
 (r) = min

Ax=c
x>P>RPx .

22

Constructing the Lagrangian and noting that strong duality holds,

 (r) = min
x

max
y

x>P>RPx + 2y>(c �Ax)

= max
y

min
x

x>P>RPx + 2y>(c �Ax).

Optimality conditions with respect to x give us,

2P>RPx ? = 2A>y .

Substituting this in gives us,

 (r) = max
y

2y>c � y>A
⇣
P>RP

⌘�1
A>y .

Optimality conditions with respect to y now give us,

2c = 2A
⇣
P>RP

⌘�1
A>y?

,

which upon re-substitution gives,

 (r) = c>
✓
A
⇣
P>RP

⌘�1
A>
◆�1

c.

We also note that

x ? =
⇣
P>RP

⌘�1
A>
✓
A
⇣
P>RP

⌘�1
A>
◆�1

c. (5)

We now want to see what happens when we change r . Let R denote the diagonal matrix with entries
r and let R0 = R � S , where S is the diagonal matrix with the changes in the resistances. We will
use the following version of the Sherman-Morrison-Woodbury formula multiple times,

(X +UCV)�1 = X�1 �X�1U (C�1 +VX�1U)�1VX�1
.

We begin by applying the above formula for X = P>RP , C = �I , U = P>S1/2 and V =
S1/2P . We thus get,
⇣
P>R0P

⌘�1
=
⇣
P>RP

⌘�1
+
⇣
P>RP

⌘�1
P>S1/2

✓
I � S1/2P

⇣
P>RP

⌘�1
P>S1/2

◆�1

S1/2P
⇣
P>RP

⌘�1
. (6)

We next observe that,

I � S1/2P
⇣
P>RP

⌘�1
P>S1/2 � I ,

which gives us,
⇣
P>R0P

⌘�1
⌫
⇣
P>RP

⌘�1
+
⇣
P>RP

⌘�1
P>SP

⇣
P>RP

⌘�1
. (7)

This further implies,

A
⇣
P>R0P

⌘�1
A> ⌫ A

⇣
P>RP

⌘�1
A> +A

⇣
P>RP

⌘�1
P>SP

⇣
P>RP

⌘�1
A>

. (8)

We apply the Sherman-Morrison formula again for, X = A
⇣
P>RP

⌘�1
A>, C = I ,

U = A
⇣
P>RP

⌘�1
P>S1/2 and V = S1/2P

⇣
P>RP

⌘�1
A>. Let us look at the term

C�1 +VX�1U .

C�1 +VX�1U = I + S1/2P
⇣
P>RP

⌘�1
A>(A

⇣
P>RP

⌘�1
A>)�1A

⇣
P>RP

⌘�1
P>S1/2

� I + S1/2P
⇣
P>RP

⌘�1
P>S1/2

� I + S1/2R�1S1/2
.

23

Using this, we get,
✓
A
⇣
P>R0P

⌘�1
A>
◆�1

� X�1 �X�1U (I + S1/2R�1S1/2)�1VX�1
,

which on multiplying by c> and c gives,

 (r 0)  (r)� c>X�1U (I + S1/2R�1S1/2)�1VX�1c.

We note from Equation (5) that x ? =
⇣
P>RP

⌘�1
A>X�1c. We thus have,

 (r 0)  (r)� (x ?)>P>S1/2(I + S1/2R�1S1/2)�1S1/2Px ?

= (r)�
X

e

(re � r 0
e
)

✓
1 +

re � r 0
e

re

◆�1

(Px ?)e

= (r)�
X

e

✓
re � r 0

e

2re � r 0
e

◆
re(Px ?)e

 (r)� 1

2

X

e

✓
re � r 0

e

re

◆
re(Px ?)e

Where the last line follows from the fact 2re � r 0
e
 2re.

The next lemma is Lemma C.4 in [ABKS21] which is included here for completeness.

Lemma C.2. Let e� = argminAx=c x>P>
RPx . Then one has for any r 0 and r such that r 0 � r ,

 (r 0) � (r) +
X

e

✓
1� re

r 0
e

◆
re(P e�)2

e
.

Proof.
 (r) = min

Ax=c
x>P>RPx .

Constructing the Lagrangian and noting that strong duality holds,

 (r) = min
x

max
y

x>P>RPx + 2y>(c �Ax)

= max
y

min
x

x>P>RPx + 2y>(c �Ax).

Optimality conditions with respect to x give us,

2P>RPx ? = 2A>y .

Substituting this in gives us,

 (r) = max
y

2y>c � y>A
⇣
P>RP

⌘�1
A>y .

Optimality conditions with respect to y now give us,

2c = 2A
⇣
P>RP

⌘�1
A>y?

,

which upon re-substitution gives,

 (r) = c>
✓
A
⇣
P>RP

⌘�1
A>
◆�1

c.

We also note that

x ? =
⇣
P>RP

⌘�1
A>
✓
A
⇣
P>RP

⌘�1
A>
◆�1

c. (9)

24

We now want to see what happens when we change r . Let R denote the diagonal matrix with entries
r and let R0 = R + S , where S is the diagonal matrix with the changes in the resistances. We will
use the following version of the Sherman-Morrison-Woodbury formula multiple times,

(X +UCV)�1 = X�1 �X�1U (C�1 +VX�1U)�1VX�1
.

We begin by applying the above formula for X = P>RP , C = I , U = P>S1/2 and V = S1/2P .
We thus get,
⇣
P>R0P

⌘�1
=
⇣
P>RP

⌘�1
�
⇣
P>RP

⌘�1
P>S1/2

✓
I + S1/2P

⇣
P>RP

⌘�1
P>S1/2

◆�1

S1/2P
⇣
P>RP

⌘�1
. (10)

We next claim that

I + S1/2P
⇣
P>RP

⌘�1
P>S1/2 � I + S1/2R�1S1/2

,

which gives us,
⇣
P>R0P

⌘�1
�
⇣
P>RP

⌘�1
�

⇣
P>RP

⌘�1
P>S1/2(I + S1/2R�1S1/2)�1S1/2P

⇣
P>RP

⌘�1
. (11)

This further implies,

A
⇣
P>R0P

⌘�1
A> � A

⇣
P>RP

⌘�1
A>�

A
⇣
P>RP

⌘�1
P>S1/2(I + S1/2R�1S1/2)�1S1/2P

⇣
P>RP

⌘�1
A>

. (12)

We apply the Sherman-Morrison formula again for, X = A
⇣
P>RP

⌘�1
A>, C = �(I +

S1/2R�1S1/2)�1, U = A
⇣
P>RP

⌘�1
P>S1/2 and V = S1/2P

⇣
P>RP

⌘�1
A>. Let us

look at the term C�1 +VX�1U .

�
⇣
C�1 +VX�1U

⌘�1
=
⇣
I + S1/2R�1S1/2 �VX�1U

⌘�1
⌫ (I + S1/2R�1S1/2)�1

.

Using this, we get,
✓
A
⇣
P>R0P

⌘�1
A>
◆�1

⌫ X�1 +X�1U (I + S1/2R�1S1/2)�1VX�1
,

which on multiplying by c> and c gives,

 (r 0) � (r) + c>X�1U (I + S1/2R�1S1/2)�1VX�1c.

We note from Equation (9) that x ? =
⇣
P>RP

⌘�1
A>X�1c. We thus have,

 (r 0) � (r) + (x ?)>P>S1/2(I + S1/2R�1S1/2)�1S1/2Px ?

= (r) +
X

e

✓
r 0
e
� re

r 0
e

◆
re(Px ?)e.

25

