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Figure 1: (a) Zero-shot color transfer between 3D assets. (b) In real-world robotic experi-
ments, we use DenseMatcher to transfer a manipulation sequence to the robot from a single human
demonstration. Circles represent the contact points in the human demo / grasping points for robot
manipulation.

ABSTRACT

Dense 3D correspondence can enhance robotic manipulation by enabling the gen-
eralization of spatial, functional, and dynamic information from one object to
an unseen counterpart. Compared to shape correspondence, semantic correspon-
dence is more effective in generalizing across different object categories. To this
end, we present DenseMatcher, a method capable of computing 3D correspon-
dences between in-the-wild objects that share similar structures. DenseMatcher
first computes vertex features by projecting multiview 2D features onto meshes
and refining them with a 3D network, and subsequently finds dense correspon-
dences with the obtained features using functional map. In addition, we craft
the first 3D matching dataset that contains colored object meshes across diverse
categories. We demonstrate the downstream effectiveness of DenseMatcher in
(i) robotic manipulation, where it achieves cross-instance and cross-category
generalization on long-horizon complex manipulation tasks from observing only
one demo; (ii) zero-shot color mapping between digital assets, where appearance
can be transferred between different objects with relatable geometry. More de-
tails and demonstrations can be found at https://tea-lab.github.io/
DenseMatcher/.

1 INTRODUCTION

Correspondence plays a pivotal role in robotics Wang (2019). By establishing correspondences, we
can enable the robot to identify semantically similar components between two objects, which is cru-
cial for various day-to-day manipulation tasks. For instance, in robotic assembly, it is necessary to
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Figure 3: Predicted correspondences on few-shot categories. DenseMatcher can generalize across
diverse topological variations, given only 5 training examples per category. To ensure that the model
is not reliant on canonical spatial poses, we randomly rotate the mesh before the test procedure.

determine the corresponding parts between the target and source objects. Furthermore, recent stud-
ies Ju et al. (2024); Kuang et al. (2024) illustrate the capacity to infer the affordances of previously
unseen objects through correspondences with a known reference.

Correspondences can be classified along two axes: density and dimensionality. In 2D scenarios,
sparse correspondence focuses on matching a limited set of keypoints, while dense correspondence
takes spatial proximity into account and aligns every pixel between images. Similarly, in 3D, sparse
methods align key points of point clouds or meshes, whereas dense correspondence considers the
entire structure for alignment.

Figure 2: The 4 types of correspon-
dence. The reference image is on the
left, while the right side demonstrates
1) 3D dense, 2) 3D sparse, 3) 2D dense,
and 4) 2D sparse correspondences.

Among these types, 3D dense correspondence is particu-
larly advantageous for robotic manipulation, as it ensures
continuity by smooth mappings between surfaces. This
is crucial for tasks requiring precise multi-point contact
and positioning. Additionally, 3D correspondence avoids
common 2D ambiguities like distortions from changing
viewpoints or occlusions, enhancing a robot’s ability to
interact accurately with real-world objects.

However, existing datasets and methods for 3D dense cor-
respondence (Pratikakis et al., 2016; Dyke et al., 2019;
Bogo et al., 2014b; Zuffi et al., 2017; Halimi et al., 2019;
Hedlin et al., 2023; Groueix et al., 2018b) often focus on
geometry and ignore textures or color information. This
limits the ability of models to effectively combine appearance and geometry information, both of
which are essential for semantic understanding. In addition, they typically only contain a single or
few categories (e.g. humans, four-legged animals), which further limits the generalization ability of
models. As a result, prior methods generating dense 3D features can be divided into two categories:
(1) 3D networks that only utilize geometry information and are trained on category-specific datasets
(Cao et al., 2023; Halimi et al., 2019), which do not generalize well to unseen objects, or (2) models
that naively average multiview appearance features from frozen 2D networks (Dutt et al., 2024) and
do not utilize any geometry information, which suffer from noise due to varying visibility and pixel
coordinates for each vertex, and lack global 3D consistency.

To address this, we release DenseCorr3D, the first 3d matching dataset containing colored meshes
with dense correspondence annotations, with 600 densely annotated assets across 24 categories. In
addition, we develop DenseMatcher, a model framework that combines both the powerful gen-
eralization capability of 2D foundation models with the geometric undertanding of 3D networks.
DenseMatcher first computes per-vertex mesh features by projecting multiview features from 2D
foundation models onto 3D meshes, before refining them with a lightweight 3D network. It then
calculates dense correspondences using the refined features via functional map, which we improve
with several novel constraints.

We further demonstrate the downstream effectiveness of DenseMatcher by performing complex
long-horizon robotic manipulation experiments based on only a single demonstration of hand-
object interaction. Finally, we further showcase the quality of our correspondence by presenting
several examples of color transfer from one mesh to another without any additional supervision.

In summary, we make the following contributions: (i) a novel 3d matching dataset that remedies
the lack of texture information and categories in previous datasets, (ii) a 3D dense correspondence
model framework that bridges the gap between 2D and 3D neural networks (iii) comprehensive 3D
matching, robotic manipulation, and color transfer experiments.
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Figure 4: Semantic group annotations examples of apple, banana, animals (deer, tiger, elephant),
and chairs. Different colors represent different semantic groups across the same category. DenseC-
orr3D contains objects of varying topologies and structures, both across and within categories.

2 RELATED WORKS

3D Correspondence. 3D correspondence, or shape correspondence, which focuses on establish-
ing meaningful correspondences between shapes or surfaces, can be categorized into two main ap-
proaches: deformation-based correspondence and mapping-based correspondence. Deformation-
based methods focus on tracking an object to its deformed version, often using a canonical template.
While simple and direct, these methods do not apply to surfaces under non-isometric transforma-
tions (Groueix et al., 2018a;b; Luiten et al., 2024). On the other hand, mapping-based methods such
as functional map (Ovsjanikov et al., 2012) establish continuous mappings between two arbitrary
surfaces, often leveraging spectral features such as Laplace-Beltrami eigenfunctions (Donati et al.,
2020; Roetzer & Bernard, 2024). However, most prior approaches focus on shape features and de-
pend on carefully designed geometric descriptors like Wave Kernel Signature (WKS) (Aubry et al.,
2011), or deep features learned from untextured shapes (Cao & Bernard, 2022; Cao et al., 2023),
while ignoring semantic relationships between objects.

Recently, powerful 2D foundation models such as DINO (Oquab et al., 2023; Caron et al., 2021) and
Stable Diffusion (Rombach et al., 2021) have enabled deep feature-based 2D semantic correspon-
dence (Amir et al., 2021; Zhang et al., 2023; Tang et al., 2023; Luo et al., 2024), offering powerful
representations extendable to 3D. In particular, Diff3F Dutt et al. (2024) projects such 2D features
onto 3D shapes and performs averaging across views. However, Diff3F focuses on untextured shapes
and additionally does not incorporate shape information, resulting in noisy and inconsistent 3D fea-
tures. Our method addresses this by adding a 3D neural network, DiffusionNet (Sharp et al., 2022),
to refine 2D features with 3D geometry, producing spatially consistent and informative features.

Semantic Correspondence for Robotics. Semantic correspondence helps robots to understand
and reason about the relationships within a scene. Florence et al. (2018) utilizes correspondences to
map human actions to robots. Recent work Ju et al. (2024) develops a method for few-shot transfer
of affordances by querying retrieved objects, and Kuang et al. (2024) extends it to 3D. Xue et al.
(2023) infers poses from detected point cloud keypoints for transfering grasps to similar objects
with arbitrary poses. Yuan et al. (2024) proposes a multi-view contrastive objective to capture the
correspondence under different viewpoints. Notably, leveraging semantic correspondence obviates
the need for collecting large amounts of demonstrations (Wang et al., 2024; Ze et al., 2024; Wang
et al., 2023; Hu et al., 2024; Chi et al., 2024). Although certain approaches require only a single Liu
et al. (2024) or zero demonstrations, they often cannot generalize across diverse object instances and
categories.
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3 TASK: DENSE 3D MATCHING FOR TEXTURED OBJECTS

3.1 SEMANTIC GROUPS

To our knowledge, all previous benchmarks Pratikakis et al. (2016); Dyke et al. (2019); Bogo et al.
(2014b); Zuffi et al. (2017); Bronstein et al. (2009) on 3d matching focus on category-specific syn-
thetic shapes (e.g. humans, animals) with well-defined vertex-to-vertex correspondences, and lack
crucial generalizability to daily objects. None of them includes texture/color information. To remedy
this, we develop semantic groups as a formal framework for defining category-level 3D correspon-
dence, and release the first 3D matching dataset with textured assets.

Figure 5: Two possible partitioning
schemes for a hand are shown.

The definition of correspondence is inherently subjective.
For instance, elephant tusks and rhino tusks can corre-
spond based on function, while an elephant’s nose can
correspond to a rhino’s tusk based on location. We for-
malize this with semantic groups. As shown in Figure 4,
we group the vertices of each mesh into unique seman-
tic groups, where the group index of vi is denoted n(vi)
and its group is defined as the set Gvi := {vj | n(vj) =
n(vi)}. Meshes of the same category should share the
same semantic groups, with vertices in the same group

having the same learned features, while distinct groups have different features. As illustrated in
Figure 5, the partitioning rules for semantic groups can be user-defined. Symmetric objects, like a
circular strip around an apple, form single semantic groups, while mirror-symmetric but distinguish-
able features, like cat ears, may belong to different groups.

4 DENSEMATCHER MODEL

4.1 PRELIMINARY

Functional map (Ovsjanikov et al., 2012) is commonly used for dense 3D correspondences in syn-
thetic meshes but is novel in robotics. We follow the notation from Nogneng & Ovsjanikov (2017)
to introduce its formulation. Given source mesh M and target mesh N with nM and nN vertices,
vertex features f ∈ RnM×dfeat and g ∈ RnN×dfeat , and diagonal vertex area matrices AM ∈ RnM×nM

and AN ∈ RnN×nN , we compute the first k eigenfunctions of Laplace-Beltrami operator as a set of
spectral bases ΦM ∈ RnM×k and ΦN ∈ RnN×k, analagous to sine waves in 1D. Multiplication with
these basis or their pseudo-inverses Φ+ = ΦTA projects functions from the spectral domain to the
manifold and back. The map from M to N is represented by a sparse binary matrix Π ∈ RnN×nM ,
ensuring g ≈ Πf for corresponding vertices.

Since Π is large and takes combinatorial time to solve for, functional map approximates Π with a
low-rank representation Π = ΦNCΦ+

M where C ∈ Rk×k is the functional map matrix that we wish
to find. We can translate the feature constraint to:

g ≈ Πf = ΦNCΦ+
Mf =⇒ Φ+

Ng︸︷︷︸
G∈Rk×dfeat

≈ C Φ+
Mf︸ ︷︷ ︸

F∈Rk×dfeat

,

where G and F are low-dimensional projections of g and f onto the eigenfunction basis.
Constraints have been proposed to regularize C. Ovsjanikov et al. (2012) shows that if C is iso-
metric, it should commute with the Laplace-Beltrami operator (i.e. left/right multiplying diag-
onal matrices of eigenvalues ΛN and ΛM with C should be equivalent). To ensure C approxi-
mates a point-to-point mapping, Nogneng & Ovsjanikov (2017) enforces that C commutes with
point-wise multiplication operators of each feature channel p: X(p) = Φ+

MDiag(f (p))ΦM and
Y (p) = Φ+

NDiag(g(p))ΦN .

Combining these contraints with scaling factors α and β results in the overall optimization objective:

Copt = argmin
C

∥CF −G∥22 + α∥ΛNC − CΛM∥22︸ ︷︷ ︸
isometry constraint:
commutativity with

Laplace-Beltrami operator

+β

dfeat∑
p=1

∥CX(p) − Y (p)C∥22︸ ︷︷ ︸
point-to-point constraint:

commutativity with product operator

. (1)

4



Published as a conference paper at ICLR 2025

SD&
DINO

• • • • • • •

Renders

Low-res
FeaturesSD&

DINO

SD&
DINO

High-res Features

Remesh

Project
& Average

DiffusionNet Functional Map

FrozenFeatUp Render Sinusoidal
Encoding

Trainable

𝑓𝑓output

𝑓𝑓multiview

Normalize

Feature
Propagation

MLP

Input Mesh

Figure 6: DenseMatcher model architecture. SD-DINO (Zhang et al., 2023) fuses 2D features
from DINOv2 and Stable Diffusion, which are aggregated and fed into a trainable DiffusionNet.
Correspondences are computed from source and target features using functional map.

The detailed derivations can be found in A.4 and Nogneng & Ovsjanikov (2017).

4.2 ARCHITECTURE

4.2.1 MULTI-VIEW FOUNDATION MODELS (FROZEN 2D “BACKBONE”)

We first render multiple views of the 3D asset and compute a 2D feature map for each view using
SD-DINO (Zhang et al., 2023), which extracts features with DINOv2 and Stable Diffusion and
combines them using the post-processing module of Zhang et al. (2024). We then use Featup (Fu
et al., 2024) to upsample the combined feature map. For each vertex vi, we retrieve its feature in each
view by projecting it into 2D image coordinate and performing bilinear interpolation on the feature
map. We then average features from all visible views, or set the feature to a zero vector if the vertex
cannot be seen from any view. We dub this aggregated multiview feature fmultiview(vi) ∈ R768.

4.2.2 DIFFUSIONNET REFINER (TRAINABLE 3D “NECK”)

We remesh our 3D asset into ~2000 vertices to obtain its simplified geometry. We incorporate
geometry information by concatenating fmultiview with the Heat Kernel Signature descriptor(HKS)
(Sun et al., 2009) and sinusoidal positional encoding from Mildenhall et al. (2021) of each vertex’s
XYZ position. We feed this into DiffusionNet (Sharp et al., 2022), a 3D architecture that alternates
between MLP layers and surface feature propagation layers, which serves as the only trainable part
of our model. The resulting output is 512-dimensional per-vertex feature foutput(vi) ∈ R512, which

we then unit-normalize as f(vi) :=
foutput(vi)

∥foutput(vi)∥2
.

4.3 LOSS FUNCTION

Our loss function consists of two components: L = Lsemantic + Lpreservation. The former ensures that
features are similar across nearby semantic groups and distinct across distant groups, while the latter
ensures the feature retains rich information learned by 2D foundation models.

4.3.1 SEMANTIC DISTANCE LOSS LSEMANTIC

We define the semantic distance between two vertices Dsemantic(vi, vj) as the average geodesic dis-
tance between vertices in their semantic groups. The formal definition can be found in Appendix
A.2.1. We design our semantic distance loss to enforce the L2 distance between features of any two
vertices to scale linearly with their semantic distance. To achieve this, we randomly sample pairs
of vi, vj on the same mesh and across different meshes, and minimize the negative cosine similarity
between ∥f(vi)− f(vj)∥ and Dsemantic(vi, vj) across sampled pairs of i, j:

Lsemantic = − cos(θ) = −
∑

i,j ∥f(vi)− f(vj)∥2 Dsemantic(vi, vj)√∑
i,j ∥f(vi)− f(vj)∥22

√∑
i,j Dsemantic(vi, vj)2

.
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We prove in A.4.2 that after minimizing this training objective, solving for functional map results
in minimal overall Dsemantic(vmatch(j), vj) across all matched pairs.

4.3.2 FEATURE PRESERVATION LOSS

We can view our DiffusionNet refiner as an nonlinear operater embedding features from fmultiview
into foutput. Semantic distance loss ensures the feature space f(vi) is equipped with a metric that
approximates Dsemantic, but might lose other information learned by 2D foundation models such as
object type and material. Therefore, we train a linear layer to approximately invert DiffusionNet and
reconstruct Fmultiview, thereby preserving the rich information learned by SD-DINO:

Lpreservation =

∥V ∥∑
i

∥fmultiview(vi)−Wfoutput(vi)∥ ,

where W ∈ R768×512 is a learnable back-projection matrix that we optimize together with our
DiffusionNet parameters.

4.4 IMPROVED FUNCTIONAL MAP

After obtaining the vertex features on a pair of meshes, we calculate dense correspondences between
them with functional map. Most previous methods using functional map focus on specific shape
categories with distinct local geometry such as humans or four-legged animals, and used shape
features HKS and WKS. Our approach, however, handles a diverse array of daily objects such as
fruits and jugs, which lack distinguishable local features. Despite our learned semantic features, we
still observe that the objective of equation 1 is insufficient. In particular, the lack of unique features
and large deformations causes g = Πf to admit solutions where Π is not sparse, leading to noisy
correspondences. We therefore propose to add two extra regularization terms:

(1) We clamp the recovered point-to-point mapping matrix Π = ΦNCΦ+
M between [0, 1]: Π̃ij =

max(0,min(1,Πij)) and penalize its entropy to promote sparsity:

−
nN∑
i=1

nM∑
j=1

Π̃ij log Π̃ij ,

(2) We enforce that each row of Π sums to 1 and each column sums to nN

nM
so that Π is a soft

assignment matrix: (
nN∑
i=1

(nM∑
j=1

Πij − 1
)2

+

nM∑
j=1

( nN∑
i=1

Πij −
nN

nM

)2)
.

We scale those to terms and add them to the cost function in equation 1. The detailed optimization
procedure can be found in A.2.2.

5 THE DENSECORR3D DATASET AND BENCHMARK

To remedy the lack of textured data for the 3D matching task, we first filter Objaverse-XL (Deitke
et al., 2023) and OmniObject3D (Wu et al., 2023) into 600 instances across 24 categories and split
each into train, validation, and test, as specified in Tab.4. For categories with insufficient meshes,
we skip the train and validation splits and use those as out-of-distribution training samples.

5.1 FILTERING, ANNOTATION AND FORMAT

For fruits and vegetables, we source our meshes from Objaverse-XL. We label landmark points on
mesh surfaces, and interpolate them with separate algorithms for each category to acquire ground-
truth semantic groups. (See Appendix A.1.2 and A.1.3 for details).

For other daily object categories, we pick assets from OmniObject3D. We use Blender’s Vertex
Brush functionality to directly label all vertices in each semantic group.

Each instance contains the following: (i) original colored mesh, (ii) remeshed geometry without
texture, (iii) ground-truth semantic groups, and (iv) geodesic distance matrix for remeshed geometry
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Table 1: Performance comparison on DenseCorr3D shape matching benchmark. We report the
results on both the full test set and the daily subset. Ablation studies are listed in Section 6.4.

All Daily Fruits & Veges

Methods AUC ↑ Err ↓ AUC ↑ Err ↓ AUC ↑ Err ↓
ConsistFMap (DenseCorr3D) (Cao & Bernard, 2022) 0.568 6.42 0.652 5.06 0.5404 6.87

URSSM (FAUST) (Cao et al., 2023) 0.485 8.19 0.602 5.90 0.445 8.96
URSSM (DenseCorr3D) (Cao et al., 2023) 0.553 6.74 0.678 4.68 0.512 7.42

Diff3F (Dutt et al., 2024) 0.437 8.20 0.562 6.25 0.396 8.85

DenseMatcher (Ours) 0.737 3.49 0.725 3.71 0.740 3.41
w/o DiffusionNet 0.708 4.02 0.726 3.75 0.702 4.11
w/o Preservation Loss 0.603 5.38 0.651 4.93 0.587 5.54
w/o Constraint for FMap 0.706 3.84 0.729 3.72 0.698 3.88

5.2 EVALUATION CRITERIA

Given a pair of meshes, we follow the convention of Cao et al. (2023); Cao & Bernard (2022)
to compute the Normalized Geodesic Errors (Err) (Kim et al., 2011), and the Area-Under-Curve
(AUC) of the threshold-accuracy curve. Since our ground truth annotation is based on semantic
groups, we need to update the definition of matching distance to be the distance of the predicted
point to the nearest point in the ground truth semantic group. We evaluate correspondence scores
across all possible pairs within each category. For example, for categories with 6 test instances, we
predict correspondence for 62 pairs of instances.

6 EXPERIMENTS

We perform exhaustive evaluation across a spectrum of tasks, encompassing 3D Dense Matching,
Color Transfer, and Zero-Shot Robot Manipulation. In addition, we perform ablation studies on
individual components of our model.

6.1 3D DENSE MATCHING

6.1.1 BASELINES

We mainly compare with two training-based deep functional map methods, ConsistFMap (Cao
& Bernard, 2022), and URSSM (Cao et al., 2023); and one 2d semantic feature-based method,
Diff3F (Dutt et al., 2024). We mainly compare on our proposed DenseCorr3Dbenchmark since our
method requires texture as input.

ConsistFMap (Cao & Bernard, 2022) utilizes cycle-consistency for robust multi-shape matching
across shape collections, making it a strong baseline in unsupervised shape matching. We evaluate
its performance when respectively trained on FAUST (Bogo et al., 2014a) and DenseCorr3D.

URSSM (Cao et al., 2023) is a state-of-the-art method which extends the functional map framework
by coupling point-wise maps and functional maps during learning. We also evaluate both the version
trained on FAUST (Bogo et al., 2014a) and on DenseCorr3D.

Diff3F (Dutt et al., 2024) projects 2D diffusion-based semantic features onto 3D shapes, focusing
on semantic correspondence rather than purely geometric matching. We use the textured mesh as
input to the diffusion model to extract the semantic features. For details, refer to A.3.1.

6.1.2 RESULTS

As shown in Tab. 1, we found that our model achieves better AUC and Err compared to the baseline
model. Additionally, due to the generalization capability of pre-trained 2D backbones, we achieve
much higher accuracy on out-of-distribution test categories listed in Tab. 4 with zero training in-
stances. We also observe surprising qualitative performance on categories with few examples, as
shown in Fig. 3.

6.2 ZERO-SHOT REAL WORLD ROBOTIC MANIPULATION

We create six real-world manipulation environments, exploring the performance of DenseMatcher
on daily life tasks by comparing the shape, size, material and category of the manipulated objects.
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Figure 7: Real-World Experiment Workflow. We obtain template mesh and contact points from a
human demonstration with hand-object detector (Shan et al., 2020). We then transfer these contact
points onto the target mesh with DenseMatcher. Finally, we use off-the-shelf AnyGrasp (Fang et al.,
2023) to infer the grasping pose at contact point and proceed with the subsequent manipulation task.

Table 2: Task difficulty and classification of real world robot manipulation experiments. The
classification of tasks is based on the differences between the objects manipulated in the human
demonstration and manipulated by the robot. Here,“cross category” means template and target ob-
jects are from different categories. “cross instance” means they are instances of the same category.

Task Classification Cross
Instance

Cross
Viewpoint

Cluttered
Multiple Objets

Cross
Category

Multiple
Keypoints

Long-
term

Cross
Material

Peel a Banana ✓ ✓ ✓ ✓
Flower Arrangement ✓ ✓ ✓

Place Shoes ✓ ✓ ✓ ✓
Decorate Chrismas Tree ✓ ✓

Pull Out the Carrot ✓ ✓ ✓ ✓ ✓
Point Object Parts with Pen ✓ ✓ ✓ ✓ ✓ ✓

Table 3: Real world robot manipulation experiment results. Robo-ABC† (with Original Mem-
ory) and Robo-ABC* (with New Memory).

Task Peel a
Banana

Flower
Arrangement

Place
Shoes

Decorate Chrismas
Tree

Pull Out
the Carrot

Point Object Parts
with Pen Overall

Robo-ABC† 2/5 1/5 0/5 2/5 2/5 2/5 30%
Robo-ABC* 3/5 1/5 2/5 4/5 3/5 2/5 50%

DenseMatcher(Ours) 4/5 3/5 4/5 5/5 4/5 3/5 76.7%

Tasks difficulty and categorization are shown in Tab. 2. We use a RealSense L515 RGB-D camera
and a UR5 robot arm to conduct all the real-world experiments. In this section, we use the term
template mesh to represent the mesh obtained from the human demo, and target mesh to refer to the
mesh for robot manipulation.

6.2.1 GENERAL APPROACH

The workflow of the robotic experiment is shown in Fig. 7.

Obtaining Human Demonstrations. After recording RGB-D videos of human demonstrations, we
refer to the contact point collection process of VRB (Bahl et al., 2023) and Robo-ABC (Ju et al.,
2024) to obtain contact points on the template mesh. For specific details, we recommend referring
to the original papers. By using a hand-object detector Shan et al. (2020), we get the contact status
between the hand and the object as well as their respective bounding boxes (bbox) in each frame
of the video. Then, in the contact frames, we sample the overlapping part of the two bboxes as the
contact point. To avoid occlusion, we track the object and trace the contact points back to the first
frame, thereby obtaining the template keypoint on the template mesh.

Contact Point Transfer. After obtaining the template mesh and keypoints, we calculate the dense
descriptors for both the template mesh and the target mesh using DenseMatcher, and find a dense
mapping between their vertices using functional map with our proposed improvements. We transfer
the keypoints through the dense mapping, thereby obtaining the grasp points on the target mesh.

Grasp Pose and Post Grasp. After obtaining the grasp points, we use AnyGrasp to infer the
corresponding grasp poses. We provide the waypoints of the trajectory after grasping and the final
location to move to after completing the grasp. We use MoveIt! (Coleman et al., 2014) to compute
transformation from the target end-effector pose to joint position trajectories.
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Figure 8: KeyFrames of 6 robotic tasks. The tasks from top to bottom are organizing the shoes,
pointing object parts with pen, pulling out the carrot, putting flower into a vase, peeling a banana
and decorating the the Christmas tree.

Figure 9: Color transfer results between (i) banana and eggplant, (ii) tomato and kabocha squash,
and (iii) wine bottles (iii) gloves.

6.2.2 BASELINE

Robo-ABC (Ju et al., 2024) utilizes correspondences found in RGB images to transfer affordances.
Since Robo-ABC has its own collected affordance memory, we compared two variants: one with
full memory capabilities and another where Robo-ABC’s affordance memory is only allowed to be
collected from the corresponding human demos we provide, while keeping Robo-ABC’s original
retrieval-and-transfer framework intact.

6.2.3 ROBOT MANIPULATION RESULTS

In Tab. 3, we compare the success rate of Robo-ABC with our method in the real world, and use
task success rates as the evaluation metric. For each task, we measure the task success rates over
five trials. For tasks involving multiple objects and multiple keypoints, we calculate the success rate
for each keypoint and object separately and determine the average success rate.
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(a) Dense correspondence results obtained using HKS and WKS features.

(b) Dense correspondence results obtained with the same features but different matching methods.

Figure 10: Ablation study on dense correspondence results. (a) Effect of using different features
(HKS, WKS) with functional maps. (b) Comparison of matching methods using the same features.

6.3 COLOR TRANSFER EXPERIMENTS

Ofri-Amar et al. (2023) shows that dense correspondences can be used to transfer object appeare-
ances in 2D images. In Fig. 9, we show that our 3D dense correspondence scheme can transfer
colors on 3D assets without any additional effort. To our knowledge, this has not been achieved
before in the 3D generation literature.

Given a pair of textured meshes and their corresponding simplified meshes, we first color the vertices
of the simplified mesh by copying the color from their nearest neighbor on the textured mesh. We
then find the point-to-point mapping using DenseMatcher, and directly transfer the color over to the
corresponding vertices.

6.4 COMPARISON WITH SHAPE DESCRIPTOR FEATURES AND ABLATION STUDIES

As shown in Fig. 10a, we compare functional map outputs using our features to HKS and WKS,
shape descriptor features commonly used by prior methods. As can be seen, the mapping obtained
with our method significantly outperforms baselines in terms of accuracy and continuity.

As shown in Tab. 1, we perform several ablation studies by (i) skipping DiffusionNet and directly
feeding normalized fmultiview into functional map (ii) training our model without loss Lpreservation, and
comparing the difference in evaluation results (iii) removing the proposed entropy penalization and
“sum to 1” regularization constraints from the functional map solver.

6.5 COMPARISON OF SPATIAL CONSISTENCY

One major advantage of functional map is that it preserves spatial consistency between points, estab-
lishing a smooth mapping between surfaces (Cheng et al., 2024). We compare functional map with
two baselines in Fig. 10b: Hungarian matching and nearest neighbor retrieval, where we compute
a pairwise feature distance matrix between vertices using the same feature from our model. Func-
tional map produces a smooth mapping by preserving both point-wise features and spatial relations
between points, while the baselines only preserve the former and result in speckled mismatches.

7 CONCLUSION

In summary, we make the following contributions in this paper:
• We create the first 3D matching dataset with colored meshes, containing 600 assets span-

ning 24 categories with dense correspondence annotation.
• We bridge the gap between 3D and multiview 2D correspondence methods by developing a

framework that combines appearance and geometric information by refining features from
2D vision models with 3D geometric models.

• We demonstrate the effectiveness of our approach by performing two sets of experiments
that generalize across objects from different categories: (i) real-world robotic manipulation
experiments of long-horizon tasks requiring multiple grasps (ii) color transfer experiments.
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A APPENDIX

A.1 TASK DESCRIPTION

In this section, we elaborate details of our tasks and showcase our model’s generalization capacity
by illustrating differences between the objects manipulated by human demonstration and robots.

Peeling a Banana. Given an RGBD human demo of peeling a banana, we extract two keypoints:
where the banana is initially grasped, and where the base of the banana is held. These points are
then mapped to the target banana that the robot will manipulate. Since this task that requires mul-
tiple steps with multiple keypoints, we employ a collaborative dual-arm robot approach. We use a
Galaxea A1 Arm and a UR5 arm to jointly complete the task of peeling the banana.

Flower Arrangement. We provide a human demonstration of arranging flowers. Mimicking human
contact points, the robot grasps the flowers by their stem and inserts them into a vase.

Placing Shoes. We provide a human demonstration of picking up shoes by the heel and arranging
them. The robot operates on three different shoes in a cluttered environment, and and arranges them
sequentially throughout multiple steps.

Decorating the Christmas Tree. In the human demo for decorating a Christmas tree, the ornaments
used are different in shape and color from the objects for robotic manipulation. The robot hangs the
ornaments on the Christmas tree to complete the task.

Pulling Out the Carrot. The human demonstrator picks up a kettle and manipulates a plush carrot
toy. The robot manipulates a real carrot, generalizing across different materials with correspondence.
Finally, the robot first picks up the kettle to water the carrot and then pulls out the carrot.

Pointing Object Parts with Pen. In this task, we verify the spatial continuity of multiple corre-
spondences on the same object. The template meshes we provide are a ballpoint pen, a plier, a
screwdriver, a racket, and a panda toy, while the target objects are different ballpoint pens, pliers,
screwdrivers, rackets, and a dog toy. The robot first grasps the ballpoint pen and then uses it to
successively poke two keypoints on each object.

A.1.1 ASSET CATEGORIES

A.1.2 DATASET FILTERING

For food items, We use Objaverse website’s keyword search functionality to narrow our search scope
and visually pick meshes that belong to our listed categories. We remove all meshes that are bigger
than 300MB in size. For assets from OmniObject3D, we randomly pick meshes from the desired
categories. Due to the large sizes of scans, we uniformly sample point clouds from the mesh surface
and perform Poisson Reconstruction (Kazhdan et al., 2006) to save downsampled versions of colored
meshes for rendering.

A.1.3 REMESHING

We first normalize object scales by the longest side and multiply them by 0.3, and center the center
of bounding boxes at the origin. We cluster each asset into connected components and only keep the
largest one. We then remove unreferenced faces and vertices, and merge vertices that are closer than
1/100 of bounding box size. We use the isotropic explicit remeshing filter from PyMeshLab, and
iteratively increase the target edge length until the number of vertices goes below the desired vertex
number.

A.1.4 SPARSE KEYPOINT ANNOTATION

For fruits and vegetables with simple geometry, we instruct the annotators to use the 3D annotation
tool1 from StrayRobots to label sparse landmark points, and compute dense vertex groups annota-
tions by interpolation. Specifically, we first manually derive a graph to represent the relationships
with keypoints, then, for each pair of connected landmarks, we use the shortest path function of
igraph to compute waypoints along certain fractions of the way from one landmark to another. We

1https://github.com/strayrobots/3d-annotation-tool
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Category Train Validation Test
apple 65 2 6
banana 74 2 6
bell pepper 6 2 6
bread 52 2 6
broccoli 5 2 6
carrot 3 2 6
celery† 0 0 3
cucumber† 0 0 6
egg 17 2 6
eggplant† 0 0 3
mushroom 64 2 6
onion 7 2 6
peach 13 2 6
pear 31 2 6
potato 15 2 6
pumpkin 40 2 6
tomato 12 2 6
zucchini 3 2 6
animals 5 0 5
tools 5 0 5
vehicles 5 0 5
backpacks 5 0 5
toiletries 5 0 5
chairs 6 0 5

Table 4: DenseCorr3D Dataset for each category. † indicates held-out test categories. Animals
include: deer, elephant, mouse, cat, giraffe, tiger, panda, leopard, dinosaur. Tools include: kitchen
knife, toy knife, pocket knife, hammer, mallet. Vehicles include: car, bus, truck, train head. Toi-
letries include: shampoo, sun spray, face cream. Chairs include: wood plank chair, velvet chair,
veneer chair, mahogany chair, office chair.

then connect different waypoints with the shortest path between them to form dense vertex groups.
The average mesh takes 10 seconds to annotate.

A.1.5 DENSE VERTEX ANNOTATION

For more complex daily object categories, we create a color code chart of semantic groups for each
category, and instruct the annotators to use the vertex brush tool from Blender1 to paint the vertices
accordingly. We then use the color codes to parse the painted meshes into separate vertex groups.
The average mesh takes 5 minutes to annotate.

A.2 METHOD DETAILS

A.2.1 CALCULATION OF SEMANTIC DISTANCE

For two vertices on the same mesh, we perform bipartite matching on the pairwise geodesic dis-
tance matrix between vertices in their respective groups and compute the average distance between
matched pairs of vertices. If the source and target groups are on different meshes, we find the corre-
sponding group of the source group on the target mesh and compute its distance to the target group
analogously. Formally, given vertex vi and vj , and their semantic groups Gvi

and Gvj semantic

1https://www.blender.org
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groups with m, and n vertices respectively, their semantic distance is defined as:

Dsemantic(vi, vj) =
1

min(m,n)
min

π1∈Sm
π2∈Sn

min(m,n)∑
k=1

Dgeodesic
(
Gvi(π1(k)),Gvj (π2(k))

)
,

m = |Gvi |, n = |Gvj |
where π1 and π2 are permutation functions encoding bipartite matching.

A.2.2 FUNCTIONAL MAP SOLVER

We set α = 10−2, β = 10−4, and weigh our added regularization function terms (entropy and sum-
to-1) by 10−5 and 10−3 respectively. We use the first 10 eigenvectors of the cotangent Laplacian
matrix as our bases and zero-initialized C. We modify the implementation from pyFM and compute
the gradients of our added terms using Pytorch autograd with CUDA acceleration and use L-BFGS
as our solver.

A.3 EXPERIMENT DETAILS

A.3.1 DIFF3F BASELINE

The original Diff3F pipeline first renders multiview depth maps, which are used as conditioning
to generate colored images with a ControlNet model. It then extracts DINOv2 features from the
generated images and combines them with diffusion features to use as multiview features. Since
our meshes are textured, we instead directly extract multiview features with Stable Diffusion and
DINOv2 from rendered RGB images and concatenate them, before performing dimensionality re-
duction with PCA. We then aggregate the resulting features onto vertices and feed them into the
functional map.

A.3.2 TRAINING DENSEMATCHER

Our FeatUp module upsamples 16x16 features to 512x512 resolution. We pre-train FeatUp param-
eters for 10,000 steps on ImageNet (Deng et al., 2009). We freeze the 2D backbone models during
training, and optimize a 4-block DiffusionNet with 512 channels on DenseCorr3Dfor 6000 steps
with a batch size of 8 using Adam Kingma & Ba (2014). During training, we randomly rotate the
meshes, and slice the meshes in half in random directions 50% of the time. We uniformly sample
5 cameras when the meshes are not sliced, and randomly sample 1 or 2 cameras in the same hemi-
sphere when the meshes are sliced. In order to make our model robust to the number of vertices,
we randomly set the re-meshing target to between 500 and 2500 vertices during training. In total,
training for 50 epochs takes ~12h hours on 8xNvidia A100 GPUs. We do not observe any overfit-
ting in the lightweight DiffusionNet when using a default linear reconstructor, which contains ~5M
parameters. Note that in Dutt et al. (2024), 100 views are rendered for each shape, which requires
running the computationally heavy 2D extractor 100 times, consuming ~5 minutes for each mesh.
Thanks to our 3D network, we found that using only 3 lateral views plus 1 top and 1 bottom view
during both training and inferencing is sufficient.

A.3.3 INFERENCE RUNTIME ANALYSIS

We performed runtime analysis during the inference stage of DenseMatcher on a single A100 GPU.
We directly render the original textured meshes to acquire posed images, and found the rendering
time to depend on the asset’s meshing, varying between ~0.05 seconds to ~3 seconds and averag-
ing to ~0.2 seconds per mesh. Computing 2D SD-DINO features for 5 views each consumes ~3.6
seconds, while performing DiffusionNet forward pass for each mesh consumes ~0.01 seconds. Op-
timizing the functional map consumes ~0.8 seconds for a pair of meshes with both 500 vertices, and
consumes ~2.2 seconds for a pair of meshes with both 2000 vertices. Overall, computing correspon-
dences between a pair of meshes with our algorithm consumes between 8.4 and 12.4 seconds on a
single A100 GPU, allowing time-sensitive applications such as robotics planning.

In addition, we ran Hungarian matching on the pairwise vertex feature distance matrix for the 500-
vertex case and 2000-vertex case, purely matching features without accounting for spatial consis-
tency. We found the runtime to heavily depend on the sparsity of matrix values. Hungarian matching
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takes ~0.01-0.4 seconds for the 500-vertex case, and 0.5-2.5 seconds for the 2000-vertex case. We
also derive theoretical runtime from SpiderMatch (Roetzer & Bernard, 2024) and compare them
below in Tab. 5.

Table 5: Runtime of functional map and baselines. All units are in seconds.

Method 500-vertex 2000-vertex

Functional Map (our implementation) 0.8 2.2

SpiderMatch (Roetzer & Bernard, 2024) ~10 >200

Hungarian Matching (no spatial consistency) 0.01–0.4 0.5–2.5

A.3.4 MODEL PERFORMANCE ON VARYING TOPOLOGIES

Table 6: 3D correspondence performance (Err ↓) on categories with complex topologies.

Method Chairs Animals Broccoli Shampoo

URSSM (Cao et al., 2023) 4.79 6.89 5.94 3.46

DenseMatcher (Ours) 3.74 3.29 3.18 0.73

A.3.5 MODEL PERFORMANCE ON HELD-OUT CATEGORIES

Table 7: 3D correspondence performance on held-out categories.

Celery Cucumber Eggplant

Methods AUC ↑ Err ↓ AUC ↑ Err ↓ AUC ↑ Err ↓

ConsistFMap (DenseCorr3D) (Cao & Bernard, 2022) 0.957 0.44 0.596 4.73 0.707 3.47

URSSM (FAUST) (Cao et al., 2023) 0.846 1.54 0.516 5.63 0.533 6.62
URSSM (DenseCorr3D) (Cao et al., 2023) 0.926 0.75 0.601 4.62 0.621 4.64

Diff3F (Dutt et al., 2024) 0.676 3.28 0.600 4.85 0.444 7.87

DenseMatcher (Ours) 0.882 1.18 0.716 3.31 0.844 1.59

A.4 PROOFS

A.4.1 PRELIMINARY

We view our source and target mesh as manifold M discretized to nM vertices, and manifold N
discretized to nN vertices, with diagonal area matrices AM ∈ RnM×nM and AN ∈ RnN×nN

denoting the area associated with each vertex. The inner product operator for two scalar functions
x ∈ Rn and y ∈ Rn is defined as:

⟨x, y⟩ = xTAy =
∑
i

Aiixiyi. (2)

Given the area matrix and the contingent weight matrix of the mesh W ∈ Rn×n (Meyer et al.,
2003), the Laplace-Beltrami operator ∆(·), which takes a scalar function x on the manifold as input
and computes its Laplacian, is defined as:

∆(x) = (A−1W )x. (3)
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The first k Laplace-Beltrami eigenfunctions ΦM ∈ RnM×k,ΦN ∈ RnN×k are functions on M
and N whose Laplacian is a scaled version of itself, obtained by solving the generalized eigenvalue
problem:

WΦj = λjAΦj , (4)

where Φj ∈ Rn denotes the jth eigenfunction and λj denotes the jth eigenvalue. The eigenfunctions
are orthonormal w.r.t. the inner produce operator:

⟨Φi,Φj⟩ =
{
0, i ̸= j

1, i = j
. (5)

We compound the k corresponding eigenvalues into diagonal matrices ΛM ∈ Rk×k and ΛN ∈
Rk×k, and re-write the 4 and 5 as:

WMΦM =AMΦMΛM =⇒ ∆(ΦM ) = ΦMΛM (6)
WNΦN =ANΦNΛN =⇒ ∆(ΦN ) = ΦNΛN . (7)

Analogous to sine waves which are eigenfunctions of 1d Laplace operator, the Laplace-Beltrami
eigenfunctions can serve to project functions back and forth between the manifold and spectral
domain.

The pseudo-inverse of the eigenfunction is defined as:

Φ+ = ΦTA. (8)

Multiplying a function x with the pseudo-inverse of the bases:

Xi = (Φ+x)i = (ΦTAx)i = ⟨Φi, x⟩, (9)

is equivalent to the inner product with the bases, and projects functions from the manifold to the
spectral domain, where X is dubbed the ”spectral coefficients” of the function, and Xi ∈ Rk corre-
spondences to the ith eigenfunction.

To obtain a function on the manifold from its spectral coefficients, we can multiply the bases with
the coefficients, since:

x = Ix ≈ ΦΦ+x = Φ(Φ+x) = ΦX. (10)

A.4.2 FEATURE CONSTRAINT IN FUNCTIONAL MAP MINIMIZES SEMANTIC DISTANCE
LOSS

We show that the feature matching objective ∥CF − G∥22 presented in 1 minimizes our proposed
semantic distance between matched source and target vertices.

We define our source and target features as f ∈ RnM×dfeat and g ∈ RnN×dfeat .

We can represent the vertex-to-vertex mapping from M to N with a sparse binary matrix Π ∈
RnN×nM , where:

Πij =

{
0, i ̸= match(j)
1, i = match(j)

. (11)

For a pair of corresponding features functions f ∈ RnM×dfeat and g ∈ RnN×dfeat , we can transport
the source feature onto the target mesh with:

ĝ = Πf =⇒ (Πf)j = ĝj = fmatch(j), (12)

where ĝ is the feature for jthe vertex on target mesh, obtained from its corresponding match(j)th
vertex on the source mesh.

From our training objective in Eq 4.3.1, the feature distance should be linearly proportional to the
semantic distance function, assuming our training objective is fully optimized. We denote this linear
constant as s:

∥fi − gj∥2 ∝ Dsemantic(vi, vj) =⇒ ∥fi − gj∥2 = sDsemantic(vi, vj). (13)
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Therefore, minimizing the sum of L2 distance between the transported source feature and the target
feature is equivalent to minimizing the total semantic distance between matches:

∥Πf − g∥2 =
∑
j

∥(Πf)j − gj∥2 (14)

=
∑
j

∥ĝj − gj∥2 = ∥fmatch(j) − gj∥2 (15)

=s
∑

Dsemantic(vmatch(j), vj). (16)

Provided with the first k Laplace-Beltrami eigenvectors, we can decompose Π into its low-rank
”functional map matrix” representation C ∈ Rk×k:

Π = ΦNCΦ+
M . (17)

Therefore,

1

s

∑
Dsemantic(vmatchj , vj) = ∥Πf − g∥2

= ∥ΦNCΦ+
Mf − g∥2

≈ ∥ΦNCΦ+
Mf − ΦNΦ+

Ng∥2
= ∥CΦ+

Mf − Φ+
Ng∥2

≤ ∥ΦN∥2∥CF −G∥2
where F := Φ+

Mf ∈ Rk×dfeat , G := Φ+
Ng ∈ Rk×dfeat

when using the full-rank bases, the inequality on the third line will become equality.

Thus, we prove that minimizing the first term ∥CF −G∥22 in equation 1 is equivalent to minimizing
overall Dsemantic distance between matches in source and target match.

A.4.3 COMMUTATIVITY WITH LAPLACE OPERATOR INDUCES ISOMETRIC MAPPING

Lemma A.1. For a function x ∈ Rn, its Laplacian ∆(x) can be computed as ΦΛX from its full-
rank spectral coefficients X = Φ+x ∈ Rk.

Proof:

∆(x) =∆(ΦX) (18)

=∆(
∑
i

ΦiXi) (19)

=
∑
i

Xi∆(Φi) (20)

=
∑
i

XiΦiλi (21)

=ΦΛX (22)

=ΦΛΦ+x (23)

The third line follows from the linearity of the Laplace-Beltrami operator.

On Riemannian manifolds, a diffeomorphism is isometric if and only if the Laplace operator is
invariant under it. In the discrete case, for a vertex-to-vertex mapping Π to be isometric, the equiva-
lent statement is the mapping commutes with the Laplace-Beltrami operator for an arbitrary function
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x ∈ RnM defined on source mesh M . Formally:

Π∆(x) =∆(Πx) (24)

ΦNCΦ+
M∆(x) =∆(ΦNCΦ+

Mx) (25)

ΦNC Φ+
MΦM︸ ︷︷ ︸
Ik

ΛMX =∆(ΦNC Φ+
MΦM︸ ︷︷ ︸
Ik

X) (26)

ΦNCΛMX =ΦNΛN Φ+
NΦN︸ ︷︷ ︸
Ik

CX (27)

Multiplying both sides on the left by Φ+
N , we obtain:

CΛMX = ΛNCX. (28)

Since this holds for any function x, we can minimize ∥ΛNC − CΛM∥22 as in equation 1 to obtain a
roughly isometric mapping.

A.5 PERFORMANCE UNDER OCCLUSION

We study the performance of our model under occlusion in two cases.

A.5.1 PARTIAL SOURCE AND PARTIAL TARGET

In the first case, both the source and target mesh are partially occluded. As shown in Fig. 11, our
model is capable of matching partial meshes reconstructed from RGBD camera captures and finding
the correct grasping points.

Figure 11: Robot experiments visualization under occlusion conditions.
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A.5.2 PARTIAL SOURCE AND FULL TARGET

In the second case, the source mesh is a partial mesh, and the target mesh is a full mesh. We follow
the formulation of partial functional correspondence (Rodolà et al., 2017) and jointly optimize a
mask η ∈ RnN that indicates whether each vertex in the target mesh is matched to the source
mesh. In addition to our proposed regularization constraints, we implemented the Mumford-Shah
functional and area preservation constraints from Rodolà et al. (2017), in addition to penalizing the
entropy of η with −

∑nN

i ηi log ηi. We showcase qualitative results in Fig. 12 below.

Figure 12: Correspondence between partial mesh with full mesh. DenseMatcher is capable of
matching a partial mesh to a full mesh by utilizing the partial functional correspondence formulation.
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