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LIST OF NOTATION

In the sequel, we present a list of notations in the paper.

Notation Explanation

S, A O The state, action, and observation spaces, respectively.

A H The capacity of action space |.A| and the length of an episode, respectively.
P The embedding of trajectory defined in (3.1).

Ph(Sht1 | Sn,an)

The transition probability from (s, ap) to Sp41.

Or(on | sk) The emission probability of observing oy, given sp,.

[H]™ The set of steps {1 — ¢, ..., H + k} of the extended POMDP.

aZ*kil, oZ*k The sequences of actions and observations {ap,...,ap+k—1} and {on, ..., 0n+k},
respectively.

T}}LH_k The sequence of interactions {op, an, . .., Op+k—1, Ghtk—1,On+k | from the h-th step
to the (h + k)-th step.

IZJrk The sequence of interactions {0y, ap,, - . ., Optk—1, Gh+k—1, Ohtks Ahtk } from the h-
th step to the (h + k)-th step, including the (h + k)-th action.

Pk, The conditional densities P(o ™ | af ™) and P(o ¥ | 5, al TF1), respectively.

P(rt* | sn)

Zh, Wh—1 The shorthand for the sequences of interactions T,}lH_k and IZ’:;, respectively, on page
7 of the paper.

o*, P* The unknown features of the low-rank POMDP in Assumption 3.1.

¢?, ?, 0f The parameterized features and emission kernel in Definition 3.2.

P, po:m The probability densities corresponding to the transition dynamics defined by
{4?,¢? 0} and the policy , repsectively.

UZ, UZ’T The forward emission operator and its pseudo-inverse defined in Definition 3.4 and
Lemma 3.6, respectively.

M ,f , M he u The d-by-d matrix and its inverse defined in Assumption 3.5.

IB%Z The Bellman operator defined in Definition 3.7.

13




Published as a conference paper at ICLR 2023

Notation Explanation

&() The density estimation oracle defined in Assumption 4.1.

We, V, 7Y The parameters in Assumptions 4.1, 5.1, and 5.2, respectively.

XZ’”, Yz’” The density mappings defined in (3.6) and (3.7), respectively.

vl () The density of initial trajectory P? (7).

Dz, mt, Ct The dataset, policy, and confidence set of parameters, respectively, in the ¢-th iteration
of Algorithm 1.

FAQL, ST{Z, gtl The estimated density mappings and initial trajectory density, respectively, in the ¢-th
iteration of Algorithm 1.

Lfl The objective function defined in (4.1).

A CONCLUSION, LIMITATION, AND FUTURE STUDY

In this paper, we propose Represent to Control (RTC) as a unified framework for embedding and
control in POMDPs. In particular, by exploiting the low-rank transition and the future sufficiency
condition, we decompose the embedding learning into the learning of Bellman operators across
multiple steps. By assembling the Bellman operators, we identify a sufficient embedding for the
control in the POMDP. Moreover, we identify a confidence set of parameters fitting the Bellman
operators, which further allows us to conduct exploration. Our analysis shows that RTC attains the
O(1/€?) sample complexity to attain an e-suboptimal policy. To our best knowledge, we provide
the first sample efficiency analysis for representation learning in POMDPs with infinite observation
and state spaces.

A key to our analysis is the decomposition of the embedding across multiple steps, which hinges
on the future sufficiency condition. It remains unclear if wearker conditions are possible for such a
decomposition. In addition, our sample efficiency analysis hinges on the additional past sufficiency
condition. It remain unclear whether such past sufficiency is necessary as our decomposition of
embedding does not require such a condition. In our future study, we aim to tackle such challenges
by recent advances in the tabular and low-rank POMDPs (Cai et al., 2022; Liu et al., 2022).

B RELATED WORK ON LATENT STATE SPACE MODELS AND MDPs

Our work is related to the previous study of latent state space models. Coates et al. (2008) recov-
ers a class of latent state space models from observations by the expectation-maximization (EM)
algorithm. In contrast, the spectral method (Rosencrantz et al., 2004; Hefny et al., 2015; Azizzade-
nesheli et al., 2016; Sun et al., 2016; Jin et al., 2020a) proposes to conduct filtering and prediction by
solving a system of integral equations directly. In particular, previous works utilize predictive state
representations (PSRs) (Hefny et al., 2015; Sun et al., 2016) as a sufficient representation of inter-
action history of fixed length and aim to conduct filtering on such predictive states. Our embedding
strategy is inspired by the spectral algorithms with predictive states. In particular, our embedding of
interaction history is also a predictive state. Nevertheless, unlike the previous analysis of predictive
states (Hefny et al., 2015; Sun et al., 2016), we do not cast assumptions explicitly on the transition of
predictive states (the filtration). Moreover, we focus on the sample efficiency of learning predictive
states via iteratively exploring the environment, whereas previous works typically study PSRs with
a fixed trajectory generator (Hefny et al., 2015; Sun et al., 2016).

To learn a sufficient embedding for control, we utilize the low-rank transition of POMDPs. Our
idea is motivated by the previous analysis of low-rank MDPs (Cai et al., 2020; Jin et al., 2020b;
Ayoub et al., 2020; Agarwal et al., 2020; Modi et al., 2021; Uehara et al., 2021). In particular, the
state transition of a low-rank MDP aligns with that in our low-rank POMDP model. Nevertheless,
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we remark that such states are observable in a low-rank MDP but are unobservable in POMDPs
with the low-rank transition. Such unobservability makes solving a low-rank POMDP much more
challenging than solving a low-rank MDP.

C ALGORITHM DESCRIPTION OF RTC

In the sequel, we decribe the procedure of RTC. In summary, RTC iteratively (i) interacts with
the environment to collect observations, (ii) fits the density mappings defined in (3.6) and (3.7),
respectively, by observations, (iii) identifies a confidence set of parameters by fitting the Bellman
equations according to (3.8), and (iv) conducts optimistic planning based on the fitted embeddings
and the associated the confidence set.

To conduct RTC, we first initialize a sequence of datasets indexed by the step h € [H] and the action
sequences aZ;Hg € Akl

htk
Dh(apty) = 2.

Meanwhile, we initialize a policy 7° € TI, where II is the class of all deterministic policies. In the
sequel, we introduce the update procedure of RTC in the ¢-th iterate.

C.1 DATA COLLECTION

We first introduce the data collecting process of an agent with the policy 7*~! in the ¢-th iterate. For

each of the step h € [H] and the action sequence aZf’Z € AR+ the agent first execute the policy

7wt~ 1 till the (h — £)-th step, and collects a sequence of actions and observations as follows,

t h—t-1 t t t h—20 t t

ay_y = { A1—¢5- -+, a‘h—e—l}v 01_y¢ = { O1—05 -+ Oh—é}'
Here we use the superscript ¢ to denote the observations and actions acquired in the ¢-th iterate.
Correspondingly, we denote by ‘7/'~} = {*a" =/~ to"~!} the interaction history from the (h — £)-

th step to the (h— 1)-th step. Then, the agent execute aﬁf’; regardless of the observations and collect

the following observation sequence,

t h+k+1 _ [t t
Op_p41 = { Oh—+415- -+ 0h+k+1}-
; : t htk+1 : : h+k
Finally, we store the observation sequence ‘0, ", " generated by fixing the action sequence a; ",

into a dataset indexed by such action sequence, namely,
t h+k t—1/ h+k t h+k+1
Di(ayty) « Dy Hap ) U {0 T

C.2 DENSITY ESTIMATION

Upon collecting the data, we follow the embedding learning procedure and fit the density mappings
for the estimation of Bellman operator. In practice, various approaches are available in fitting the
density by observations, including the maximum likelihood estimation (MLE), the generative ad-
versial approaches, and the reproducing kernel Hilbert space (RKHS) density estimation. In what
follows, we unify such density estimation approaches by a density estimation oracle.

Assumption C.1 (Density Estimation Oracle). We assume that we have access to a density estima-
tion oracle &(-). Moreover, for all § > 0 and dataset D drawn from the density p of size n following
a martingale process, we assume that

1€(D) = plli < C- Vwe -log(1/6)/n

with probability at least 1 — §. Here C' > 0 is an absolute constant and we is a parameter that
depends on the density estimation oracle &(-).

We highlight that such convergence property can be achieved by various density estimations. In
particular, when the function approximation space P of &(-) is finite, Assumption 4.1 holds for the
maximum likelihood estimation (MLE) and the generative adversial approach with we = log|P]
(Geer et al., 2000; Zhang, 2006; Agarwal et al., 2020). Meanwhile, we scales with the entropy
integral of P endowed with the Hellinger distance if P is infinite (Geer et al., 2000; Zhang, 2006).
In addition, Assumption 4.1 holds for the RKHS density estimation (Gretton et al., 2005; Smola
et al., 2007; Cai et al., 2022) with we = poly(d), where d is rank of the low-rank transition (Cai
et al., 2022).
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We now fit the density mappings based on the density estimation oracle. For each step h € [H] and
action sequence a2+k AR+ we first fit the density of trajectory as follows,
Pl |aith) = €(Df(ap™))),

where the dataset D, is updated based on the data collection procedure described in §C.1. Mean-
while, we define the following density mappings for the estimation of Bellman operators,

X (h D] (™) = Bl ), C.1)
[YZ(Ih—e)] (T}}:ﬂcﬂ) P! n(T, h+k+1)- (C2)
Here recall that we define the trajectories 7', = {a}_,, o} _,} and 7"} = {alTh ofTh+1y,

h+k+1

Meanwhile, we write Pt L ¢ ) = IP’t( (AR P

for notational simplicity. We remark that

the density mappings Xh and Yh are estlmatlons of the density mappings defined in (3.6) and (3.7),
respectively, under the true parameter 6*. We then estimate the Bellman operators by minimizing
the following objective,

L@ = s [ Blon ) - Tk Dok €3
a27(EA£+1 O+

We remark that the objective defined in (4.1) is motivated by the identity in (3.8). In what follows,

we introduce an exploration procedure based on the objective defined in (4.1). In addition, we

acquire the estimation of initial trajectory density Bﬁ(T{“ ) = @5(7{6 ) by marginalizing the dummy

past trajectory 7)_, of Bt

C.3 OPTIMISTIC PLANNING

We remark that the objective defined in (4.1) encapsulates the uncertainty in the estimation of the
corresponding Bellman operator BY (ay,, 05,). In particular, a smaller objective L, (0) yields a higher
confidence that 6 is close to the true parameter 6*. Thus, we define the following confidence set of
parameters,

¢t = {00 max{|B] ~Bil1, L(O)} < B VL, Vhe [H]}, (C4)
where [; is the tuning parameter in the ¢-th iterate. Meanwhile, for each parameter § € ©, we can
estimate the embedding
o’ (71 ) = P’ (71 )
based on the Bellman operators {IB%Z}hE[ ) and Lemma 3.8. Such embedding further allows us to
evaluate a policy as follows,

Vo) = [ ool P (ol | @)l = [ r(off) 0o (@) )aof

where we define V™ () as the cumulative rewards of 7 in the POMDP induced by the parameter
0 € ©. Meanwhile, we define (a™)¥ = (aT,...,aT;), where the actions a] are the action taken by
the deterministic policy 7 in the h-th step given the observations.

To conduct optimistic planning, we seek for the policy that maximizes the return among all param-
eters 6 € C! and the corresponding features The update of policy takes the following form,

7! < argmaxmax V7™ (6),
Tell oect
where we denote by II the set of all deterministic policies. We summarize RTC in Algorithm 1.

D PROOF OF PRELIMINARY RESULT

In the sequel, we present the proof of preliminary results in §3.
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D.1 PROOF OF LEMMA 3.6

Proof. Tt holds for all time step h € [H], policy 7 € II, parameter § € © that

]P’Z’ﬂ(sh) = /3 AIP’Z_l(sh |sho1,an_1) PO (sp_1,an_1)dsp_1,an_1
X

= wZ_l(sh)T/ A¢Z_1(3h—17ah—1) PP (sp_1,ap—1)dsp_1,an_1
Sx

=1 (sn) Wa1(6,7), (D.1)
where we define

Who1(6,7) = 1 (sn_1,an_1) PO (sp_1,an_1)dsn_1,an_1.
SxA
Meanwhile, recall that we define the following linear operator in Lemma 3.6,

(U, f)(sn) = /A s Vha () TR ) fa AT,V € LHAT X O, Ve €6,
X t 41

where we define
2h(rn ™) = MU ) (m*F), vt e AFx o,
It thus follows from (D.1) that

[ AT
Ak x Ok+1

—apt [ A R W (g

= M TMEW),_1(0,7) = Wi—1(0, 7). (D.2)
Here recall that we define

M= [ O Tar € R
Ak x Ok+1
and M, g T as the inverse of M. g in Assumption 3.5. Thus, we have

U TUR (B () = w0 ()T /A o OO ()
X

k+1

= Y () Waoa (0,m) = PL7(0), (D.3)
which completes the proof of Lemma 3.6. O

D.2 PROOF OF EQUATION 3.8

Proof. By the definition of Bellman operators in Definition 3.7, we have
(Bf, (an, on)Xn(zh20)) (rfrth) = /SPG( TR ) - (UDTXO(1020)) (sn)dsn. (D.4)
Meanwhile, by the definition of Xz and [U,el in (3.6) and (3.2), respectively, we have
D)) =P = [P |l P )
(UQIP’H(oh 02 5h = |a ))(T{frk)
Thus, by Lemma 3.6, it holds that
U, X5 (0, 20) = Uy TURP (0= s = | ap—p) = P (0h g, sn = - ap—g).  (D.5)
Plugging (D.5) into (D.4), we conclude that
(B (an, 0n)Xn (T =) (T FH1) = / PO (R | sp,) - P (sp,, 007 ) [al =T )dsy, = PO (7)1,
h—1

where the second equality follows from the fact that the past observations o, _, is independent of

the forward observations o 1" given the current state sj,. Thus, by the definition of Y¢ in (3.6),

we conclude the proof of equation 3.8. O
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D.3 PROOF OF LEMMA 3.8

Proof. We first define the following density function of initial trajectory,
b (11 ) = (Ul ) (1 7F) = PO (7] *F) € LY (A" x OFF). (D.6)
Thus, it holds from the definition of Bellman operators in Definition 3.7 that

[BY (a1, 01)b]](7572) = / P(rf 2] s1) - (UT69)(s1)ds:
S

N / P2 [ 51) - pa(s1)dsy = P(r1F2), (D.7)
S

where pi; is the initial state density of the POMDP. Here the second equality follows from the left
invertibility of the forward emission operator Uf in Lemma 3.6 and the definition of ¢ in (D.6).
Thus, by the recursive computation following (D.7), we obtain that

(B (orr, am) . .. B (01, a1)bi] (757 {11) = P/ (T4,
Finally, by marginalizing over the dummy future trajectories

Htk+1 k k+1
THLJF ={aH+1,0H+1s -+ QH+k, OH4kt1} € A” X O + )
we conclude that
1
0 Hy _ 0( H+k+1y 3 H+K+1
P =g [ B
AkXOk+l
1 H
= v / [B?{(CLH,OH)...B?(al,ol)bﬂ(TH+k)dOZ+k.
A Ak x Ok+1
Thus, we complete the proof of Lemma 3.8. O

E PROOF OF MAIN RESULT

In the sequel, we present the proof of the main result in §5.

E.1 COMPUTING THE PERFORMANCE DIFFERENCE

In the sequel, we present lemmas for the sample efficiency analysis of RTC. Our analysis is mo-
tivated by previous work (Jin et al., 2020a; Cai et al., 2022). We first define linear operators

{T?, @Z}he () as follows,

(Tz(ah)f) (8h+1) = /S]P)}QL(Sthl |Sh7 ah) . f(Sh)dSh, Vf € Ll(S), ap € .A, (E.1)
(0 (o) f) (sn) = Of(on | sn) - f(s1), Vf € LMS), o € O. (E.2)

It thus holds that N
BY (an, o) = Uy, 1 T (an)0f (05U (E.3)

To see such a fact, note that we have for all f € L*(AF x OF*+1) that
~ 0
(U1 Th (an)On(on) U F) (r F )

= (Uhes [P L0 Onon ) (UL (511, ) ()
= [ P snn) P | ) - Onon [ sn) (U ) (st sl
32

= /S Pl s s YU ) () dsndsnan, (E.4)
where the first and second equalities follow from the definitions of Tz, @h, and UZ 11 in (E.1),

(E.2), and (3.2), respectively. Meanwhile, the third equality follows from the fact that the POMDP
is Markov with respect to the state and action pairs (sj,41, ap+1). Marginalizing over the state spy1
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on the right-hand side of (E.4), we obtain for all (T,}lﬁfﬂ) € A* x O+ that
(U ThenOh o0 )™ = [ P ) (O sy

= (Bf(an, on) f) (Th ),
where the second equality follows from the definition of Bellman operator ]BZ in Definition 3.7.
Thus, we complete the proof of (E.3).

Lemma E.1 (Performance Difference). It holds for all policy = € II and parameters 6, 6’ € © that

H-1
VIO -VIO)N<H vy Y] > gy ladon +H v+ [6§ — 6|1,
h=1 gl _ eAt+? O gn_1eld]
where we define
Uh,qn—1 = (BZ(am on) — Bi (an, Oh))Uz ]P)lo; (sh ="|qn-1) - P"(gn—1 \aﬁié)-

Proof. See §F.1 for a detailed proof. O

E.2 CONFIDENCE SET ANALYSIS

We first present the following norm bound on Bellman operators.

Lemma E.2 (Norm Bound of Bellman Operator). Under Assumptions 3.1, 3.5, and 5.1, it holds for
all h € [H], 0 € ©, and (ah, Oh) e A x O that ||BZ(ah,0h)||1H1 <v- AF.

Proof. Ttholds for all f € L'(A* x OF*1) that
|IBS, (an, on) fll1 < / /S PO (rp K s ) - UG £ (s)|dspdrp !

Ak x Ok+1
< Ak /S U5 £ (sn)|dsh- (E.5)
Meanwhile, by the definition of UZ’T in (3.3) and Assumption 5.1, it holds that
J 105 s ldsn = 08 Fs0) < - 1. ©6)

Combining (E.5) and (E.6), we conclude that

B (an, on) fllr < v AF || fl1,
which completes the proof of Lemma E.2. O

In what follows, we recall the definition of the reverse emission operator.

Definition E.3 (Reverse Emission). We define for all & € [H] the following linear operator IF‘Z’7T :
RY — LY (O x A%) forall h € [H], 7 € I,and § € O,
EO@D = Y Wlao PO g a)), Yo eRY,
qn—1€[d]
where (77}) € A* x O°.

In addition, we define the following visitation measure of mix policy in the ¢-th iteration,
t—1
1 w
t T
Pr=c > P,
w=0
where {7}, ¢} is the set of policy returned by Algorithm 1. We remark that the data collected by

our data collection process in Algorithm 1 follow the trajectory density induced by P! in the ¢-th

iterate. Hence, the estimated density P* returned by our density estimator &(D?) in the ¢-th iterate
aligns closely to P!. Meanwhile, recall that we define the following estimators in (C.1) and (C.2),
respectively,

XLz (m ™) =Ph(m™y), (V@i o] (™) = BL(m ™).
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Recall that we define the confidence set as follows,
c'= {9 €06 5/0H1 ||Bi(ah70h)§§2(a;ij) - @L(IZ—Z)\\ldOZ—é < Bt VaZ—Z € AHl}a

where we select

Br=(w+1)- A% \Jwe - (k+0)-log(H - A-T)/t.
In the sequel, we denote by @' the parameter selected in optimistic planning. The following lemma
guarantees that the true parameter 6* is included by our confidence set C! with high probability.

Moreover, we show that initial density and the Bellman operators {Bgt} corresponding to the pa-
rameter #* aligns closely to that corresponding to the true parameter §*.

Lemma E.4 (Good Event Probability). Under Assumptions 3.1, 3.5, and 5.2, it holds with proba-
bility at least 1 — ¢ that §* € C’. In addition, it holds for all h € [H] and ¢ € [T] with probability at
least 1 — ¢ that

6 =" s = O - A% - \Jwe - (k +€) - log(H - A-T)/t), (E.7)
> S 1B (an.on) — B (an,on))Uj P) (sn = an-1)]|,
ah_,eAt+1 O gn_si€ld]

~P9*’t(qh_1 |a2:})d0h = (’)(’y cp - AR \/w@ “(k+4£)-log(H - A- T)/t)7 (E.8)
where we define

t—1
* _ 1 * W _
P’ ,t(Qh—l ‘a}}i,%) = 2 : ZPG - (Qh—l ‘CLZ,%)
w=0

Proof. See §F.2 for a detailed proof. O

E.3 PROOF OF THEOREM 5.3

We are now ready to present the sample complexity analysis of Algorithm 1.

Proof. Tt holds that
T
—T 1 ¢
* (kY T *Y *(0x\ T * ) E.
VEO") = VT (07) T;:lV(H) V(6" (E.9)

It suffices to upper bound the performance difference
VEO*) — V™ (67)
for all t € [T]. By Lemma E.4, it holds with probability at least 1 — ¢ that 6* € C* for all t € [T].
Thus, by the update of 7¢ in Algorithm 1, it holds with probability at least 1 — § that
VEOF) = VT (0F) < VT (0Y) — VT (6%). (E.10)
It now suffices to upper bound the performance difference on the right-hand side of (E.10). By
Lemma E.1, it holds that

H-1
t t % * ot _
VO VT O <H vy Y > Nthg Il P77 (gno1 [ahZy)do
h=1 ol _, eAt+1 O gn_r€ld)
(i)
+H v b =08, (E.11)
(ii)
where we write

t * * *

U;L,thl = (]B%‘Z (an,on) — IB%% (ah,oh))Uz IP’Z (sh ="|qn-1) (E.12)
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for notational simplicity. We remark that the summation in term (i) is different from that in (E.8) of
Lemma E.4. In particular, by Lemma E.4, it holds for all h € [H] and ¢ € [T] that

Z Z [wh g 1P (qn—1 | a}—y)don
alP_,eAt+1 O gn-r€ld)

=O(y-v-d-A** . Jwe - (k+10) -log(H - A-T)/t) (E.13)
with probability at least 1 — §, where we define

t—1

. B 1 - B
P ana 0 =p) = 2 D P (ana [0 7)-
w=0
The only difference between the left-hand side of (E.13) and the term (i) in (E.11) is the conditional
density of the bottleneck factor g, 1, which follows the visitation of 7, namely, po” " ,in (E.11) but
the mixture of visitation P? "¢ in (E.13). To upper bound (E.13) by (E.11), we utilize the calculation

trick proposed by Jin et al. (2020a). In particular, we utilize the following lemma.

Lemma E.5 (Lemma 16 of Jin et al. (2020a)). Let 0 < z; < C, and 0 < w; < C,, forall ¢ € [T).
We define S; = (1/t) - S°!_, w; and Sy = 0. Given

2 Sii1 < 0Oy C /1)t
for all ¢ € [T, it holds that

T
1
f~Zzt cwy <20, - Cyp - (C+1)-/1/K -1ogT.
t=1
Here C' > 0 is an absolute constant.

Proof. See Jin et al. (2020a) for a detailed proof. O]

It thus follows from (E.13) and Lemma E.5 that
(i) =O0(y-v?*-d-H-A*" . \Jwe - (k+0) logT -log(H - A-T)/t) (E.14)
with probability at least 1 — §. Meanwhile, by (E.7) of Lemma E.4, it holds that
(i) =H-v- ||} =i |1 =O(H-v* A% \Jwe - (k+ ) - log(H - A-T)/t) (E.15)
with probability at least 1 — §. Finally, by plugging (E.14) and (E.15) into (E.13), it holds for all
t € [T that
V(0" —vT(er)
=0(y-v*-d-H- A% 1ogT - \Jwe - (k+0)-log(H-A-T)/t) (E.16)

with probability at least 1 — §. Combining (E.10) and (E.16), it holds with probability at least 1 — ¢
that

Ve VT (6")
=0(y-v?-d-H -A*" logT - Jwe - (k+£) -log(H-A-T)/T).
Thus, by setting

T=0( v*d* H* A2CF0 (k4 () log(H - Afe)/e?),

it holds with probability at least 1 — § that V*(6*) — Ve (6*) < e. Thus, we complete the proof of
Theorem 5.3.

O

F PROOF OF AUXILIARY RESULT

In the sequel, we present the proof of the auxiliary results in §E.
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F.1 PROOF OF LEMMA E.1

Proof. By Lemma G.7, it holds for all policy 7 € II and parameter § € © that
Ve) = [l Bl ol
OH

= [, el B o

where (a™)# = (aT, ..., a%;) and the actions ah = (o, (™)) are taken by the policy 7 for all

h € [H]. Following from the fact that 0 < (o’ ~') < H for all observation array o’ ~* € O we
obtain for all policy 7 € II and parameters 6,6’ € © that

\V“(Q)—V“(G’)|§H-/ [P? (o1 | (a™)H) — P (off =1 | (a™)) |do 1, (E.1)
OH

where the actions a]f are taken by the policy 7 for all h € [H]. In the sequel, we utilize a slight
modification of Lemma 3.8. In particular, following the same calculation as the proof of Lemma 3.8
in §D.3, we have

P (%) = [BY _ i (am—1,0m-1) - .. B (a1,00)b]] (1 TF).

Thus, by marginalizing over the dummy future observations ogff and fixing the final observation
op, we obtain for all dummy future actions ag““*l that
9 HY _ H+ky mf( H+kyj H+K
P(Tl)—\/(gk]loHaHMc 1(1 )P( )d0H+17 (FZ)

where we define ]1 QlTHE=1 the indicator that takes value one at the final observation oy and the

fixed dummy future actlons a H+k ! By plugglng (F.2) into (F.1), we have
‘V‘ﬂ'( ) V7r | <H. / f0’|( h+k7(aw)g+k—1)d0{‘1+k” (F.3)
7r)H+k—1
H

where (a
define

= (a%,...,af,_) and the actions aj] are taken by the policy m. Here we

fg = B?—I—l(a}r{—lv OH—l) .- Ef(a’f, Ol)b?7
where b{ is the initial trajectory distribution for the first & steps defined in Lemma 3.8. Meanwhile,
by the linearity of Bellman operators, we have
H—-1

=1 =" BY (0 _y,0m-1).. B (afy,0n41)0n, (F4)
h=0

where we define vy = b¢ — b¢ and

o, = (BY(af,0n) — B (af,0n)) By (af_1,0n-1) ... BS (a,00)b, he[H—-1]. (ES5)
By combining (F.3) and (F.4), we have

V(6) - V()| < H - Z/ By (a1 011 - By (a1, 0010 ldot!

+ /o B (@ om1) BT 000 — ot (R

The following lemma upper bounds the right-hand side of (F.6).

Lemma F.1. Under Assumption 3.5, it holds for all h € [H], 7 € II, and v;, € L*(AF x OF*1)
that

Lo B (o an) o B (ansn.onsJon dof i < v o
OH+

Proof. See §F.3 for a detailed proof. O
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By Lemma F.1, it follows from (F.6) that
H
VT (O) = V(O <H-v- Y /O [vnll1dof + H - v - [[6] — b |1, (E7)
=0

where we define vy = b¢ — b and
vp = (B (af, on) — BY (a’g,oh))BfLLl(aZﬂ,oh,l) By (aT, 006, helH-1].
Meanwhile, the following lemma upper bound the L'-norm of vj, for h = 2,..., H.

Lemma F.2. It holds for all 7 € ITand h € [H — 1] that

/h ||U}LH1dO}f < Z / Z updoy,
O

alh_,eAt+1 qrn—1€1[d]
where we define
! ’ ’ !
Uh = (BZ(CL27 Oh) - BZ (a;zra Oh))BZA(aqu Ohfl) .- 'B§ (a‘fv Ol)b? )

un = || (BY (an, o) — B, (an, 0n)) U BY (si = | qn—1) - P"(qn—1 | al=})]],,
forall h € [H —1].

Proof. See §F.4 for a detailed proof. O

Combining (F.7) and Lemma F. 2 we conclude that

v -ve<Ee Y Y R R L

h=1al  cAt+1 qp_
where we define
Uhgn = (BR(an,0n) = BY, (an,0n)) U5 Py (s = - | qn—1) - P" " (g1 | aj—5).
Thus, we complete the proof of Lemma E.1. O

F.2 PROOF OF LEMMA E.4

Proof. We first show that 0* € C' with probability at least 1 — §. By Assumption 4.1, it holds for
all t € [T that

Bt — 07| < Vwe - (k+€) - log(H - A-T)/t (F.8)
with probability at least 1 — §. Meanwhile, it holds that

0" < h S
[ VB o) Bz ~ ik
0 0* 7 h— o* 7t
< /OM IBY (an, on)X0 ™ (1) = YO (zh_,)|1dof_,

+ [ 1B (anon) (517 (@t = Zi b)) don
o

9* ,ft ~
+ /OMH(Yh - YZ)(IZ_Z)HIdOZ_E. (F9)
‘We now upper bound the right-hand side of (F 9). According to the identity in (3.8), we have
B}QL* (aha Oh)Xz ( Z %) Yz*’? (IZ—K) =0 (F.10)
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forall h € [H] and (a]_,, 0} _,) € A“*! x O*F1. Meanwhile, by Assumption 4.1 and the update
of density estimators ?2 in (C.2), it holds for all h € [H], t € [T, and IZ—@ e Af x Of that

L0 -l o= X [ 1@ BT ol
Ot+1 Ok+0+1

apfieAr
= 3 BT a )
aZi’fEAk
< A* . \Jwe - (k+10)-log(H-A-T)/t (F.11)

with probability at least 1 — §. Similarly, by Assumption 4.1, Lemma E.2, and the update of density
estimators X} in (C.1), we further obtain for all » € [H] that

/HBh ah,oh)(Xa Tr( e Xt (Th s )H dop,

<v-A* . \Jwe - (k+10)-log(H-A-T)/t (F.12)
with probability at least 1 —4. Plugging (F.10), (F.11), and (F.12) into (F.9), we obtain for all h € [H|
that

Lo VB (an 0B hoh) = Th(ehlhdel < - VT8 E13)

with probability atleast 1—4. Thus, combining (F.9) and (F.13), it holds that §* € C* with probability
at least 1 — 4. In what follows, we prove (E.7) and (E.8), respectively.

Part I: Proof of Upper Bound in (E.7). By the definition of confidence set C?, it holds for all
t € [T], (ahTF=1 al ) € A¥+ and h € [H] that

167 =Bl < (1+v) - A* VVwe - (k+0) log(H - A-T)/t
with probability at least 1 — 4. Thus, by (F.8) and triangle inequality, it holds for all ¢t € [T],
(alth=1 al ) € AF+ and h € [H] that

t * t o~ ~ *
67 =0 [l < (16T = bLll + 167 = b1 |
=0W-A%* . \Jwe-(k+0) log(H-A-T)/t)
with probability at least 1 — §. Thus, we complete the proof of the upper bound in (E.7).

Part II: Proof of Upper Bound in (E.8). It suffices to upper bound the following term for all

h e [H]andt € [T],
G = ( > / [ dOh) (F.14)

alh_,e At “qp_1€[d]
where we write
Uh g 1 () = (B (an,on) =B (an,0n))UY P} (sn = qn-1) - P"" (g1 ]af=})  (E15)
for notational simplicity. We remark that uz ano1 € L'(A* x OF*1) is a function in the space

L'(A* x OF1) by the definition of Bellman operators BY and B? . In the sequel, we define the
vector-valued function

wh = [l ] € R,
It thus holds that
Gh=">_ / luf, () [ dop L (F.16)
A

Here the integration and summation are taken with respect to the domain oﬁk“ € Ok of ul,
h—1

the action sequence a,_, € Af in (F.15), and the action and observation pair (ay,05) € A x O in
the Bellman operators that defines ufm in (F.15). We remark that in (F.16), we abuse the notation

slightly and write
h
b (D= D0 g, (T,

qn—1€][d]
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where uﬁb - (T,’fjff“) is defined in (F.15). In the sequel, we upper bound the right-hand side of

(F.16). By Assumption 5.2, it holds that

0" T, T0 ™ e T
lupll = (1B T F g [l < - B euh [l (F17)
Meanwhile, by the deﬁnition of IE‘G* " , we have
0" T
F Z uhl]h 1 Pe’ (0 |Qh 1,CLh g) (F.18)
qn—1€[d)

By the definition of uz, _— in (F.15), we further obtain that

PO (Oh Z7Qh 1|ah e)

ul Lpo T Oh 1 ah Tl =t )
hign—1 ( |(Zh 1, Up, Z) h,qn—1 o= 7t (qh-1 |a )
= (B (an,on) — B, (an,0n)) U PY (sn =+ |qn-1) - P*7 (o} =}, an-1 | a}=})
= (B (an.on) — B (an, o)UY P (o} =} qnor,sn = - | al=}).
Thus, it follows from (F.18) and the linearity of Bellman operators ]B%G and IU‘) that
Emup) (o) = > (B (anon) — B (an, o)UY PO (0h =5, quor.sn = | ap})
qn—1€|d]
= (B, (an,0n) = BY (an,0n)) UL BT (0=, 51 = - aj~})
= (BY (an, 0n) — BY (an,0n))X0 ™ (i D), (F.19)

where we marginalize the bottleneck factor ¢, in the second equality. Here recall that Xz* s
the density mapping defined in (3.6) and 7" is the mixed policy in the ¢-th iteration. Plugging (F.19)
into (F.17), we obtain that

flub |l < - Z / Bh (an,on) —BY (ah,oh))Xz (Th )|d0 (F.20)
a}}; éEA"
Plugging (F.20) into (F.16), we obtain that
e _h—
Gh<y > / 11(BY, (an, on) — B, (an, 0n))X0 ™ (1p=1)||,dolt_,. (F21)
al_, e At+1 o
It remains to upper bound the right-hand side of (F.21). By triangle inequality, we have
t * 0 7t _
/OMH(B;G; (an,on) =B, (an,0n)) Xy ™ (zp24)|| dok_, (F22)

t . —t
Slwﬂmﬁ%%m“<#%>Y$Wﬂ4mwﬂg

« o* 7?t _ o* 7?1:
B o) 7 @) Y () ol
By the identity in (3.8), it holds that
B, (an, on)Xy, ™ (Th7) = Y, T (Thog) =0 (F.23)
In the sequel, we upper bound the term

t o* 7 o* 7t
Lo VB o) ™ () = Y07 (el
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on the right-hand side of (F.22). The calculation is similar to that of the derivation of (F.13). It holds
forall h € [H] and t € [T] that

+ ‘9*’?t _ 0*’?t
Lo VB o)) () = Y07 (el
< [ B o B o)) - Tk ol
OZ+1
N R A AW R
OZ+1

+/OH1HB2t(ah,0h)(XZ*5( P R (eh )] oy (F24)

We now upper bound the right-hand side of (F.24). By the definition of confidence set C?, it holds
forall h € [H] and t € [T] that

/of+1 [l:14 (ah’oh)Xh(Th )~ Y (zh_p)lldof_, < B V/1/L. (F.25)

Meanwhile, by Assumption 4.1 and the update of density estimators WYZ in (C.2), it holds for all
h € [H]and ¢ € [T] that

o E S _ @ 0%
/(9z+1H(Yh —YZ)(zzfg)Hldtoe = Z /OH[H T s an I i

e gk
a, ;€A

= 3 @ YTl

htk o Ak
ay €A

< A* . \Jwe - (k+10) -log(H-A-T)/t (F.26)
with probability at least 1 — 4. Similarly, by Assumption 4.1, Lemma E.2, and the update of density
estimators X! in (C.1), we further obtain for all 1 € [H] and ¢ € [T that

/(OeﬂHBZt(ah’Oh)(Xz*m( " i) — Xt( ")) )H doj;_

<v-A%* . \Jwe - (k+() - log(H-A-T)/t (F.27)
with probability at least 1 — §. Plugging (F.25)—(F.27) into (F.24), we obtain for all h € [H] and
t € [T that

L VS (an o) = Theholhaeh

=0 A% Jwe - (k+¢) -log(H-A-T)/t) (F.28)
with probability at least 1 — 4. By plugging (F.23) and (F.28) into (F.22), we obtain for all h € [H],
t € [T],and (a) ™1 ap_,) € AFH that

/OzHH(BZt(ahaOh)—BZ*(GIHOA))XZ (T "t) || dof;_
=O(v- A% - Jwe - (k+ () -log(H - A-T)/t) (F.29)

with probability at least 1 — ¢. Plugging (F.29) into (F.21), we obtain for all h € [H] and ¢t € [T
that

Gy =0(y v - A** . Jwe - (k+ () log(H-A-T)/t)

with probability at least 1 — §. Here G is defined in (F.14). Thus, we complete the proof of the
upper bound in (E.8). O

F.3 PROOF OF LEMMA F.1

Proof. Recall that we define linear operators {’]I‘z, @Z} ne(m) as follows,

(T7(an)f) (she1) = /SP;QL(ShH |sh,an) - f(sn)dsp, VfeLYS), an € A,

(09 (0n)f) (s1) = Of (on | s1) - f(sn), Vf€LYS), op € O.
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Recall that we have

B, (an, 0n) = Uf 1 T (@) Of (o) U
Thus, following from Lemma 3.6 and the fact that T (as,) f is linear in v, it further holds for all
h € [H] and v, € L*(A* x OF*+1) that

B?I—I(OH—la aH—l) .. -BZ+1(ah+1, O}H_l)’vh

= Uy (an—1)0% 1 (0m-1) - - Thy (ans1)0) 4 (0n41)UL T vn. (E:30)
We now prove Lemma F.1 in the sequel. To begin with, it holds for all h € [H], ap+1 € A, and
f € LY(S) that

LIt sani)Bh s onin) Flhdonsa
< / P (shia | Snt1sans1) - OF 11 (ong | sna1) - |f (sne1)ldops1dspidspis
S2x0

= [ Ifnenldsia = 1711
Inductively, it holds for all h € [H], a' ;" € AH~"~1 and f € L!(S) that
/onm T4 -1 (arr—1)0% 1 (0rr—1) - - . Th 41 (an+1) O 4y (0n11) fladop’ " < [ fll. (E31)

Meanwhile, by the definition of U% in (3.2) of Definition 3.4, it holds for all f € Ll(S) and
h+k—1 k
ay € A" that

[ Rl ot < [ B s alf ) (o) dofy s
Clas SxOk+1
= [ 1ftsmldsi =111 (F32)
S

Combining (F.30), (F.31), and (F.32) with h = H, we obtain that
Lo VB (oot am) o B (ansn,onn o dof
OH+k—h

6 mé -~ 6 0 0, H+k
= o 0BT s 1)B s 0n1) - T () Ol o) UG L dofT

0 ™0 [/ 0 6, H—
S/OPHH TSy (ar-1)0% _y(0r—1) .. Th 1 (an+1)0% 41 (on+1) Uy vn [l 1doy’

< [[URL onlh- (F33)
Finally, by Assumption 3.5, it holds that
0,
105 onlln < v llonla.
Thus, we completes the proof of Lemma F.1. O

F.4 PROOF OF LEMMA F.2

Proof. Recall that we define
Uh = (BZ(@Za Oh) - B}QL,(G’Z7 Oh))lefl(ath Ohfl) .- 'Bﬁ/(a’?ﬂ Ol)b?/> Vh € [HL
where the actions af are taken by the policy « for all h € [H]. To accomplish the proof, we first

handle the dependency of the actions a} on policy 7 for h — ¢ < j < h. To this end, we utilize the
following upper bound,

/||vh||1do§‘§ > /H(IB%Z(CLZ,O;L)fB?Ll(ah,oh))BZI_l(ah_l,oh_l)... (F34)
Oh OH

h 41
all_, €At

B (an—e,on_0)BS_, (aF_, 1 0n—¢—1)...b] Hldoff.
Here we abuse the notation of index slightly for simplicity. We remark that the sequence of product
of Bellman operators Bjel (aj,0;) ends at the index j = 1. Recall that we have

BY (an, o) = Uj 1 Tf (an)Of (0n) UL T,
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where the linear operators {’]I‘fl, @‘Z} nepm are defined in (E.1) and (E.2), respectively. Thus, by
Lemma 3.6, it holds for the right-hand side of (F.34) that

BY i (an—1,0n-1) - Bl (an—e,0n—0)BY__1(aF_g_1,0n—0-1)...b]

= U5 71 (an—1)0)_y (0n-1) ... OF (01)pu, (F35)

where ;11 € L'(S) is the initial state probability density function. By the definition of linear opera-
tors {T%, 0% },c(a) in (E.1) and (E.2), respectively, it further holds that

T§y (an—1)0) 1 (0n-1)Th _s(an—z)...0f (o)1 =B " (o} ! s, = - |a}Z}) € LY(S).
(F.36)

’

By plugging (F.35) and (F.36) into (F.34), we obtain that
/oh | ||1do < Z / ( (BY (an, 0n) — B (ah,oh))[[j9 P ("1 s, = .|a2:é)||1d0§b.

ap_,€At+1
(E37)
Meanwhile, it holds for all s;, € S that
Pelm(‘)}filvsh |aZ Z ]Ph 1501 qn-1) - P h 1(% 1’Oh ¢ |ah 1)
qn—1€[d]
Thus, it follows from Jensen’s inequality that
/OHH(IB%Z(aZ,oh) - ]B%Z (ah,oh))UZ i ’”(oi’_l,sh = aZj)Hldof{_l
§ / Z Wh Pel’ﬂ(OiL—la dh—1 |a2:%)d0{{_1
OH
qn—1€l[d]
/ Z wy, - Pe’ "(qh—1 \ah Z)doh, (F.38)

qn—1€[d]
where we write
wy = || (Bf (af, on) — BY (an,0n)) U Py (sn = - |an-1)|
for notational simplicity. By plugging (F.38) into (F.37), we complete the proof of Lemma F.2. [

G ANALYSIS FOR THE TABULAR POMDPs

In the sequel, we present an analysis for the tabular POMDPs. We remark that our analysis extends
the previous analysis of undercomplete POMDPs (Azizzadenesheli et al., 2016; Guo et al., 2016;
Jin et al., 2020a), where the emission matrices are left invertible. In particular, our analysis handles
the overcomplete POMDPs with O < S, where O and S are the size of observation and state spaces
O amd S, respectively.

G.1 BELLMAN OPERATOR

We first introduce notations for matrices to simplify the discussions of POMDPs.

Notation. We denote by M = [f(4,7)];; € R™*™ the n-by-m matrix, where f(i,5) € R is the
element in the i-th row and j-th column of M. In addition, for a matrix M, we denote by M; ; the
(i, 7)-th element of M.

In addition, recall that we denote by T h+k = {on,an,...,ap+k—1,0n+k} the trajectory from
the h-th observation op, to the (h + k) th observation on+k- Similarly, we denote by IZ =
(Oh, @Ry« -+ Otk ah+k) the trajectory from the h-th observation oy, to the (h + k)-th action ap, .
We denote by ah+k = (ap,...,ap+k—1) and 0h+k (Oh, - - ., 0n+) the action and observation
sequences, respectlvely. Meanwhile, recall that we write
P () = P™(on, - -, 0ngk | Qs - - angim1) = PT(0p TF [ap P,
h+k h+k h+k—1
P (7% | sp) = P™(0ny - -+, Otk | Shy @y - - vy @hgi—1) = PT(0)T* | s, ap tF7 1),

for notational simplicity.
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Forward Emission Operator. In the sequel, we define several matrices that describes the transition
and emission in POMDPs. We define

O (on) = D(On(on | ")) = D([@(oh | sh)}Sh) € RSXS,
']I‘h(ah) = ]P)h( | '7ah) = []P)h(sh+1 |sh7ah)} ShaShit € RSXS7
On = On(-]-) = [On(on | sn)]

OxS
R,
where we denote by D(v) € R*¥ the diagonal matrix where the diagonal entries aligns with the
vector v € RS,

Oh,Sh

Definition G.1 (Forward Emission Operator). For all h € [H] and k > 0, we define the following
forward emission operator,

Up = Op ik Thah—1()Onsn—1() - Th (O ()
= [L(on+k) "OntkThk—1(an+k—1)Onrk—1(0nsk—1)
.. Th(ah)@)h(oh) ]l(Sh)]Tthk . c R(okﬂ‘Ak)xS,

where we index the column of Uy, by the state s, € S, and the row of Uj, by the observation and
action arrays

h+k _

aZ‘H“_l = (ap,...,aptk—-1) € A*. 0, = (0ny .., 0ntk) € Ok,

Lemma G.2 (Forward Emission Operator). It holds for all h € [H] that

U = [P )]s, € ROV,

Sh
Proof. See §H.1 for a detailed proof. O

Lemma G.2 characterizes the semantic meaning of the forward emission operator Uy;. More
specifically, Lemma G.2 allows us to write Uy, in the following operator form,

h+k h+k—1 OFtl. Akyx s
Up =P} ™ = | s, = -,af ™1 =) e Rl xS,
—_—— Y~ —,—

(a) () ©
where (a) and (c) correspond to the row indices, and (b) corresponds to the column indices of the
forward emission matrix Uj,. For a state distribution vector p, € RS of state s, it holds that

_ htk _ htk—1 _ okFt.A*
Unpn = B(of* = a1 =) e RO,
which corresponds to the forward emission probability of oZJrk = (op,...,0p+k) given an action
h+k—1
sequence ah+ = (any .-y Qptk—1)-

Assumption G.3 (Future Sufficiency). We assume for some £ > 0 that the forward emission opera-
tor Uy, has full column rank for all h € [H]. We denote by TUL the left inverse of Uy, for all h € [H].
We assume further that HUL”MA <vforall h € [H].

Planning with Bellman Operator. In the sequel, we introduce the Bellman operators {By, } ¢
which plays a central role in solving the overcomplete POMDP. We define the Bellman operators as
follows.

Definition G.4 (Bellman Operator). For all h € [H], we define the Bellman operator By, as follows,
Bh(ah, Oh) = IUthlTh((lh)@)h(Oh)[U}LL7 V(ah, Oh) e AxO.

Given the Bellman operators {By, } ,c[#], We are able to estimate the probability of any given obser-
vation sequence (01, a1, ..., oq). In particular, the following lemma holds.

Lemma G.5. It holds for the Bellman operator defined in Definition G.4 that

P(r{'~") = 1(on) "Br_1(am—1,0m-1) ... Bi(a1,01)by, by =Uyp.
Here 1 (og) is an indicator vector that takes value one at the indices (022, a22™*~1) for any dummy

observation sequence ogff and a randomly fixed action sequence angk ~1. In addition, y; € RS

29



Published as a conference paper at ICLR 2023

is the probability array of initial state distribution, and b; € RO*A" is the probability distribution
of the first k steps, namely,

k41, 4k
b1 =Upq = [P(le)]'r,’f ERO AT
Proof. See §H.2 for a detailed proof. O

Lemma G.5 allows us to estimate the probability of any given trajectory. In addition, for a determin-

istic policy m, it further holds that
H H H-1
P™(0r") = B(or" [ (™)1 ), G.1)
where (a™)F~! = (af,...,af;_,) is the action sequence determined the observation sequence
0{{ ~1 and the deterministic policy 7. Thus, for a given deterministic policy 7, one can evaluate the

policy 7 based on the Bellman operators as follows,

H
Vi= > P(of")- Y r(on)

offleoH h=1

H
Z Z T(Oh) . ]I(OH)TBH_l(CLH_l, OH—l) .. .]E%l(al, Ol)bl.

offleoH h=1

Estimating the Bellman Operator. To estimate the Bellman operators based on interactions, we
utilize the following identity of Bellman operators,

By (an, on)Xn (0} ™) = Yn(apty, on). (G.2)
Here we define the probability tensors X and Y, as follows,
Xp(ah =) = UpTho1(an—1)0n-1() .. Th—r(an—e)On—r(-)ptn—e,

Yi(ap_ 0n) = Uns1Th(an)On(0n) Th-1(an—1)0n-1(-) ... Ta—e(an—1)On—e(-)pth—s,
where 15,_, € R is a probability density array for the state s;_,. The following lemma character-
izes the semantic meaning of the probability tensors X}, and Y}, for all h € [H].

Lemma G.6. Let Py_y(sp—¢ =) = pp—1 € RS be a probability density array for the state s;,_.
It holds for all h € [H] that
h— 1)

AFTL.OFYxOf
Xh(ahfé ( ) )

BT o oy < B

k41, kY Of
Yh(aZ—éroh) = [P(ng;—%l)]ﬂ?i—f“ oy € RUATTH07)X07

Wh—£

Proof. See §H.3 for a detailed proof. O

G.2 ALGORITHM

We now introduce RTC under the tabular POMDPs. In particular, RTC iteratively (i) collects data
and fit the density of visitation trajectory, (ii) fits the Bellman operators and construct confidence
sets, and (iii) conducts optimistic planning. See Algorithm 2 for the summary.

We remark that the data collection process is identical to that for the low-rank POMDPs. Meanwhile,
in the tabular POMDPs, we estimate the density of visitation trajectory by count-based estimators
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as follows.

33:; Z( > 11(75“)), (G.3)

a’f cAk le+1 eDt (a’f)

> ( > 11(7!3*’“)]l(oﬁéf>, (G.4)

htk—1, 4k \_h+k htk—1
ay €Ak T TIED (ap Ty )

S 1
t 1 _ htk41 h—1\T
Y}, (ap_g0n) = 7 Z ( Z ]l(Th+1 ) 1(op—,) )> (G.5)
i tledr Mol eDu
In the sequel, we summarize the estimations of initial trajectory density and Bellman operators in
the ¢-th iterate by the parameter 6¢. Accordingly, we estimate the Bellman operator in the ¢-th iterate
by minimizing the following objective,
Tt t t
L= sup [Bf(an,0n)X}(a}"}) = Yi(af_¢ 0n)ls
ahpeath

Xi(an ) =

~+ | =

We define the following confidence set of the parameter 6 in the ¢-th iteration.
ct = {9e@ max{||b‘9—bt|1,L } < B /1Jt,Vh e [H } (G.6)

where we set

Br= (L4 v) - (k+0) - \JAS+1 . OFE log(0 - A-T - H/b) 1.

Note that the initial density b and Bellman operators {IB%Z} nepm) are sufficient for policy evaluation
since they recovers the visitation density of an arbitrary deterministic policy (Lemma G.7). We
conduct optimistic planning in the ¢-th iteration as follows,
7t = argmax V7 (6"),
well,fteCt
where V7 (6?) is the policy evaluation of 7 with parameter §% and 11 is the set of all deterministic
policies.

Algorithm 2 Represent to Control for Tabular POMDP
Require: Number of iterates 7' € N. A set of tuning parameters {; } ¢

1: Initialization: Set 7 as a deterministic policy. Set the dataset Dh(aZHZ) as an empty set for

all (h,al ™%y € [H] x AR+,
2: fort € [T] do
3. for (h,a)™) € [H] x A¥+t+1 do
4: Start a new episode from the (1 — ¢)-th step.
5 t h—¢
6

Execute policy 7'~ till the (h — £)-th step and receive the observations ‘o] /-

h+

Execute the action sequence a h_’z regardless of the observations and receive the observa-

. t h+k+1
tions Op_p41-

7: Update the dataset D!, (al %) « DI~ (a)TF) U {%Z’fifjr'll .
8: end for R R
9:  Update the density mappings X/, and Y/ by (G.4) and (G.5), respectively.
10:  Update the initial density estimation bt (7'1 ) < by (G.3).
11:  Update the confidence set C by (G.6).
12:  Update the policy m* < argmax . maxpect V7 (6).
13: end for
14: Output: policy set {7"},c |7y

G.3 THEORY

In the sequel, we present the sample efficiency analysis of RTC for the tabular POMDPs.
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Calculating the Performance Difference. Similar to the analysis under the low-rank POMDPs, we
first calculate the performance difference of a policy between two different POMDPs defined by the
parameter 6 and €', respectively. The following lemma is adopted from Jin et al. (2020a).

Lemma G.7 (Trajectory Density (Jin et al., 2020a)). It holds that
PO (of1 1) = P (off 1| (aM) ),

where (a™)}' = (aF,...,a};) and af = m(a} ™", of) is the action taken by 7 in the h-th step for all
h € [H].
Proof. See Jin et al. (2020b) for a detailed proof. ]

We now calculate the performance difference in the following lemma.

Lemma G.8 (Performance Difference). It holds for any policy 7 that
(V7 (0) = V7 (6")]

H-1
<v-VS-H-Y Y |(BR(af, o) — B (af, 0n))BI_ (af _y 0n-1) . BY (aT,00)b ||,

h=2 ohecOh
v VS H- Y Y |[(BY(aT, 01) — B (af, 00)) ||, + v VS H - (b — b 1,
a1€Ao0,€0

where ]B%Z is the Bellman operator corresponding to the parameter 6 for all h € [H], and ¢
Uf_’k {1 s the initial trajectory distribution corresponding to the parameter 6. Here the action a}, =

7((a™)~1 071 is the action taken by 7 in the h-th step for all h € [H].
Proof. See §H.4 for a detailed proof. O

We define the following state density array,

(@ =, oY) = O) _y (on—1)Th_s(an—2) - Th_,(an—e)0f_,(on—¢)

(i)
Ty -1 (af_e—1) - T(a7)O (01) 1
(ii)
= [P""(sn, 01! |ap )], s € R (G.7)
Here the actions a, _,_,...,af in (ii) of (G 7) is determined by the observations array oh =2 and

the policy 7. Meanwhile, the action array a!* e e is the fixed action array that defines the state density

array uh 1 (7, aZ %, olf 1). In addition, we denote by P? the probability that corresponds to the

transition dynamics defined by the operators {@Z, ’]I‘Z} ne(m)- Based on (G.7), we further define the
following marginal state density array,
Y. Hha(maTp ol

fin—1(an_g;m)
oi-teon1
= [P""(sp_1]a}” 1)]sh68 € R5. (G.8)

The marginal state density array ﬁfl_l(aZ:}; ) captures the state distribution of sp_; given the
following interaction protocol: (i) starting with the initial observation, interacting with the environ-
ment based on policy 7 till the (h — ¢)-th step and observing oj,_y, and (ii) interacting with the
environment with a fixed action sequence aﬁj regardless of the observations till the (h — 1)-th step
and observing oy, 1. We remark that such interaction protocol is identical to the sampling process in
Line 4-6 of Algorithm 2. The following lemma upper bounds the performance difference calculated

in Lemma G.8.
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Lemma G.9 (Upper Bound of Performance Difference). It holds for all mand & > 1 that
Z H (BZ(aZth Be (ahs Oh))Bh 1(ah_1,0n-1) .. B?/(af, Ol)b(f/ ||1

oheoh

< Z Z Z (B, (an, on) le(aha0h)>[U}01,,kTZ/—1(Sh—17ah—l)Hl P (sn1|ap_y),

al_,eAt+10,€0 5 1ES

where the action af = 7((a™)"™!, o?) is the action taken by 7 in the h-th step for all h € [H].Here

']I“Zl_l(sh,l,ah,l) € R is the state distribution array [']I‘z/_l(sh |sh_1,an_1)]s, € R for all
h>1.

Proof. See §H.5 for a detailed proof. O

Confidence Set Analysis. We now analyze the confidence set utilized for optimistic planning. We
define the following visitation measure of mix policy in the ¢-th iteration for all ¢ > 0,

1 t—1
=7 2P )
w=0

where {7} [y is the set of policy returned by Algorithm 2. Meanwhile, recall that we define the

empirical density estimators,
S (X ),

af Ak \rtieDiah)

Bah-1 X (X @),

htk—1, g5 N _h+k htk—1
ay €Ak T TreD (ar Ty )

S 1
t( h _ htk+1 h—1\T
Y}, (ap_g 0n) = 7 Z < Z L(m, ) Loy —y) )>
apthe Al et et (alith)
where we denote by 1(x) the indicator vector that takes value one at the index . Recall that we

define the confidence set as follows,

Ctz{ﬂe@:max{ﬂbo Bl IL} < By /IftVh e [H }

~
b =

| =

~ | =

where we set

By =AF - (k+0)-\/log(O-A-T- H/é)
Recall that in the ¢-th iteration of Algorithm 2, we update the policy 7t as follows,
7t = argmax V7 (6).
mell,oect
The following lemma shows that the empirical estimations aligns closely to the true density corre-
sponding to the exploration.

Lemma G.10 (Concentration Bound of Density Estimation). It holds for all ¢ € [T'] with probability
at least 1 — ¢ that

max{ X, (ap3) = Xf,(ap=p)lle b = B ll2, 1Y (kg 0n) — Vi (afi—g0n) 1}
=O(AF - (k+¢)-\/log(O-A-T-H/5)/t)
with probability at least 1 — 4.

Proof. See §H.6 for a detailed proof. O

In what follows, we define the reverse emission operators for the tabular POMDPs.
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Definition G.11 (Revserse Emission). Forall 1 < h < H and aZ:,% e A1 we define
r_1o(al=?) = Op_1(op—1 = )Th_2(an—2) ... On_r(op_p = )D(P™(sp_¢ = -))
= Op-1(on—1 = ) (15 _,Ti(a;)0i(0; = -))Ope(op—¢ = YD (P (sp—¢ = -))
c RSXOZ.

By Definition G.11 and the identity in Lemma G.6, we have the following identity,

Xp(an=f) = UnTh-1(an-1) Ay (ap=7),  Vaj—} € A" (G.9)
Here we denote by 7 the mixed policy induced by the policies {m“}wepy obtained till the ¢-th
iteration of Algorithm 2.

Assumption G.12 (Past Sufficiency). We define the following matrix for all policy , aZ:? € AT,
and 0 < h < H,

v, e(@=4) = D™ (st | af =) ' Ay, € RXATHOD,
Here recall that D(v) is the diagonal matrix where the diagonal entries align with the vector v. We
assume that C,’{_M has full row rank for all 7, aZ:é e A1 and 0 < h < H. We denote by

ol ,(a"~}) the right inverse of CT_, ,(a"~1). We assume further that
, h—1\T
||C,7:175(ah4) 11 <7
for an absolute constant v > 0 for all 7, aZ:é e A1 and0 < h < H.

Lemma G.13 (Good Event Probability). Under Assumptions G.3 and G.12, it holds with probability
at least 1 — ¢ that 8* € C;. Moreover, it holds for all ¢ € [T'] with probability at least 1 — § that

b =51y = O (v (k+0)- VAT OFFE log(0 - AT - 1/8)/1), (G.10)
I|(BY (a1, 01) — B (a1, 00))bi |, = o(y (k) (AP OF+ 1og(0- AT H/(S)/t),
(G.11)
Meanwhile, it holds for all 1 < h < H and t € [T] with probability at least 1 — ¢ that
> (B, (an,on) — Bf, (an,0n)) Uy T0 "y (sh—1,an—1) ||, - P'(sn-1|af_})
Sh—1€S
=0y v (k1) (/AP OF T log(0 - A - T 1/5)/1t) (G.12)

forall1 < h < H. Here {IB%Z‘ }herm) and b are the updated Bellman operators and initial trajectory
distribution, respectively, in the ¢-th iterate of Algorithm 2.

Proof. See §H.7 for a detailed proof. O

Sample Complexity Analysis. We are now ready to present the sample efficiency analysis of RTC
under the tabular POMDPs.
Theorem G.14. Let

T= 0<poly(5, AOH) A2 vh (k+0)? 1og(O - A - H/a)/é).

Under Assumptions G.3 and G.12, it holds with probability at least 1 — § that 7* is e-optimal. Here
poly(S, A, O, H) is a polynomial that takes the following order,

poly(S, 4,0, H) = O(S? - AOF26. 02420 %),
Proof. 1t holds that
T
VEO*) = VT (0%) = %~ZV*(9*) — VT (6%). (G.13)
It suffices to upper bound the performance differené; 1

VE(0%) — V™ (67)
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for all ¢ € [T]. By Lemma G.13, it holds with probability at least 1 — § that 6* € C* for all ¢ € [T].
Thus, by the update of 7¢ in Algorithm 2, it holds with probability at least 1 — § that

VEOF) = VT (0F) < VT (6) — V™ (6%). (G.14)
It now suffices to upper bound the performance difference on the right-hand side of (G.14). By
Lemma G.8, we obtain

V™ (6Y) - VW<9*>| (G.15)

<v-VS-H- Z Z ]Bh (an,on) — Bz*(ah,oh))BZil(ah,l,oh,l)...B?*(ahol)b?*Hl

h=2 , H leoh
(i)
VS H YT ST |(BY (a1, 00) — B (ar,00))b] ||+ VS H b -0y
a1€EA0,€0

(iii)

(ii)
In the sequel, we upper bound terms (i), (ii), and (iii) on the right-hand side of (G.15). By Lemma
G.13, it holds for all ¢ € [T] with probability at least 1 — ¢ that

(i) = | (B (a1, 00) = BY (a1, 00))bu|, = O (v (5 +€) - \/AP+1 - O+ log(O - A-T - H/5) [t

(iii) = ||by —/b\ft”l = (9(1/ (k+10)- \/A5’€+1 <Okt log(O-A-T - H/J)/t) (G.16)
It remains to upper bound term (i) on the right-hand side of (G.15). By Lemma G.9, we obtain that
(i) = Z I (]B%‘Zt (an,on) —BY (an, oh))IEBZil(ah,l, on_1)...B (ay,01) (G.17)
o{{71€0h
< 33T > 1B (anson) = B (an, o)) Uh Ty (sh-1san1)[|, - B™ (sn-1 [ap=})
ah_,eAt+1 on€0 sp_1E€S
Meanwhile, by Lemma G.13, it holds for all » € [T'] and ¢ € [T] with probability at least 1 — § that
> 1B (ans0n) — B, (an, 0))Uf, The s (sh-1,an-1)||, - P (sn-1]af=})  (G.18)
Sh—1€S
=0y v (h+10) (AP OF 10g(0- A - T - H/8)/1),

where we define

1 t—1
- S (G.19)
w=0

for t > 1. We remark that the upper bound in (G.18) does not match the right-hand side of (G.15).
The only difference is the probaility density of s;,_1, which is P™" on the right-hand side of (G.15)
but P! defined in (G.19) on the left-hand side of (G.18), respectively. To this end, we utilize the
same calculation trick as §E.3 and adopt Lemma E.5. By the upper bound in (G.18) and Lemma E.5
with

z = H(Bflt (an,on) — B (ahaOh))UZTszil(shflyahfl)Hp

wy =P (sp_1 | af ),
we obtain for all s;,_; € S that

1 (ot . - ,
7 DI (BY (ans0n) = BY (an, 0n)) Up Ty (sn-van—v)|, - ™ (sn-1 ] 0, =3)
=1

=0y 2 (k4 0)- (/AP OF 1 log T - log(0 - A - T - H/6)/T).  (G20)
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Thus,combining (G.14), (G.16), (G.17), and (G.20), we obtain

1 &K
?Z\V“/(f)t)*‘/”(@*)l

- O(poly(S, A0 H) -2 (k+0) \/logT - log(O-A-T- H/a)/T),
with probability at least 1 — ¢, where we define
poly(S, A, 0, H) = H - V/§3 . ASk+3C. Ok+3,
By (G.13), it further holds with probability at least 1 — § that

VEHOF) — VT (6% = o(poly(s,A, O,H) -~ 12 (k+0)-\/logT -1og(O - A-T- H/(S)/T).
Hence, by setting
T = o(po1y(s, A0 H) A2 04 (k+0)% 1og(O - A- H/6) /62),

it holds with probability at least 1 — ¢ that V*(8*) — 148 (0*) < €, which completes the proof of
Theorem G.14. O

H PROOF OF TABULAR POMDP

In this section, we present the proof of the auxiliary results in §G.

H.1 PROOF OF LEMMA G.2

Proof. Recall that we define for all h € [H] the following operators,
On(on) = D(On(on] ")) = ]D)([(O)(oh | sh)}Sh) € RSXS,
= o = SxS
Th(an) = Pu(- |- an) = [Pr(sn1 |5h7ah)}s}“8h+l e R”77,
Op = On(-|-) = [On(on | sn)] RO*S,
where we denote by D(v) € R*9 the diagonal matrix where the diagonal entries aligns with the
vector v € RS, Thus, it holds that
@h(0h+1) ]I(S}L) ES @h(oh | Sh) . ]I(S}L) (S RS.
By further calculation, we have
Th(an)On(on) L(sn) = [Pr(shs1|an, sn) - Onlon | sn)]

= [P(sh+1,0n | an, sn)] € R”,

Sh+1

OhSh

Sh41

where the second equality holds since we have Oy, L Sp, 41 | s, ap. It then holds that

On+1(0n+1)Th(an)On(0n) Lsn) = [On+1(0n+1 | sns1) - Plsnsrson lan,sn)],,

= []P’(sh+1,oh+1,oh | ah’sh)]8h+1 S R37 (H.1)
where the second equality holds since the observation Oy, is independent of all the other random

variables in (H.1) given the state S; 11 = Sp41. By further multiplying the right-hand side of (H.1)
by Th41(apt1), we obtain that

Thy1(ans1)Oni1(0ns1)Th(an)On(on) 1(sn)

= [ > Puia(snia|snir, ant) 'P(3h+1>0h+170h|ah>3h):|
Sh41E€ES Sh+2

{ E P(5h+2,5h+170h+170h|ah+17ah,8h)}
Sh+1E€ES Sh+2

= [P(snt2,0n11,0n | ans1, an, sn)] snas € R?, (H.2)
where the second equality holds since the state .S}, ;o is independent of all the other random variables

in (H.2) given the previous state S, 1 = Sp+1 and action Ay, 1 = apy1. By an iterative calculation
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similar to (H.1) and (H.2), we obtain that
Thih—1(@hsk—1)Onik1(0nx-1) - - T (an)On(on) L(sp)
= [P(Sh+ks Ohth—1s - On | Ghgb—1,- - -, Qs Sh)]Sth}c c RS,
By further calculation, we obtain that
Ont ke Tha—1(anst-1)Onsk—1(0n41—1) - Tr(an)On(on) 1(sp)
= [P(Oh-&-ka Ohtk—ls--sOn | Qhtke1s -+ Qp, S’L)]0h+k € RO. (H.3)
Finally, by multiplying the right-hand side of (H.3) with the indicator vector 1 (01 ), we conclude
that

Up, = [1(0n+%) " Ons s Thir—1(ans-1)Ons k-1 (0n4k-1)
- Th(an)On(on) L(sn)]
= [P(Ohtks Ongk—1s---,0n | Ghpk—1,-- ., Qn, 5n)] (0 .ap 1) sn

— Pt )]

which completes the proof of Lemma G.2. O

htk htk—1
»ap,

(Oh )73}1

Ak.OFF1yx s
’ c R( )X ,

Sh

H.2 PROOF OF LEMMA G.5
Proof. The proof is similar to that of Lemma G.2. By the definition of Bellman operators in Defini-
tion G.4, it holds that
L(ox) ' Br-1(ag—1,0m-1)-..Bi(ar,01)U; = (HhH:_11Uh+1Th(ah)@h(Oh)UZ) Uy
= 1(og) ' Ug_1 1" Th(an)On(on),  (H4)

where 1 is the probability array of initial state distribution. Following the same computation as the
proof of Lemma G.2 in §H.1, we obtain that

UH—IHth_llTh(ah)@h(oh)Ml = [P(O{‘H—k ‘ a{ﬂ'k_l)] (ofH—k,O.fH—k_l)' (HS)

Thus, multiplying the right-hand side of (H.5) by the indicator 1(og) that takes value 1 for all
indices that contain oy and a fixed action sequence aZ+k ~1 we obtain that

]l(OH)TUHAHZI:TTh(ah)@h(oh)m =1(om)" []P’(O{{Jrk |af+k71)] (oH+E gt +h-1y

=Pl | a7, (H.6)
which is as desired. Thus, combining (H.4) and (H.6), we complete the proof of Lemma G.5. O

H.3 PROOF OF LEMMA G.6
Proof. The proof is similar to that of Lemma G.2. Recall that we define for all h € [H] the following
operators,

@h(oh) = D(@h(oh | )) = D([@(Oh ‘ Sh)] 3h> S RSXS’

Th(an) = Pr(snt1 =1+ an) = [Pr(sat1 | sh,an)]

Op = On(-|-) = [On(on|sn)],, , €RI*S.
Recall that we define B B
Xn(a?=}) = UnTho1(an—1)On-1() ... Th_e(an—e)On_s(-)ptn—e,

Yi(a?_s,0n) = Un i1 Th(an)O0n(0n)Th_1(an—1)0n_1() - .. Tr_s(an_1)On_o(-) ttr—e-
We first show that the following equation holds,

Th-1(an—1)0n-1(-) ... Thoe(an—e)On_0(-) tn—¢

RSXS
ShySh+1

= ]P’(Sh = 5Oh—1 ="+, 0h—p =" | Ah—15- - ah—[)' (H7)
To see such a fact, note that for all oj,_, € O, we have
On—e(on—e)tn—c = [On—c(on—c| sn—e) - Plsn-s)],, , € R¥. (H.8)

37



Published as a conference paper at ICLR 2023

It thus holds that
Tht(an-0)On—e(on-)ptn—o= | Y P(sn—rs1]5n—t;an—r) - On_r(on—r|sn_r) - Plsn_r)
Sh—tES Sh—t+1
= [P(Sh—l+170h—2|ah—€)]sh_e+la (H.9)

where the second equality follows from the fact that Oy 1L Sp_g¢11|Sh—¢. Thus, by recursive
computation similar to (H.8) and (H.9), we obtain (H.7), namely,

Th_1(an—1)0n_1(-) .. Th_e(an_e)On_e(-)pin—e

=P(sp =,0p-1=",...,0p—0="|Ah—1,...,an—1p)

= [B@ =i sw)],, o € RSxO* (H.10)
Meanwhile, by Lemma G.2, we have

U = [P [sn)] o, € RO, (H.11)

Thus, it holds for all i € [H| that
Xn(al=}) = UpTho1(an- D081 () - T p(an—o)On_o(-) e
= | X P [on) - Plons ot ol

snes (" an ™ )00
htk k+1, gk e
= [B(1)] i gy € RO,
where the second equality follows from the fact that oh+k 1 oh ! 2 | sn. The computation of
Xy (al~}) is identical to that of Xj,(a)~}). In conclusion, we have

Yo(al_g,0n) = Uns1Th(an)On(0n)Th_1(an_1)0n_1(-) .- Tn_e(an—1)0n_e(-)pin_e-
= [P(T}?+k+l)]7;z+k+1 o1 € R(OHI'AIC)XOZ>
ht+1  Ch—¢

which completes the proof of Lemma G.6.

O
H.4 PROOF OF LEMMA G.8
Proof. By Lemma G.5 and (G.1), we have
Vi)=Y rler ) BT
of “leoH
= > rlo"™Y) on) "By (af 1 0m-1) ... B (o], 01)b]. (H.12)
ofliléoH
Here the actions aj are taken based on the policy 7 and the past observations and actions taken
(01,aT,...,aF_,,04). In addition, recall that we define b{ = UYsu;, where y; is the probability

array of initial state distribution. It thus follows from (H.12) that
H-1
VIO) =V = Y > (o) Alon) By (aF_i,0m 1)
of{_lEOH h=1
- (BY.(af}, on) — BY, (aff, 0n))Bf_y (afi_1,0n-1) - B (aT,01)b
+ > r(of ) A(on) "By (afy_y.0m—1) ... BY(aF,00)(b] —bY).

of_IEOH

/

(H.13)

In the sequel, we upper bound the absolute value of the right-hand side of (H.13). We define the
following vectors for all h € [H — 1] for notational simplicity,

! ’ ’ 7
Uh = (BZ(&Z, Oh) - ]B}GL (CLZ, O}L))BZ—I(QZ—D Oh—l) .- B? (a71T7 Ol)b? )
vo = b —bY.
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< H for all observation sequences o{{ —1 e O, we obtain that

Z 7"(0{{_1) ) ]I(OH)TB?J—I((I?I—D oH-1).. ']BZ—Q—l(aZ—f—la On+1)Vn

H-1
Z Z ]I(OH)TB?I—l(a?I—h of-1)-. -]BZH(GL-M On+1)Vn
offleoH h=1

<H-

Moreover, since the vector 1 (o) takes value in {0, 1} for all the indices, we further obtain that

H—-1
> > ow) By (an—1,0m1) - B) i (a1, 0n41)vn

of’leOH h=1

H -

H-1
<H- Z Z ||B?-I—1(a7;1—150H—1) . -BZ+1(C‘Z+1a0h+1)Uh||1 (H.14)
oflileoH h=1

It now suffices to upper bound the right-hand side of (H.14). By the definition of Bellman operators
in Definition G.4, we obtain for all h € {0,..., H — 1} that

IBY_1(a—1s0m-1) - B) 41 (ahr, 0n1)vnn
= |UnTr_1(afy_)On_1(0m—1) - .. Th(aF)On(0n)Ul vp|1 (H.15)
The following lemma upper bound the right-hand side of (H.15).

Lemma H.1. It holds for all al’ = € A7=" h € [H], and u € R that
> IUATa-1(am—1)0u-1(om 1) - Trlan)On(on)ulr < [ull.

H—1 _
0, €OH-h

Proof. See §H.8 for a detailed proof. O

Meanwhile, by Assumption G.3 and the fact that ||A|;,; < v/S||A]|2 for any matrix A € RS*N,
we obtain that

U wnlls < (Ul - lonlls < VS UL N2 - flonlly < v VS - [fualls (H.16)
for all h € [H]. Combining Lemma H.1, (H.14), (H.15), and (H.16), we obtain that

Vo) -V O < v VS H- Y S ol

h=0 oheOh
H-1
=v-VS-H- Z Z H (BZ(ah,oh) - le(ah,oh))]lﬁz,_l(ah_l,oh_l) .BY (a1, 00)b" L
h=1 oheOh
+v- VS H-||(B(a1,01) — B (a1,00))0] ||, +v- VS H - [[b] —b]||1,
which completes the proof of Lemma G.8. O

H.5 PROOF OF LEMMA G.9

Proof. Tt holds for all policy 7 and the corresponding action sequence a7.;, generated by 7 that
S 1B (af o) — B (af, 0n))BY 1 (af_y.0n—1) ... BY (af, 00)b ||, (H.17)

oheoh

< Y Y (I(B(an on) ~ B (an,0n))BY i (an-1,0n-1) ... BY (a1, 0000 |,

h 241 ,Hh h
ay_,€AFL o €O

= Y > ||(B)(anon) — B (an, on))Uf kT4 (an—1)fy_ (z.af =4, 0f )|

h 241 ,Hh h
ay_,€AFL o €O

1°
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where pf | (m,al~}, 0~ 1) is the state distribution array defined in (G.7). Note that on the right-

hand side of (H.17), the state distribution array p , (m, af nl ot

to policy 7. In what follows, we define
’ ’ ’ k+1 ok
M}L(e, 9/, Qap,Ap—1, Oh) = (BZ(CL}L, Oh) - BZ (ah, Oh))Uz,kTZ—l(ah—l) € R(A 0%)x8 (H.IS)
for notational simplicity. It holds that

Z | M (6,0, an, an— 1,0h)ﬂh (a0 YL

is the only term that is related

oheoh
Z Z [My(0,0', an,an—1,0n)], N [,uh (a0l 1)]%717 (H.19)
Oheoh Sh—1€S
where we denote by [My, (6,6, an,an_1,0n)s,_, and [u§ (7, al—}, 0"~ 1)],, . the s,_1-th col-

umn of My (0,6, ay, ap—_1,0p) and the s,_1-th entry of pzl_l(w, az_%, O’f 1) respectively. Recall
that we have
h—1 _h—
[Mh 1(m,ap "y, o) 1)]%71 = P(sp, of 1|ah )
Thus, by marginalizing over the observation sequence 0?_1 it holds that
Z [,uh 1 (7, aZ %,o}f 1)}% =p? (sh|ah @,77) (H.20)
—lecoh-1
Plugging (H.20) into (H.19), we obtain that
Z ||Mh(‘9a9'vah7ah—1,0h)ﬂzl—1(7f QZ %301 )”1
heoh

< Z Z Mh9 0’ s Qpy Qp— 1’0h)]sh,1H1 PQ sh|ah o T )

onh €0 sp_1 €S

= > > |[(B(an, on) — B (an,0n)) U Th_ (an—1)D(fi (. ah=))) ||,

azigeA“'l op €O

Thus, we complete the proof of Lemma G.9. O

H.6 PROOF OF LEMMA G.10

Proof. Recall that we aim to recover the following density matrices in the estimation of Bellman
operators in §G.1,

b= [B(rf)] . € RAYOM

X3 (af=h) = [Pt 6] e s € RATOTXOT (H21)
k. k41 1

Y;L(a'}hl—é)oh) = [Pt(Tf?—’—f-i_l)]TﬁIfﬂ’O?j e RATOTT)x0T, (H.22)

Here we denote by P! the visitation measure of the mixed policy {7 }wey generated by Algorithm
2. Alternatively, we can write the densities in (H.21) in the following vector product form,

Hah= X (X el Fe).
ThTR e AR x OF+1 N0l leOf
Recall that we adopt the following estimator of the probability density defined in (H.21),
Xt (ah~h) = % > ( > () (o™ ;)T) (H.23)
apth=leak Sehthept(apth=t)
By the martingale concentration inequality (see e.g., Jin et al. (2019)) and the fact that
IL(r ) 1o =) Tllr < 1
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for all trajectory 7,7, € A* x OFF+1 and observation sequence o ~; € O, we obtain for all

h € [H] and a} "5~ € AR+ that

Y. MmO T P

h+k k+£+1
op T, EOktEE

L htky (b
Ct—1 Z Ury*y) Lo =) "

h+k h+k—1
Thiz GDt(a}f:z )

<C-(k+10)-\/log(O-A-T/5)/t

with probability at least 1 — /A, where C is a positive absolute constant. It thus holds for all
h € [H],t € [T),and a) "} € A’ that

RACEHES AL =S

h+k71 k
altEle g

Y. MmN T P ()
ookt
1
-1 Z L ) Lop=p) "
rreDt (apThTh
= O(A* - (k+0) - \/log(O - A-T - HJS)/t)

with probability at least 1 — §/2. Meanwhile, recall that we estimate Y}, in (H.22) by the following
estimator,

F

~ 1 _
YZ(“Z-% on) = —1 Z Z ]1(7-,’51'1’““) 1(02—%)T7 (H.24)
apttedr it leDt(a)th)

Following a similar computation, it holds for all h € [H], ¢ € [T], a}~; € A%, a5 € A, and o, € O
that

15, (a%: - 0n) = Y (af_r.0n) | = O(A" - (k + ) - /log(0 - A-T/) 1)
with probability at least 1 — 6/2. Similarly, it also holds for all h € [H] and ¢ € [T that
lbr — Bl = O(A* - k- \/log(0 - A-T/5) 1)
with probability at least 1 — /2. Thus, we complete the proof of Lemma G.10. O

H.7 PROOF OF LEMMA G.13

Proof. In what follows, we prove (G.10)—(G.12) separately.

Part I: Proof of Upper Bound in (G.10). By Lemma G.10, it holds with probability at least 1 — ¢
that
b1 = By < VAE O lby = B[l = O((k+€) - |/ A% - OF+1 - 1og(O - A - T - H/8) ).
(H.25)

Meanwhile, by the update of b?t in Algorithm 2, it holds with probability at least 1 — § that b‘ft e Ct,
namely,

1) ~Bhllz < C v (k+€) - \JASEHL . OF e log(O - A - T - H/5) 1. (H.26)
Combining (H.25) and (H.26), it holds with probability at least 1 — ¢ that
oy = " [l < (163 = B Iy + 118" = Bl < VAR OFFT - (|[by =B [z + (16" — B =)
=O(v-(k+10)- \J AP O+ log(0 - A - T - H/8)/1),
which completes the proof of (G.10).

Part I1: Proof of Upper Bound in (G.11). Recall that we define
k41, qk
blelulz DP)( er )]Tf+1 ERO A s

k41 ak ¢
xt (al é) []P;t(7_1k+€1)}7_1k+1 0 c R(O th.AkFyxo ]

"W1—2
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Thus, it holds for all action array a? yand t € [T that
Ba e =P = Y PUIY_) - P (H.27)
o)_,e0!
It thus holds for all a{_, € A that
|(BY (a1,01) = BY (a1,01))b1 |1

(Bft (a1,01) - Bg*(alaol)) Z Pt(l?—e) : [th(a(l)—é)]otltl

o?7£€(9€
> (B (ar,00) ~ BY (ar,00)) [Xh(ad_)] 0
0(1]756(9"
= [|(BY (a1,01) — B (a1,01))Xi(al_p)|, (H.28)
Here with a slight abuse of notation, we denote by [th (a?_ e)] 0 the 0(1)_ ~th column of the matrix
1—£
Xi(a)_,) € R(O""-AMX0" 'Meanwhile, the inequality follows from the fact that 0 < P (r9_,) <

1forallt € [T]and 79_, € A® x O It remains to establish high confidence bound for the
right-hand side of (H.28). To this end, we first obtain by triangle inequality that

1B (a1,01) = BY (a1, 00)) X4 (af_) ||, < (i) + (i) + (i) + (iv),

<

1

(H.29)
where we define

(i) = |[B (a1, 00) (X (a3 _p) — X4 (ad_ )|,
(it) = |[BY (ar,00)X4(a)_,) = Yi(a}_p,01)l1,
(i) = Y4 (a} 4, 01) = Y'(ai 4 00)l1,

(iv) = IBY (a1, 00)X} () — Vi (a} . 01)]s-

In what follows, we upper bound terms (i)—(iv) on the right-hand side of (H.29). By the definition
of parameter space and the concentration inequality in Lemma G.10, we obtain that

(i) = ||BY (a1, 01) (X (a9_,) — Xt (a9_p)) ||
< B (a1, 00) st - 1K (ad_) — XE(ad_))|h
=0(v- A VAL O+l (K + () - \/log(O - A-T - H/5)/T), (H.30)

where the third equality follows from the fact that |[B (a1,01)|[11 < v - A* and the fact that
lz]|y < v/mn-||z|2 for z € R™*". Meanwhile, by the definition of confidence set C* in (G.6) and
the fact that §* € C¢, we obtain that

(i1) = 1B (a1, 01)X{ (a)_,) = ¥} (afi e, 0n)
=O(v- A% . VAL OF+C (| +£) - \/log(O - A-T - H/5)/T). (H.31)
By the concentration inequality in Lemma G.10, we further obtain that
(ifi) = [}, (¢, o) = Y (ap_g 0n)[ls
= O(VAk+L . OF+0 . AR (K +0) - \/log(O - A-T - H/3)/T). (H.32)
Finally, by the identity of Bellman operators in (G.2), we have
(iv) = 1B (a1, 01)X] (af ) — Y}, (af; ¢, 0n)][F = 0. (H.33)

Plugglng (H 30), (H.31), (H.32), and (H.33) into (H.29), it holds for all a; € A, 07 € O, and
a?_, € A" with probability at least 1 — § that

|(BY (a1,01) — BY (a1,01))X7(a_)||,

= O(v- (k+0) - \/ASH+1 . OF+E log(0 - AT - H/8) 1),
which completes the proof of (G.11).

42



Published as a conference paper at ICLR 2023

Part III: Proof of Upper Bound in (G.12). Under Assumption G.12, it holds forall 1 < h < H
that

Z H(th(ahvoh Bh (ah,oh))UhkTh 1(5h 1,ah—1 H1 Sh 1|a )
Sp—1E€S

= ||(BY (an, on) — BY, (an, 0p)) U Th_ (an—1)D(E_, (7, al =) |,

= || (B (an, 0n) — BY (an, o)) Us 1 To_y (an—1) ATy o (ah=2)OrF J(ah=D)||,.  (H34)
where AﬁiL ¢ 1s the reverse emission operator defined in (G.11) and CZt_I ¢ 1s the right inverse of
Cft_u in Assumption G.12. Meanwhile, by Assumption G.12, it holds that

||(IBZ(ah,0h)—BZ (ahaOh))Uz sz 1(ah71)A§ 1,5(% e)C;LT 115(@ ||1
<7 1(B)(an, on) — BY, (an, o)) U, Th_ (an— 1)Ah,_1,e(ah Ol (H.35)
By the identity of X, (a]'"}) in (G.9), we further obtain that
(B, (an, o) — BY (an, 0n)) UG T (an—1) A5y |l

= || (B}, (an, o) — BY, (an, 0n)) X} (af =} ;- (H.36)
‘We now upper bound the right-hand side of (H.36). The calculation is similar to that in Part II of the
proof. By triangle inequality, we obtain

(B (an, on) — BY (an, o)) X4 (al=))]|, < ) + (vii) + (viii), (H.37)
where we define
(v) = HBh ahaoh)<Xt (ah e) Xt( ))
(vi) = B, (an, 0n)X(ap =) — ¥}, (af_ eaoh)Hlv
(vii) = ”Yh(ah ¢r0n) = Yi,(aj_g,0n)|1,

(viii) = |B}, (an,0n)X},(ar—) — Yi(ah_s,0n)1-
In what follows, we upper bound terms (v)—(viii) on the right-hand side of (H.37). By the definition
of parameter space and the concentration inequality in Lemma G.10, we obtain that

( = HBG ah70h)(§gt(a2 é CLh 4 )H1
< 1B, (an, on)ll11 - X5, (ah ¢) = Xi(ap =)l
=O(v- VAR O+l (k+ () - \/log(O - A-T - H/5)/T). (H.38)

Meanwhile, by the definition of confidence set C? in (G.6) and the fact that §° € C?, we obtain that
(vi) = B} (an, 0n)X}(ap =) — Yh(ah_p 00l
=O(v - VASKR+L. O+ (k4 0) - \/log(O - A-T - H/$)/T). (H.39)

By the concentration inequality in Lemma G.10, we further obtain that

(vii) = Y} (ah_¢, 0n) = Y (al_  0n)lh

= O(VA3L. O (k+ ) - \/log(O- A-T - H/5)/T). (H.40)
Finally, by the identity of Bellman operators in (G.2), we have
(viit) = |BY (an, on)X4 (al=1) — Y (al_p, 00)|l1 = 0. (H.41)

Plugging (H.38), (H.39), (H.40), and (H.41) into (H.37), it holds for all ap, € A, o, € O, and

a)~, € A’ with probability at least 1 — § that

1(B5.(an, on) — B (an, on) )X (a)=y) H1
= O(v - VAL OME . (k + ) - \/log(O - A-T - H/S)/T). (H.42)

43



Published as a conference paper at ICLR 2023

Combining (H.34), (H.35), (H.36), and (H.42), we conclude that

> (B (an, on) — B (an, o)) Uf Ty (sh-1,an-1) ), - P (sh—1|ap—})
Sh—1E€S

= ||(BZ(aha0h) —le(ahyoh))Uz,szl 1(%—1)142—1,12(@2:15) he 1@ ah 0 ||1
<7- ||(IB§Z(&;L,0;L) Be (an,on) )X,L ah F H1
—O(y- v (k+0)- \J AP OF L log(0 - A T 1/6)/1),
where the first inequality follows from (H.35) and (H.36). Thus, we complete the proof of (G.11).
O

H.8 PROOF OF LEMMA H.1

Proof. Recall that we define
On(on) = D(On(on | ) = D([@(oh | sh)]sh) € RSXS,

where we denote by D(v) € RS*S the diagonal matrix where the diagonal entries aligns with the
vector v € R, Thus, it holds for all h € [H] that

Z HTh ah)@h op UH1 < Z H@h Op U||1 = Z Z On(on | sn) - |u(sn)|

op, €0 op €0 op, €0 sRLES

= > u(sn)| = |lul1,

SRES
where the first inequality follows from the fact that Tj (ay,) is a transition matrix. Here we denote
by u(sp) the sp,-th entry of u € R¥. Inductively, we obtain that

> ITh-1(an-1)0n—1(0m-1) .. T(an)On(on)ully < [lull;. (H.43)
of‘leOH*h
Meanwhile, note that Uy, is a transition matrix. Thus, it holds for all & € [H] that
|UnTr-1(am-1)0n-1(om—1) - Th(an)On(on)ull1
<N To-1(amr—1)0m—1(0m-1) ... Tn(an)Op(on)ull (H.44)
Combining (H.43) and (H.44), we conclude
> ULTu-1(an-1)0n—1(0m-1) ... Tr(an)On(on)uls < |lull1,
offleoH_h’

which completes the proof of Lemma H.1. O
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