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LIST OF NOTATION

In the sequel, we present a list of notations in the paper.

Notation Explanation

S, A, O The state, action, and observation spaces, respectively.

A, H The capacity of action space |A| and the length of an episode, respectively.

Φ The embedding of trajectory defined in (3.1).

Ph(sh+1 | sh, ah) The transition probability from (sh, ah) to sh+1.

Oh(oh | sh) The emission probability of observing oh given sh.

[H]+ The set of steps {1− ℓ, . . . ,H + k} of the extended POMDP.

ah+k−1
h , oh+k

h The sequences of actions and observations {ah, . . . , ah+k−1} and {oh, . . . , oh+k},
respectively.

τh+k
h The sequence of interactions {oh, ah, . . . , oh+k−1, ah+k−1, oh+k} from the h-th step

to the (h+ k)-th step.

τh+k
h The sequence of interactions {oh, ah, . . . , oh+k−1, ah+k−1, oh+k, ah+k} from the h-

th step to the (h+ k)-th step, including the (h+ k)-th action.

P(τh+k
h ),

P(τh+k
h | sh)

The conditional densities P(oh+k
h | ah+k−1

h ) and P(oh+k
h | sh, ah+k−1

h ), respectively.

zh, wh−1 The shorthand for the sequences of interactions τh+k
h and τh−1

h−ℓ , respectively, on page
7 of the paper.

ϕ∗, ψ∗ The unknown features of the low-rank POMDP in Assumption 3.1.

ϕθ, ψθ, Oθ
h The parameterized features and emission kernel in Definition 3.2.

Pθ, Pθ,π The probability densities corresponding to the transition dynamics defined by
{ψθ, ϕθ,Oθ

h} and the policy π, repsectively.

Uθ
h, Uθ,†

h The forward emission operator and its pseudo-inverse defined in Definition 3.4 and
Lemma 3.6, respectively.

Mθ
h , Mθ,†

h The d-by-d matrix and its inverse defined in Assumption 3.5.

Bθ
h The Bellman operator defined in Definition 3.7.
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Notation Explanation

E(·) The density estimation oracle defined in Assumption 4.1.

wE, ν, γ The parameters in Assumptions 4.1, 5.1, and 5.2, respectively.

Xθ,π
h , Yθ,π

h The density mappings defined in (3.6) and (3.7), respectively.

bθ1(τ
H
1 ) The density of initial trajectory Pθ(τH1 ).

Dt
h, πt, Ct The dataset, policy, and confidence set of parameters, respectively, in the t-th iteration

of Algorithm 1.

X̂t
h, Ŷt

h, b̂t1 The estimated density mappings and initial trajectory density, respectively, in the t-th
iteration of Algorithm 1.

Lt
h The objective function defined in (4.1).

A CONCLUSION, LIMITATION, AND FUTURE STUDY

In this paper, we propose Represent to Control (RTC) as a unified framework for embedding and
control in POMDPs. In particular, by exploiting the low-rank transition and the future sufficiency
condition, we decompose the embedding learning into the learning of Bellman operators across
multiple steps. By assembling the Bellman operators, we identify a sufficient embedding for the
control in the POMDP. Moreover, we identify a confidence set of parameters fitting the Bellman
operators, which further allows us to conduct exploration. Our analysis shows that RTC attains the
O(1/ϵ2) sample complexity to attain an ϵ-suboptimal policy. To our best knowledge, we provide
the first sample efficiency analysis for representation learning in POMDPs with infinite observation
and state spaces.

A key to our analysis is the decomposition of the embedding across multiple steps, which hinges
on the future sufficiency condition. It remains unclear if wearker conditions are possible for such a
decomposition. In addition, our sample efficiency analysis hinges on the additional past sufficiency
condition. It remain unclear whether such past sufficiency is necessary as our decomposition of
embedding does not require such a condition. In our future study, we aim to tackle such challenges
by recent advances in the tabular and low-rank POMDPs (Cai et al., 2022; Liu et al., 2022).

B RELATED WORK ON LATENT STATE SPACE MODELS AND MDPS

Our work is related to the previous study of latent state space models. Coates et al. (2008) recov-
ers a class of latent state space models from observations by the expectation-maximization (EM)
algorithm. In contrast, the spectral method (Rosencrantz et al., 2004; Hefny et al., 2015; Azizzade-
nesheli et al., 2016; Sun et al., 2016; Jin et al., 2020a) proposes to conduct filtering and prediction by
solving a system of integral equations directly. In particular, previous works utilize predictive state
representations (PSRs) (Hefny et al., 2015; Sun et al., 2016) as a sufficient representation of inter-
action history of fixed length and aim to conduct filtering on such predictive states. Our embedding
strategy is inspired by the spectral algorithms with predictive states. In particular, our embedding of
interaction history is also a predictive state. Nevertheless, unlike the previous analysis of predictive
states (Hefny et al., 2015; Sun et al., 2016), we do not cast assumptions explicitly on the transition of
predictive states (the filtration). Moreover, we focus on the sample efficiency of learning predictive
states via iteratively exploring the environment, whereas previous works typically study PSRs with
a fixed trajectory generator (Hefny et al., 2015; Sun et al., 2016).

To learn a sufficient embedding for control, we utilize the low-rank transition of POMDPs. Our
idea is motivated by the previous analysis of low-rank MDPs (Cai et al., 2020; Jin et al., 2020b;
Ayoub et al., 2020; Agarwal et al., 2020; Modi et al., 2021; Uehara et al., 2021). In particular, the
state transition of a low-rank MDP aligns with that in our low-rank POMDP model. Nevertheless,
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we remark that such states are observable in a low-rank MDP but are unobservable in POMDPs
with the low-rank transition. Such unobservability makes solving a low-rank POMDP much more
challenging than solving a low-rank MDP.

C ALGORITHM DESCRIPTION OF RTC

In the sequel, we decribe the procedure of RTC. In summary, RTC iteratively (i) interacts with
the environment to collect observations, (ii) fits the density mappings defined in (3.6) and (3.7),
respectively, by observations, (iii) identifies a confidence set of parameters by fitting the Bellman
equations according to (3.8), and (iv) conducts optimistic planning based on the fitted embeddings
and the associated the confidence set.

To conduct RTC, we first initialize a sequence of datasets indexed by the step h ∈ [H] and the action
sequences ah+k

h−ℓ ∈ Ak+ℓ+1,

D0
h(a

h+k
h−ℓ ) = ∅.

Meanwhile, we initialize a policy π0 ∈ Π, where Π is the class of all deterministic policies. In the
sequel, we introduce the update procedure of RTC in the t-th iterate.

C.1 DATA COLLECTION

We first introduce the data collecting process of an agent with the policy πt−1 in the t-th iterate. For
each of the step h ∈ [H] and the action sequence ah+k

h−ℓ ∈ Ak+ℓ+1, the agent first execute the policy
πt−1 till the (h− ℓ)-th step, and collects a sequence of actions and observations as follows,

tah−ℓ−1
1−ℓ =

{
ta1−ℓ, . . . ,

tah−ℓ−1

}
, toh−ℓ

1−ℓ =
{
to1−ℓ, . . . ,

toh−ℓ

}
.

Here we use the superscript t to denote the observations and actions acquired in the t-th iterate.
Correspondingly, we denote by tτh−1

h−ℓ = {tah−ℓ−1
1−ℓ , toh−ℓ

1−ℓ} the interaction history from the (h− ℓ)-
th step to the (h−1)-th step. Then, the agent execute ah+k

h−ℓ regardless of the observations and collect
the following observation sequence,

toh+k+1
h−ℓ+1 =

{
toh−ℓ+1, . . . ,

toh+k+1

}
.

Finally, we store the observation sequence toh+k+1
h−ℓ generated by fixing the action sequence ah+k

h−ℓ
into a dataset indexed by such action sequence, namely,

Dt
h(a

h+k
h−ℓ )← D

t−1
h (ah+k

h−ℓ ) ∪
{
toh+k+1

h−ℓ

}
.

C.2 DENSITY ESTIMATION

Upon collecting the data, we follow the embedding learning procedure and fit the density mappings
for the estimation of Bellman operator. In practice, various approaches are available in fitting the
density by observations, including the maximum likelihood estimation (MLE), the generative ad-
versial approaches, and the reproducing kernel Hilbert space (RKHS) density estimation. In what
follows, we unify such density estimation approaches by a density estimation oracle.

Assumption C.1 (Density Estimation Oracle). We assume that we have access to a density estima-
tion oracle E(·). Moreover, for all δ > 0 and dataset D drawn from the density p of size n following
a martingale process, we assume that

∥E(D)− p∥1 ≤ C ·
√
wE · log(1/δ)/n

with probability at least 1 − δ. Here C > 0 is an absolute constant and wE is a parameter that
depends on the density estimation oracle E(·).

We highlight that such convergence property can be achieved by various density estimations. In
particular, when the function approximation space P of E(·) is finite, Assumption 4.1 holds for the
maximum likelihood estimation (MLE) and the generative adversial approach with wE = log |P|
(Geer et al., 2000; Zhang, 2006; Agarwal et al., 2020). Meanwhile, wE scales with the entropy
integral of P endowed with the Hellinger distance if P is infinite (Geer et al., 2000; Zhang, 2006).
In addition, Assumption 4.1 holds for the RKHS density estimation (Gretton et al., 2005; Smola
et al., 2007; Cai et al., 2022) with wE = poly(d), where d is rank of the low-rank transition (Cai
et al., 2022).
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We now fit the density mappings based on the density estimation oracle. For each step h ∈ [H] and
action sequence ah+k

h−ℓ ∈ Ak+ℓ+1, we first fit the density of trajectory as follows,

P̂t
h(· | ah+k

h−ℓ ) = E
(
Dt

h(a
h+k
h−ℓ )

)
,

where the dataset Dt
h is updated based on the data collection procedure described in §C.1. Mean-

while, we define the following density mappings for the estimation of Bellman operators,[
X̂t

h(τ
h−1
h−ℓ)

]
(τh+k

h ) = P̂t
h(τ

h+k
h−ℓ ), (C.1)[

Ŷt
h(τ

h
h−ℓ)

]
(τh+k+1

h+1 ) = P̂t
h(τ

h+k+1
h−ℓ ). (C.2)

Here recall that we define the trajectories τhh−ℓ = {ahh−ℓ, o
h
h−ℓ} and τh+k+1

h−ℓ = {ah+k
h−ℓ , o

h+k+1
h−ℓ }.

Meanwhile, we write P̂t
h(τ

h+k+1
h−ℓ ) = P̂t(oh+k+1

h−ℓ | ah+k
h−ℓ ) for notational simplicity. We remark that

the density mappings X̂t
h and Ŷt

h are estimations of the density mappings defined in (3.6) and (3.7),
respectively, under the true parameter θ∗. We then estimate the Bellman operators by minimizing
the following objective,

Lt
h(θ) = sup

ah
h−ℓ∈Aℓ+1

∫
Oℓ+1

∥Bθ
h(ah, oh)X̂t

h(τ
h−1
h−ℓ)− Ŷt

h(τ
h
h−ℓ)∥1dohh−ℓ. (C.3)

We remark that the objective defined in (4.1) is motivated by the identity in (3.8). In what follows,
we introduce an exploration procedure based on the objective defined in (4.1). In addition, we
acquire the estimation of initial trajectory density b̂t1(τ

k
1 ) = P̂t

1(τ
k
1 ) by marginalizing the dummy

past trajectory τ01−ℓ of P̂t
1.

C.3 OPTIMISTIC PLANNING

We remark that the objective defined in (4.1) encapsulates the uncertainty in the estimation of the
corresponding Bellman operator Bθ

h(ah, oh). In particular, a smaller objective Lt
h(θ) yields a higher

confidence that θ is close to the true parameter θ∗. Thus, we define the following confidence set of
parameters,

Ct =
{
θ ∈ Θ : max

{
∥bθ1 − b̂t1∥1, Lt

h(θ)
}
≤ βt ·

√
1/t, ∀h ∈ [H]

}
, (C.4)

where βt is the tuning parameter in the t-th iterate. Meanwhile, for each parameter θ ∈ Θ, we can
estimate the embedding

Φθ(τH1 ) = Pθ(τH1 )

based on the Bellman operators {Bθ
h}h∈[H] and Lemma 3.8. Such embedding further allows us to

evaluate a policy as follows,

V π(θ) =

∫
OH

r(oH1 ) · Pθ
(
oH1 | (aπ)H1

)
doH1 =

∫
OH

r(oH1 ) · Φθ
(
oH1 , (a

π)H1
)
doH1 ,

where we define V π(θ) as the cumulative rewards of π in the POMDP induced by the parameter
θ ∈ Θ. Meanwhile, we define (aπ)H1 = (aπ1 , . . . , a

π
H), where the actions aπh are the action taken by

the deterministic policy π in the h-th step given the observations.

To conduct optimistic planning, we seek for the policy that maximizes the return among all param-
eters θ ∈ Ct and the corresponding features. The update of policy takes the following form,

πt ← argmax
π∈Π

max
θ∈Ct

V π(θ),

where we denote by Π the set of all deterministic policies. We summarize RTC in Algorithm 1.

D PROOF OF PRELIMINARY RESULT

In the sequel, we present the proof of preliminary results in §3.

16



Published as a conference paper at ICLR 2023

D.1 PROOF OF LEMMA 3.6

Proof. It holds for all time step h ∈ [H], policy π ∈ Π, parameter θ ∈ Θ that

Pθ,π
h (sh) =

∫
S×A

Pθ
h−1(sh | sh−1, ah−1) · Pθ,π(sh−1, ah−1)dsh−1, ah−1

= ψθ
h−1(sh)

⊤
∫
S×A

ϕθh−1(sh−1, ah−1) · Pθ,π(sh−1, ah−1)dsh−1, ah−1

= ψθ
h−1(sh)

⊤Wh−1(θ, π), (D.1)
where we define

Wh−1(θ, π) =

∫
S×A

ϕθh−1(sh−1, ah−1) · Pθ,π(sh−1, ah−1)dsh−1, ah−1.

Meanwhile, recall that we define the following linear operator in Lemma 3.6,

(Uθ,†
h f)(sh) =

∫
Ak×Ok+1

ψθ
h−1(sh)

⊤zθh(τ
h+k
h ) · f(τh+k

h )dτh+k
h , ∀f ∈ L1(Ak ×Ok+1), ∀sh ∈ S,

where we define
zθh(τ

h+k
h ) =Mθ,†

h (Uθ
hψ

θ
h−1)(τ

h+k
h ), ∀τh+k

h ∈ Ak ×Ok+1,

It thus follows from (D.1) that∫
Ak×Ok+1

zθh(τ
h+k
h )(Uθ

hP
θ,π
h )(τh+k

h )dτh+k
h

=Mθ,†
h

∫
Ak×Ok+1

(Uθ
hψ

θ
h−1)(τ

h+k
h )(Uθ

hψ
θ
h−1)(τ

h+k
h )⊤Wh−1(θ, π)dτ

h+k
h

=Mθ,†
h Mθ

hWh−1(θ, π) =Wh−1(θ, π). (D.2)
Here recall that we define

Mθ
h =

∫
Ak×Ok+1

(Uθ
hψ

θ
h−1)(τ

h+k
h )(Uθ

hψ
θ
h−1)(τ

h+k
h )⊤dτh+k

h ∈ Rd×d

and Mθ,†
h as the inverse of Mθ

h in Assumption 3.5. Thus, we have

Uθ,†
h Uθ

h

(
Pθ,π
h (·)

)
= ψθ

h−1(·)⊤
∫
Ak×Ok+1

zθh(τ
h+k
h )(Uθ

hP
θ,π
h )(τh+k

h )dτh+k
h

= ψθ
h−1(·)⊤Wh−1(θ, π) = Pθ,π

h (·), (D.3)
which completes the proof of Lemma 3.6.

D.2 PROOF OF EQUATION 3.8

Proof. By the definition of Bellman operators in Definition 3.7, we have(
Bθ
h(ah, oh)Xh(τ

h−1
h−ℓ)

)
(τh+k+1

h+1 ) =

∫
S
Pθ(τh+k+1

h | sh) ·
(
Uθ,†

h Xθ
h(τ

h−1
h−ℓ)

)
(sh)dsh. (D.4)

Meanwhile, by the definition of Xθ
h and Uθ

h in (3.6) and (3.2), respectively, we have[
Xθ

h(τ
h−1
h−ℓ)

]
(τh+k

h ) = Pθ(τh+k
h−ℓ ) =

∫
S
Pθ(oh−1

h−ℓ , sh | a
h−1
h−ℓ) · P

θ(τh+k
h | sh)dsh

=
(
Uθ

hPθ(oh−1
h−ℓ , sh = · | ah−1

h−ℓ)
)
(τh+k

h ).

Thus, by Lemma 3.6, it holds that
Uθ,†

h Xθ
h(τ

h−1
h−ℓ) = Uθ,†

h Uθ
hPθ(oh−1

h−ℓ , sh = · | ah−1
h−ℓ) = Pθ(oh−1

h−ℓ , sh = · | ah−1
h−ℓ). (D.5)

Plugging (D.5) into (D.4), we conclude that(
Bθ
h(ah, oh)Xh(τ

h−1
h−ℓ)

)
(τh+k+1

h+1 ) =

∫
S
Pθ(τh+k+1

h | sh) · Pθ(sh, o
h−1
h−ℓ | a

h−1
h−ℓ)dsh = Pθ(τh+k+1

h−ℓ ),

where the second equality follows from the fact that the past observations oh−1
h−ℓ is independent of

the forward observations oh+k+1
h+1 given the current state sh. Thus, by the definition of Yθ

h in (3.6),
we conclude the proof of equation 3.8.
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D.3 PROOF OF LEMMA 3.8

Proof. We first define the following density function of initial trajectory,
bθ1(τ

1+k
1 ) = (Uθ

1µ1)(τ
1+k
1 ) = Pθ(τ1+k

1 ) ∈ L1(Ak ×Ok+1). (D.6)
Thus, it holds from the definition of Bellman operators in Definition 3.7 that[

Bθ
1(a1, o1)b

θ
1

]
(τk+2

2 ) =

∫
S
Pθ(τk+2

1 | s1) · (Uθ,†
1 bθ1)(s1)ds1

=

∫
S
Pθ(τk+2

1 | s1) · µ1(s1)ds1 = P(τk+2
1 ), (D.7)

where µ1 is the initial state density of the POMDP. Here the second equality follows from the left
invertibility of the forward emission operator Uθ

1 in Lemma 3.6 and the definition of bθ1 in (D.6).
Thus, by the recursive computation following (D.7), we obtain that[

Bθ
H(oH , aH) . . .Bθ

1(o1, a1)b
θ
1

]
(τH+k+1

H+1 ) = Pθ(τH+k+1
1 ).

Finally, by marginalizing over the dummy future trajectories
τH+k+1
H+1 = {aH+1, oH+1, . . . , aH+k, oH+k+1} ∈ Ak ×Ok+1,

we conclude that

Pθ(τH1 ) =
1

Ak
·
∫
Ak×Ok+1

Pθ(τH+k+1
1 )dτH+K+1

H+1

=
1

Ak
·
∫
Ak×Ok+1

[
Bθ
H(aH , oH) . . .Bθ

1(a1, o1)b
θ
1

]
(τH+k

H )doh+k
h .

Thus, we complete the proof of Lemma 3.8.

E PROOF OF MAIN RESULT

In the sequel, we present the proof of the main result in §5.

E.1 COMPUTING THE PERFORMANCE DIFFERENCE

In the sequel, we present lemmas for the sample efficiency analysis of RTC. Our analysis is mo-
tivated by previous work (Jin et al., 2020a; Cai et al., 2022). We first define linear operators
{Tθ

h, Õθ
h}h∈[H] as follows,(
Tθ
h(ah)f

)
(sh+1) =

∫
S
Pθ
h(sh+1 | sh, ah) · f(sh)dsh, ∀f ∈ L1(S), ah ∈ A, (E.1)(

Õθ
h(oh)f

)
(sh) = Oθ

h(oh | sh) · f(sh), ∀f ∈ L1(S), oh ∈ O. (E.2)
It thus holds that

Bθ
h(ah, oh) = Uθ

h+1Tθ
h(ah)Õθ

h(oh)U
θ,†
h . (E.3)

To see such a fact, note that we have for all f ∈ L1(Ak ×Ok+1) that(
Uθ

h+1Tθ
h(ah)Õh(oh)Uθ,†

h f
)
(τh+k+1

h+1 )

=

(
Uθ

h+1

∫
S
Pθ
h(· | sh, ah) ·Oh(oh | sh)(Uθ,†

h f)(sh)dsh

)
(τh+k+1

h+1 )

=

∫
S2

Pθ(τh+k+1
h+1 | sh+1) · Pθ

h(sh+1 | sh, ah) ·Oh(oh | sh)(Uθ,†
h f)(sh)dshdsh+1

=

∫
S2

Pθ(oh+k+1
h , sh+1 | sh, ah+k

h )(Uθ,†
h f)(sh)dshdsh+1, (E.4)

where the first and second equalities follow from the definitions of Tθ
h, Õh, and Uθ

h+1 in (E.1),
(E.2), and (3.2), respectively. Meanwhile, the third equality follows from the fact that the POMDP
is Markov with respect to the state and action pairs (sh+1, ah+1). Marginalizing over the state sh+1
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on the right-hand side of (E.4), we obtain for all (τh+k+1
h+1 ) ∈ Ak ×Ok+1 that(

Uθ
h+1Tθ

h(ah)Õθ
h(oh)U

θ,†
h f

)
(τh+k+1

h+1 ) =

∫
S
Pθ(τh+k+1

h | sh) · (Uθ,†
h f)(sh)dsh

=
(
Bθ
h(ah, oh)f

)
(τh+k+1

h+1 ),

where the second equality follows from the definition of Bellman operator Bθ
h in Definition 3.7.

Thus, we complete the proof of (E.3).

Lemma E.1 (Performance Difference). It holds for all policy π ∈ Π and parameters θ, θ′ ∈ Θ that

|V π(θ)− V π(θ′)| ≤ H · ν ·
H−1∑
h=1

∑
ah
h−ℓ∈Aℓ+1

∫
O

∑
qh−1∈[d]

∥uh,qh−1
∥1doh +H · ν · ∥bθ1 − bθ

′

1 ∥1,

where we define
uh,qh−1

=
(
Bθ
h(ah, oh)− Bθ′

h (ah, oh)
)
Uθ′

h Pθ′

h (sh = · | qh−1) · Pπ(qh−1 | ah−1
h−ℓ).

Proof. See §F.1 for a detailed proof.

E.2 CONFIDENCE SET ANALYSIS

We first present the following norm bound on Bellman operators.

Lemma E.2 (Norm Bound of Bellman Operator). Under Assumptions 3.1, 3.5, and 5.1, it holds for
all h ∈ [H], θ ∈ Θ, and (ah, oh) ∈ A×O that ∥Bθ

h(ah, oh)∥1 7→1 ≤ ν ·Ak.

Proof. It holds for all f ∈ L1(Ak ×Ok+1) that

∥Bθ
h(ah, oh)f∥1 ≤

∫
Ak×Ok+1

∫
S
Pθ(τh+k+1

h | sh) · |Uθ,†
h f(sh)|dshdτh+k+1

h+1

≤ Ak ·
∫
S
|Uθ,†

h f(sh)|dsh. (E.5)

Meanwhile, by the definition of Uθ,†
h in (3.3) and Assumption 5.1, it holds that∫

S
|Uθ,†

h f(sh)|dsh = ∥Uθ,†
h f(sh)∥1 ≤ ν · ∥f∥1. (E.6)

Combining (E.5) and (E.6), we conclude that
∥Bθ

h(ah, oh)f∥1 ≤ ν ·Ak · ∥f∥1,
which completes the proof of Lemma E.2.

In what follows, we recall the definition of the reverse emission operator.

Definition E.3 (Reverse Emission). We define for all h ∈ [H] the following linear operator Fθ,π
h :

Rd 7→ L1(Oℓ ×Aℓ) for all h ∈ [H], π ∈ Π, and θ ∈ Θ,

(Fθ,π
h v)(τh−1

h−ℓ) =
∑

qh−1∈[d]

[v]qh−1
· Pθ,π(oh−1

h−ℓ | qh−1, a
h−1
h−ℓ), ∀v ∈ Rd,

where (τh−1
h−ℓ) ∈ Aℓ ×Oℓ.

In addition, we define the following visitation measure of mix policy in the t-th iteration,

Pt =
1

t
·
t−1∑
ω=0

Pπω

,

where {πω}ω∈[t] is the set of policy returned by Algorithm 1. We remark that the data collected by
our data collection process in Algorithm 1 follow the trajectory density induced by Pt in the t-th
iterate. Hence, the estimated density P̂t returned by our density estimator E(Dt) in the t-th iterate
aligns closely to Pt. Meanwhile, recall that we define the following estimators in (C.1) and (C.2),
respectively,[

X̂t
h(τ

h−1
h−ℓ)

]
(τh+k

h ) = P̂t
h(τ

h+k
h−ℓ ),

[
Ŷt

h(τ
h
h−ℓ)

]
(τh+k+1

h+1 ) = P̂t
h(τ

h+k+1
h−ℓ ).
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Recall that we define the confidence set as follows,

Ct =
{
θ ∈ Θ :

∫
Oℓ+1

∥Bθ
h(ah, oh)X̂t

h(a
h−1
h−ℓ)− Ŷt

h(τ
h
h−ℓ)∥1dohh−ℓ ≤ βt, ∀ahh−ℓ ∈ Aℓ+1

}
,

where we select
βt = (ν + 1) ·A2k ·

√
wE · (k + ℓ) · log(H ·A · T )/t.

In the sequel, we denote by θt the parameter selected in optimistic planning. The following lemma
guarantees that the true parameter θ∗ is included by our confidence set Ct with high probability.
Moreover, we show that initial density and the Bellman operators {Bθt} corresponding to the pa-
rameter θt aligns closely to that corresponding to the true parameter θ∗.

Lemma E.4 (Good Event Probability). Under Assumptions 3.1, 3.5, and 5.2, it holds with proba-
bility at least 1− δ that θ∗ ∈ Ct. In addition, it holds for all h ∈ [H] and t ∈ [T ] with probability at
least 1− δ that
∥bθ

t

1 − bθ
∗

1 ∥1 = O(ν ·A2k ·
√
wE · (k + ℓ) · log(H ·A · T )/t), (E.7)∑

ah
h−ℓ∈Aℓ+1

∫
O

∑
qh−1∈[d]

∥∥(Bθt

h (ah, oh)− Bθ∗

h (ah, oh)
)
Uθ∗

h Pθ∗

h (sh = · | qh−1)
∥∥
1

· Pθ∗,t(qh−1 | ah−1
h−ℓ)doh = O

(
γ · ν ·A2k+ℓ ·

√
wE · (k + ℓ) · log(H ·A · T )/t

)
, (E.8)

where we define

Pθ∗,t(qh−1 | ah−1
h−ℓ) =

1

t
·
t−1∑
ω=0

Pθ∗,πω

(qh−1 | ah−1
h−ℓ).

Proof. See §F.2 for a detailed proof.

E.3 PROOF OF THEOREM 5.3

We are now ready to present the sample complexity analysis of Algorithm 1.

Proof. It holds that

V ∗(θ∗)− V πT

(θ∗) =
1

T
·

T∑
t=1

V ∗(θ∗)− V πt

(θ∗). (E.9)

It suffices to upper bound the performance difference

V ∗(θ∗)− V πt

(θ∗)

for all t ∈ [T ]. By Lemma E.4, it holds with probability at least 1 − δ that θ∗ ∈ Ct for all t ∈ [T ].
Thus, by the update of πt in Algorithm 1, it holds with probability at least 1− δ that

V ∗(θ∗)− V πt

(θ∗) ≤ V πt

(θt)− V πt

(θ∗). (E.10)
It now suffices to upper bound the performance difference on the right-hand side of (E.10). By
Lemma E.1, it holds that

|V πt

(θt)− V πt

(θ∗)| ≤ H · ν ·
H−1∑
h=1

∑
ah
h−ℓ∈Aℓ+1

∫
O

∑
qh−1∈[d]

∥uth,qh−1
∥1 · Pθ∗,πt

(qh−1 | ah−1
h−ℓ)doh︸ ︷︷ ︸

(i)

+H · ν · ∥bθ
t

1 − bθ
∗

1 ∥1︸ ︷︷ ︸
(ii)

, (E.11)

where we write
uth,qh−1

=
(
Bθt

h (ah, oh)− Bθ∗

h (ah, oh)
)
Uθ∗

h Pθ∗

h (sh = · | qh−1) (E.12)
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for notational simplicity. We remark that the summation in term (i) is different from that in (E.8) of
Lemma E.4. In particular, by Lemma E.4, it holds for all h ∈ [H] and t ∈ [T ] that∑

ah
h−ℓ∈Aℓ+1

∫
O

∑
qh−1∈[d]

∥wt
h,qh−1

∥1 · Pθ∗,t(qh−1 | ah−1
h−ℓ)doh

= O(γ · ν · d ·A2k+ℓ ·
√
wE · (k + ℓ) · log(H ·A · T )/t) (E.13)

with probability at least 1− δ, where we define

Pθ∗,t(qh−1 | ah−1
h−ℓ) =

1

t
·
t−1∑
ω=0

Pθ∗,πω

(qh−1 | ah−1
h−ℓ).

The only difference between the left-hand side of (E.13) and the term (i) in (E.11) is the conditional
density of the bottleneck factor qh−1, which follows the visitation of πt, namely, Pθ∗,πt

, in (E.11) but
the mixture of visitation Pθ∗,t in (E.13). To upper bound (E.13) by (E.11), we utilize the calculation
trick proposed by Jin et al. (2020a). In particular, we utilize the following lemma.

Lemma E.5 (Lemma 16 of Jin et al. (2020a)). Let 0 ≤ zt ≤ Cz and 0 ≤ wt ≤ Cw for all t ∈ [T ].
We define St = (1/t) ·

∑t
i=1 wi and S0 = 0. Given

zt · St−1 ≤ Cz · Cw · C ·
√

1/t

for all t ∈ [T ], it holds that

1

T
·

T∑
t=1

zt · wt ≤ 2Cz · Cw · (C + 1) ·
√

1/K · log T.

Here C > 0 is an absolute constant.

Proof. See Jin et al. (2020a) for a detailed proof.

It thus follows from (E.13) and Lemma E.5 that
(i) = O

(
γ · ν2 · d ·H ·A2k+ℓ ·

√
wE · (k + ℓ) · log T · log(H ·A · T )/t

)
(E.14)

with probability at least 1− δ. Meanwhile, by (E.7) of Lemma E.4, it holds that

(ii) = H · ν · ∥bθ
t

1 − bθ
∗

1 ∥1 = O
(
H · ν2 ·A2k

√
wE · (k + ℓ) · log(H ·A · T )/t

)
(E.15)

with probability at least 1 − δ. Finally, by plugging (E.14) and (E.15) into (E.13), it holds for all
t ∈ [T ] that

|V πt

(θt)− V πt

(θ∗)|

= O
(
γ · ν2 · d ·H ·A2k+ℓ · log T ·

√
wE · (k + ℓ) · log(H ·A · T )/t

)
(E.16)

with probability at least 1− δ. Combining (E.10) and (E.16), it holds with probability at least 1− δ
that

V ∗(θ∗)− V πT

(θ∗)

= O
(
γ · ν2 · d ·H ·A2k+ℓ · log T ·

√
wE · (k + ℓ) · log(H ·A · T )/T

)
.

Thus, by setting
T = O

(
γ2 · ν4 · d2 ·H2 ·A2(2k+ℓ) · (k + ℓ) · log(H ·A/ϵ)/ϵ2

)
,

it holds with probability at least 1− δ that V ∗(θ∗)− V πT

(θ∗) ≤ ϵ. Thus, we complete the proof of
Theorem 5.3.

F PROOF OF AUXILIARY RESULT

In the sequel, we present the proof of the auxiliary results in §E.
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F.1 PROOF OF LEMMA E.1

Proof. By Lemma G.7, it holds for all policy π ∈ Π and parameter θ ∈ Θ that

V π(θ) =

∫
OH

r(oH−1
1 ) · Pπ,θ(oH−1

1 )doH−1
1

=

∫
OH

r(oH−1
1 ) · Pθ

(
oH−1
1

∣∣ (aπ)H1 )
doH−1

1 ,

where (aπ)H1 = (aπ1 , . . . , a
π
H) and the actions aπh = π(oh1 , (a

π)h−1
1 ) are taken by the policy π for all

h ∈ [H]. Following from the fact that 0 ≤ r(oH−1
1 ) ≤ H for all observation array oH−1

1 ∈ OH , we
obtain for all policy π ∈ Π and parameters θ, θ′ ∈ Θ that

|V π(θ)− V π(θ′)| ≤ H ·
∫
OH

∣∣Pθ
(
oH−1
1

∣∣ (aπ)H1 )
− Pθ′(

oH−1
1

∣∣ (aπ)H1 )∣∣doH−1
1 , (F.1)

where the actions aπh are taken by the policy π for all h ∈ [H]. In the sequel, we utilize a slight
modification of Lemma 3.8. In particular, following the same calculation as the proof of Lemma 3.8
in §D.3, we have

Pθ(τH+k
1 ) =

[
Bθ
H−1(aH−1, oH−1) . . .Bθ

1(a1, o1)b
θ
1

]
(τH+k

H ).

Thus, by marginalizing over the dummy future observations oH+k
H+1 and fixing the final observation

oH , we obtain for all dummy future actions aH+k−1
H that

Pθ(τH1 ) =

∫
Ok

1oH ,aH+k−1
H

(τH+k
1 ) · Pθ(τH+k

1 )doH+K
H+1 , (F.2)

where we define 1oH ,aH+k−1
H

the indicator that takes value one at the final observation oH and the

fixed dummy future actions aH+k−1
H . By plugging (F.2) into (F.1), we have

|V π(θ)− V π(θ′)| ≤ H ·
∫
OH+k

|fθ − fθ
′
|
(
oh+k
h , (aπ)H+k−1

H

)
doH+k

1 , (F.3)

where (aπ)H+k−1
H = (aπH , . . . , a

π
H+k−1) and the actions aπh are taken by the policy π. Here we

define
fθ = Bθ

H−1(a
π
H−1, oH−1) . . .Bθ

1(a
π
1 , o1)b

θ
1,

where bθ1 is the initial trajectory distribution for the first k steps defined in Lemma 3.8. Meanwhile,
by the linearity of Bellman operators, we have

fθ − fθ
′
=

H−1∑
h=0

Bθ
H−1(a

π
H−1, oH−1) . . .Bθ

h+1(a
π
h+1, oh+1)vh, (F.4)

where we define v0 = bθ1 − bθ
′

1 and

vh =
(
Bθ
h(a

π
h, oh)− Bθ′

h (aπh, oh)
)
Bθ′

h−1(a
π
h−1, oh−1) . . .Bθ′

1 (aπ1 , o1)b
θ′

1 , h ∈ [H − 1]. (F.5)
By combining (F.3) and (F.4), we have

|V π(θ)− V π(θ′)| ≤ H ·
H−1∑
h=1

∫
OH+k

|Bθ
H−1(a

π
H−1, oH−1) . . .Bθ

h+1(a
π
h+1, oh+1)vh|doH+k

1

+

∫
OH+k

|Bθ
H−1(a

π
H−1, oH−1) . . .Bθ

1(a
π
1 , o1)(b

θ
1 − bθ

′

1 )|doH+k
1 . (F.6)

The following lemma upper bounds the right-hand side of (F.6).

Lemma F.1. Under Assumption 3.5, it holds for all h ∈ [H], π ∈ Π, and vh ∈ L1(Ak × Ok+1)
that ∫

OH+k−h

|Bθ
H−1(oH−1, aH−1) . . .Bθ

h+1(ah+1, oh+1)vh|doH+k
h+1 ≤ ν · ∥vh∥1.

Proof. See §F.3 for a detailed proof.
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By Lemma F.1, it follows from (F.6) that

|V π(θ)− V π(θ′)| ≤ H · ν ·
H−1∑
h=0

∫
Oh

∥vh∥1doh1 +H · ν · ∥bθ1 − bθ
′

1 ∥1, (F.7)

where we define v0 = bθ1 − bθ
′

1 and

vh =
(
Bθ
h(a

π
h, oh)− Bθ′

h (aπh, oh)
)
Bθ′

h−1(a
π
h−1, oh−1) . . .Bθ′

1 (aπ1 , o1)b
θ′

1 , h ∈ [H − 1].

Meanwhile, the following lemma upper bound the L1-norm of vh for h = 2, . . . ,H .

Lemma F.2. It holds for all π ∈ Π and h ∈ [H − 1] that∫
Oh

∥vh∥1doh1 ≤
∑

ah
h−ℓ∈Aℓ+1

∫
O

∑
qh−1∈[d]

uhdoh,

where we define
vh =

(
Bθ
h(a

π
h, oh)− Bθ′

h (aπh, oh)
)
Bθ′

h−1(a
π
h−1, oh−1) . . .Bθ′

1 (aπ1 , o1)b
θ′

1 ,

uh =
∥∥(Bθ

h(ah, oh)− Bθ′

h (ah, oh)
)
Uθ′

h Pθ′

h (sh = · | qh−1) · Pπ(qh−1 | ah−1
h−ℓ)

∥∥
1
,

for all h ∈ [H − 1].

Proof. See §F.4 for a detailed proof.

Combining (F.7) and Lemma F.2, we conclude that

|V π(θ)− V π(θ′)| ≤ H · ν ·
H−1∑
h=1

∑
ah
h−ℓ∈Aℓ+1

∑
qh−1∈[d]

∫
O
∥uh,qh−1

∥1doh +H · ν · ∥bθ1 − bθ
′

1 ∥1,

where we define
uh,qh−1

=
(
Bθ
h(ah, oh)− Bθ′

h (ah, oh)
)
Uθ′

h Pθ′

h (sh = · | qh−1) · Pθ′,π(qh−1 | ah−1
h−ℓ).

Thus, we complete the proof of Lemma E.1.

F.2 PROOF OF LEMMA E.4

Proof. We first show that θ∗ ∈ Ct with probability at least 1 − δ. By Assumption 4.1, it holds for
all t ∈ [T ] that

∥b̂t1 − bθ
∗

1 ∥1 ≤
√
wE · (k + ℓ) · log(H ·A · T )/t (F.8)

with probability at least 1− δ. Meanwhile, it holds that∫
Oℓ+1

∥Bθ∗

h (ah, oh)X̂t
h(τ

h−1
h−ℓ)− Ŷt

h(τ
h
h−ℓ)∥1dohh−ℓ

≤
∫
Oℓ+1

∥Bθ∗

h (ah, oh)Xθ∗,πt

h (τh−1
h−ℓ)− Yθ∗,πt

h (τhh−ℓ)∥1dohh−ℓ

+

∫
O

∥∥Bθ∗

h (ah, oh)
(
Xθ∗,πt

h (τh−1
h−ℓ)− X̂t

h(τ
h−1
h−ℓ)

)∥∥
1
doh

+

∫
Oℓ+1

∥∥(Yθ∗,πt

h − Ŷt
h

)
(τhh−ℓ)

∥∥
1
dohh−ℓ. (F.9)

We now upper bound the right-hand side of (F.9). According to the identity in (3.8), we have

Bθ∗

h (ah, oh)Xθ∗,πt

h (ah−1
h−ℓ)− Yθ∗,πt

h (τhh−ℓ) = 0 (F.10)
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for all h ∈ [H] and (ahh−ℓ, o
h
h−ℓ) ∈ Aℓ+1 × Oℓ+1. Meanwhile, by Assumption 4.1 and the update

of density estimators Ŷt
h in (C.2), it holds for all h ∈ [H], t ∈ [T ], and τhh−ℓ ∈ Aℓ ×Oℓ that∫

Oℓ+1

∥∥(Yθ∗,πt

h − Ŷt
h

)
(τhh−ℓ)

∥∥
1
dohh−ℓ =

∑
ah+k
h+1∈Ak

∫
Ok+ℓ+1

|(P̂t
h − Pθ∗,πt

h )(τh+k+1
h−ℓ )|doh+k+1

h−ℓ .

=
∑

ah+k
h+1∈Ak

∥(P̂t
h − Pθ∗,πt

h )(· | ah+k
h−ℓ )∥1

≤ Ak ·
√
wE · (k + ℓ) · log(H ·A · T )/t (F.11)

with probability at least 1− δ. Similarly, by Assumption 4.1, Lemma E.2, and the update of density
estimators X̂t

h in (C.1), we further obtain for all h ∈ [H] that∫
O

∥∥Bθ∗

h (ah, oh)
(
Xθ∗,πt

h (τh−1
h−ℓ)− X̂t

h(τ
h−1
h−ℓ)

)∥∥
1
doh

≤ ν ·A2k ·
√
wE · (k + ℓ) · log(H ·A · T )/t (F.12)

with probability at least 1−δ. Plugging (F.10), (F.11), and (F.12) into (F.9), we obtain for all h ∈ [H]
that ∫

Oℓ+1

∥Bθ∗

h (ah, oh)X̂t
h(τ

h−1
h−ℓ)− Ŷt

h(τ
h
h−ℓ)∥1dohh−ℓ ≤ βt ·

√
1/t (F.13)

with probability at least 1−δ. Thus, combining (F.9) and (F.13), it holds that θ∗ ∈ Ct with probability
at least 1− δ. In what follows, we prove (E.7) and (E.8), respectively.

Part I: Proof of Upper Bound in (E.7). By the definition of confidence set Ct, it holds for all
t ∈ [T ], (ah+k−1

h , ahh−ℓ) ∈ Ak+ℓ, and h ∈ [H] that

∥bθ
t

1 − b̂t1∥1 ≤ (1 + ν) ·A2k
√
wE · (k + ℓ) · log(H ·A · T )/t

with probability at least 1 − δ. Thus, by (F.8) and triangle inequality, it holds for all t ∈ [T ],
(ah+k−1

h , ahh−ℓ) ∈ Ak+ℓ, and h ∈ [H] that

∥bθ
t

1 − bθ
∗

1 ∥1 ≤ ∥bθ
t

1 − b̂t1∥1 + ∥b̂t1 − bθ
∗

1 ∥1
= O(ν ·A2k ·

√
wE · (k + ℓ) · log(H ·A · T )/t)

with probability at least 1− δ. Thus, we complete the proof of the upper bound in (E.7).

Part II: Proof of Upper Bound in (E.8). It suffices to upper bound the following term for all
h ∈ [H] and t ∈ [T ],

Gt
h =

∑
ah
h−ℓ∈Aℓ+1

( ∑
qh−1∈[d]

∫
O
∥uth,qh−1

∥1doh
)
, (F.14)

where we write
uth,qh−1

(·) =
(
Bθt

h (ah, oh)− Bθ∗

h (ah, oh)
)
Uθ∗

h Pθ∗

h (sh = · | qh−1) · Pθ∗,πt

(qh−1 | ah−1
h−ℓ) (F.15)

for notational simplicity. We remark that uth,qh−1
∈ L1(Ak × Ok+1) is a function in the space

L1(Ak × Ok+1) by the definition of Bellman operators Bθt

h and Bθ∗

h . In the sequel, we define the
vector-valued function

uth = [uth,1, . . . , u
t
h,d] ∈ Rd.

It thus holds that

Gt
h =

∑
ah
h−ℓ∈Aℓ+1

∫
Ok+2

∥uth(τh+k+1
h+1 )∥1doh+k+1

h . (F.16)

Here the integration and summation are taken with respect to the domain oh+k+1
h+1 ∈ Ok+1 of uth,

the action sequence ah−1
h−ℓ ∈ Aℓ in (F.15), and the action and observation pair (ah, oh) ∈ A × O in

the Bellman operators that defines uth,i in (F.15). We remark that in (F.16), we abuse the notation
slightly and write

∥uth(τh+k+1
h+1 )∥1 =

∑
qh−1∈[d]

|uth,qh−1
(τh+k+1

h+1 )|,
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where uth,qh−1
(τh+k+1

h+1 ) is defined in (F.15). In the sequel, we upper bound the right-hand side of
(F.16). By Assumption 5.2, it holds that

∥uth∥1 = ∥Fθ∗,πt,†
h Fθ∗,πt

h uth∥1 ≤ γ · ∥Fθ∗,πtuth∥1 (F.17)

Meanwhile, by the definition of Fθ∗,πt

h , we have

Fθ∗,πt

h uth =
∑

qh−1∈[d]

uth,qh−1
· Pθ∗,πt

(oh−1
h−ℓ | qh−1, a

h−1
h−ℓ). (F.18)

By the definition of uth,qh−1
in (F.15), we further obtain that

uth,qh−1
· Pθ∗,πt

(oh−1
h−ℓ | qh−1, a

h−1
h−ℓ) = uth,qh−1

·
Pθ∗,πt

(oh−1
h−ℓ , qh−1 | ah−1

h−ℓ)

Pθ∗,πt
(qh−1 | ah−1

h−ℓ)

=
(
Bθt

h (ah, oh)− Bθ∗

h (ah, oh)
)
Uθ∗

h Pθ∗

h (sh = · | qh−1) · Pθ∗,πt

(oh−1
h−ℓ , qh−1 | ah−1

h−ℓ)

=
(
Bθt

h (ah, oh)− Bθ∗

h (ah, oh)
)
Uθ∗

h Pθ∗,πt

(oh−1
h−ℓ , qh−1, sh = · | ah−1

h−ℓ).

Thus, it follows from (F.18) and the linearity of Bellman operators Bθ
h and Uθ

h that

(Fθ∗,πtuth)(τ
h−1
h−ℓ) =

∑
qh−1∈[d]

(
Bθt

h (ah, oh)− Bθ∗

h (ah, oh)
)
Uθ∗

h Pθ∗,πt

(oh−1
h−ℓ , qh−1, sh = · | ah−1

h−ℓ)

=
(
Bθt

h (ah, oh)− Bθ∗

h (ah, oh)
)
Uθ∗

h Pθ∗,πt

(oh−1
h−ℓ , sh = · | ah−1

h−ℓ)

=
(
Bθt

h (ah, oh)− Bθ∗

h (ah, oh)
)
Xθ∗,πt

h (τh−1
h−ℓ), (F.19)

where we marginalize the bottleneck factor qh−1 in the second equality. Here recall that Xθ∗,πt

h is
the density mapping defined in (3.6) and πt is the mixed policy in the t-th iteration. Plugging (F.19)
into (F.17), we obtain that

∥uth∥1 ≤ γ ·
∑

ah−1
h−ℓ∈Aℓ

∫
Oℓ

|
(
Bθt

h (ah, oh)− Bθ∗

h (ah, oh)
)
Xθ∗,πt

h (τh−1
h−ℓ)|do

h−1
h−ℓ . (F.20)

Plugging (F.20) into (F.16), we obtain that

Gt
h ≤ γ ·

∑
ah
h−ℓ∈Aℓ+1

∫
Oℓ+1

∥∥(Bθt

h (ah, oh)− Bθ∗

h (ah, oh)
)
Xθ∗,πt

h (τh−1
h−ℓ)

∥∥
1
dohh−ℓ. (F.21)

It remains to upper bound the right-hand side of (F.21). By triangle inequality, we have∫
Oℓ+1

∥∥(Bθt

h (ah, oh)− Bθ∗

h (ah, oh)
)
Xθ∗,πt

h (τh−1
h−ℓ)

∥∥
1
dohh−ℓ (F.22)

≤
∫
Oℓ+1

∥Bθt

h (ah, oh)Xθ∗,πt

h (τh−1
h−ℓ)− Yθ∗,πt

h (τhh−ℓ)∥1dohh−ℓ

+

∫
Oℓ+1

∥Bθ∗

h (ah, oh)Xθ∗,πt

h (τh−1
h−ℓ)− Yθ∗,πt

h (τhh−ℓ)∥1dohh−ℓ.

By the identity in (3.8), it holds that

Bθ∗

h (ah, oh)Xθ∗,πt

h (τh−1
h−ℓ)− Yθ∗,πt

h (τhh−ℓ) = 0 (F.23)
In the sequel, we upper bound the term∫

Oℓ+1

∥Bθt

h (ah, oh)Xθ∗,πt

h (τh−1
h−ℓ)− Yθ∗,πt

h (τhh−ℓ)∥1dohh−ℓ
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on the right-hand side of (F.22). The calculation is similar to that of the derivation of (F.13). It holds
for all h ∈ [H] and t ∈ [T ] that∫

Oℓ+1

∥Bθt

h (ah, oh)Xθ∗,πt

h (τh−1
h−ℓ)− Yθ∗,πt

h (τhh−ℓ)∥1dohh−ℓ

≤
∫
Oℓ+1

∥Bθt

h (ah, oh)X̂t
h(τ

h−1
h−ℓ)− Ŷt

h(τ
h
h−ℓ)∥1dohh−ℓ

+

∫
Oℓ+1

∥∥(Yθ∗,πt

h − Ŷt
h

)
(τhh−ℓ)

∥∥
1
dohh−ℓ

+

∫
Oℓ+1

∥∥Bθt

h (ah, oh)
(
Xθ∗,πt

h (τh−1
h−ℓ)− X̂t

h(τ
h−1
h−ℓ)

)∥∥
1
dohh−ℓ. (F.24)

We now upper bound the right-hand side of (F.24). By the definition of confidence set Ct, it holds
for all h ∈ [H] and t ∈ [T ] that∫

Oℓ+1

∥Bθt

h (ah, oh)X̂t
h(τ

h−1
h−ℓ)− Ŷt

h(τ
h
h−ℓ)∥1dohh−ℓ ≤ βt ·

√
1/t. (F.25)

Meanwhile, by Assumption 4.1 and the update of density estimators Ŷt
h in (C.2), it holds for all

h ∈ [H] and t ∈ [T ] that∫
Oℓ+1

∥∥(Yθ∗,πt

h − Ŷt
h

)
(τhh−ℓ)

∥∥
1
dohh−ℓ =

∑
ah+k
h+1∈Ak

∫
Ok+ℓ+1

|(P̂t
h − Pθ∗,πt

h )(τh+k+1
h−ℓ )|doh+k+1

h−ℓ

=
∑

ah+k
h+1∈Ak

∥(P̂t
h − Pθ∗,πt

h )(· | ah+k
h−ℓ )∥1

≤ Ak ·
√
wE · (k + ℓ) · log(H ·A · T )/t (F.26)

with probability at least 1− δ. Similarly, by Assumption 4.1, Lemma E.2, and the update of density
estimators X̂t

h in (C.1), we further obtain for all h ∈ [H] and t ∈ [T ] that∫
Oℓ+1

∥∥Bθt

h (ah, oh)
(
Xθ∗,πt

h (τh−1
h−ℓ)− X̂t

h(τ
h−1
h−ℓ)

)∥∥
1
dohh−ℓ

≤ ν ·A2k ·
√
wE · (k + ℓ) · log(H ·A · T )/t (F.27)

with probability at least 1 − δ. Plugging (F.25)–(F.27) into (F.24), we obtain for all h ∈ [H] and
t ∈ [T ] that ∫

Oℓ+1

∥Bθ∗

h (ah, oh)X̂t
h(τ

h−1
h−ℓ)− Ŷt

h(τ
h
h−ℓ)∥1dohh−ℓ

= O(ν ·A2k ·
√
wE · (k + ℓ) · log(H ·A · T )/t) (F.28)

with probability at least 1− δ. By plugging (F.23) and (F.28) into (F.22), we obtain for all h ∈ [H],
t ∈ [T ], and (ah+k−1

h , ahh−ℓ) ∈ Ak+ℓ that∫
Oℓ+1

∥∥(Bθt

h (ah, oh)− Bθ∗

h (ah, oh)
)
Xθ∗,πt

h (τh−1
h−ℓ)

∥∥
1
dohh−ℓ

= O(ν ·A2k ·
√
wE · (k + ℓ) · log(H ·A · T )/t) (F.29)

with probability at least 1 − δ. Plugging (F.29) into (F.21), we obtain for all h ∈ [H] and t ∈ [T ]
that

Gt
h = O

(
γ · ν ·A2k+ℓ ·

√
wE · (k + ℓ) · log(H ·A · T )/t

)
with probability at least 1 − δ. Here Gt

h is defined in (F.14). Thus, we complete the proof of the
upper bound in (E.8).

F.3 PROOF OF LEMMA F.1

Proof. Recall that we define linear operators {Tθ
h, Õθ

h}h∈[H] as follows,(
Tθ
h(ah)f

)
(sh+1) =

∫
S
Pθ
h(sh+1 | sh, ah) · f(sh)dsh, ∀f ∈ L1(S), ah ∈ A,(

Õθ
h(oh)f

)
(sh) = Oθ

h(oh | sh) · f(sh), ∀f ∈ L1(S), oh ∈ O.
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Recall that we have
Bθ
h(ah, oh) = Uθ

h+1Tθ
h(ah)Õθ

h(oh)U
θ,†
h .

Thus, following from Lemma 3.6 and the fact that Tθ
h(ah)f is linear in ψθ

h, it further holds for all
h ∈ [H] and vh ∈ L1(Ak ×Ok+1) that

Bθ
H−1(oH−1, aH−1) . . .Bθ

h+1(ah+1, oh+1)vh

= Uθ
hTθ

H−1(aH−1)Õθ
H−1(oH−1) . . .Tθ

h+1(ah+1)Õθ
h+1(oh+1)Uθ,†

h+1vh. (F.30)
We now prove Lemma F.1 in the sequel. To begin with, it holds for all h ∈ [H], ah+1 ∈ A, and
f ∈ L1(S) that∫

O
∥Tθ

h+1(ah+1)Õθ
h+1(oh+1)f∥1doh+1

≤
∫
S2×O

Pθ(sh+2 | sh+1, ah+1) ·Oθ
h+1(oh+1 | sh+1) · |f(sh+1)|doh+1dsh+1dsh+2

=

∫
S
|f(sh+1)|dsh+1 = ∥f∥1.

Inductively, it holds for all h ∈ [H], aH−1
h+1 ∈ AH−h−1, and f ∈ L1(S) that∫

OH−h−1

∥Tθ
H−1(aH−1)Õθ

H−1(oH−1) . . .Tθ
h+1(ah+1)Õθ

h+1(oh+1)f∥1doH−1
h+1 ≤ ∥f∥1. (F.31)

Meanwhile, by the definition of Uθ
H in (3.2) of Definition 3.4, it holds for all f ∈ L1(S) and

ah+k−1
h ∈ Ak that∫
Ok+1

|(Uθ
Hf)(o

H+k
H , aH+k−1

H )|doH+k
H ≤

∫
S×Ok+1

Pθ(oH+k
H | sH , aH+k−1

H ) · |f(sH)|doH+k
H dsH

=

∫
S
|f(sH)|dsH = ∥f∥1. (F.32)

Combining (F.30), (F.31), and (F.32) with h = H , we obtain that∫
OH+k−h

|Bθ
H−1(oH−1, aH−1) . . .Bθ

h+1(ah+1, oh+1)vh|doH+k
h+1

=

∫
OH+k−h

|Uθ
HTθ

H−1(aH−1)Õθ
H−1(oH−1) . . .Tθ

h+1(ah+1)Õθ
h+1(oh+1)Uθ,†

h+1vh|do
H+k
h+1

≤
∫
OH−h−1

∥Tθ
H−1(aH−1)Õθ

H−1(oH−1) . . .Tθ
h+1(ah+1)Õθ

h+1(oh+1)Uθ,†
h+1vh∥1do

H−1
h+1

≤ ∥Uθ,†
h+1vh∥1. (F.33)

Finally, by Assumption 3.5, it holds that
∥Uθ,†

h+1vh∥1 ≤ ν · ∥vh∥1.
Thus, we completes the proof of Lemma F.1.

F.4 PROOF OF LEMMA F.2

Proof. Recall that we define
vh =

(
Bθ
h(a

π
h, oh)− Bθ′

h (aπh, oh)
)
Bθ′

h−1(a
π
h−1, oh−1) . . .Bθ′

1 (aπ1 , o1)b
θ′

1 , ∀h ∈ [H],

where the actions aπh are taken by the policy π for all h ∈ [H]. To accomplish the proof, we first
handle the dependency of the actions aπj on policy π for h− ℓ ≤ j ≤ h. To this end, we utilize the
following upper bound,∫

Oh

∥vh∥1doh1 ≤
∑

ah
h−ℓ∈Aℓ+1

∫
OH

∥∥(Bθ
h(a

π
h, oh)− Bθ′

h (ah, oh)
)
Bθ′

h−1(ah−1, oh−1) . . . (F.34)

. . .Bθ′

h−ℓ(ah−ℓ, oh−ℓ)Bθ′

h−ℓ−1(a
π
h−ℓ−1, oh−ℓ−1) . . . b

θ′

1

∥∥
1
doh1 .

Here we abuse the notation of index slightly for simplicity. We remark that the sequence of product
of Bellman operators Bθ′

j (aj , oj) ends at the index j = 1. Recall that we have

Bθ
h(ah, oh) = Uθ

h+1Tθ
h(ah)Õθ

h(oh)U
θ,†
h ,
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where the linear operators {Tθ
h, Õθ

h}h∈[H] are defined in (E.1) and (E.2), respectively. Thus, by
Lemma 3.6, it holds for the right-hand side of (F.34) that

Bθ′

h−1(ah−1, oh−1) . . .Bθ′

h−ℓ(ah−ℓ, oh−ℓ)Bθ′

h−ℓ−1(a
π
h−ℓ−1, oh−ℓ−1) . . . b

θ′

1

= Uθ′

h Tθ′

h−1(ah−1)Õθ
h−1(oh−1) . . . Õθ′

1 (o1)µ1, (F.35)
where µ1 ∈ L1(S) is the initial state probability density function. By the definition of linear opera-
tors {Tθ

h, Õθ
h}h∈[H] in (E.1) and (E.2), respectively, it further holds that

Tθ′

h−1(ah−1)Õθ′

h−1(oh−1)Tθ′

h−2(ah−2) . . . Õθ′

1 (o1)µ1 = Pθ′,π(oh−1
1 , sh = · | ah−1

h−ℓ) ∈ L
1(S).

(F.36)
By plugging (F.35) and (F.36) into (F.34), we obtain that∫

Oh

∥vh∥1doh1 ≤
∑

ah
h−ℓ∈Aℓ+1

∫
Oh

∥∥(Bθ
h(ah, oh)− Bθ′

h (ah, oh)
)
Uθ′

h Pθ′,π(oh−1
1 , sh = · | ah−1

h−ℓ)
∥∥
1
doh1 .

(F.37)
Meanwhile, it holds for all sh ∈ S that

Pθ′,π(oh−1
1 , sh | ah−1

h−ℓ) =
∑

qh−1∈[d]

Pθ′

h−1(sh | qh−1) · Pθ′,π
h−1(qh−1, o

h−1
h−ℓ | a

h−1
h−ℓ).

Thus, it follows from Jensen’s inequality that∫
OH

∥∥(Bθ
h(a

π
h, oh)− Bθ′

h (ah, oh)
)
Uθ′

h Pθ′,π(oh−1
1 , sh = · | ah−1

h−ℓ)
∥∥
1
doH−1

1

≤
∫
OH

∑
qh−1∈[d]

wh · Pθ′,π(oh−1
1 , qh−1 | ah−1

h−ℓ)do
H−1
1

=

∫
O

∑
qh−1∈[d]

wh · Pθ′,π(qh−1 | ah−1
h−ℓ)doh, (F.38)

where we write
wh =

∥∥(Bθ
h(a

π
h, oh)− Bθ′

h (ah, oh)
)
Uθ′

h Pθ′

h−1(sh = · | qh−1)
∥∥
1

for notational simplicity. By plugging (F.38) into (F.37), we complete the proof of Lemma F.2.

G ANALYSIS FOR THE TABULAR POMDPS

In the sequel, we present an analysis for the tabular POMDPs. We remark that our analysis extends
the previous analysis of undercomplete POMDPs (Azizzadenesheli et al., 2016; Guo et al., 2016;
Jin et al., 2020a), where the emission matrices are left invertible. In particular, our analysis handles
the overcomplete POMDPs with O < S, where O and S are the size of observation and state spaces
O amd S, respectively.

G.1 BELLMAN OPERATOR

We first introduce notations for matrices to simplify the discussions of POMDPs.

Notation. We denote by M = [f(i, j)]i,j ∈ Rn×m the n-by-m matrix, where f(i, j) ∈ R is the
element in the i-th row and j-th column of M . In addition, for a matrix M , we denote by Mi,j the
(i, j)-th element of M .

In addition, recall that we denote by τh+k
h = {oh, ah, . . . , ah+k−1, oh+k} the trajectory from

the h-th observation oh to the (h + k)-th observation oh+k. Similarly, we denote by τkh =
(oh, ah, . . . , oh+k, ah+k) the trajectory from the h-th observation oh to the (h+ k)-th action ah+k.
We denote by ah+k−1

h = (ah, . . . , ah+k−1) and oh+k
h = (oh, . . . , oh+k) the action and observation

sequences, respectively. Meanwhile, recall that we write
Pπ(τh+k

h ) = Pπ(oh, . . . , oh+k | ah, . . . , ah+k−1) = Pπ(oh+k
h | ah+k−1

h ),

Pπ(τh+k
h | sh) = Pπ(oh, . . . , oh+k | sh, ah, . . . , ah+k−1) = Pπ(oh+k

h | sh, ah+k−1
h ).

for notational simplicity.
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Forward Emission Operator. In the sequel, we define several matrices that describes the transition
and emission in POMDPs. We define

Õh(oh) = D
(
Oh(oh | ·)

)
= D

([
O(oh | sh)

]
sh

)
∈ RS×S ,

Th(ah) = Ph(· | ·, ah) =
[
Ph(sh+1 | sh, ah)

]
sh,sh+1

∈ RS×S ,

Oh = Oh(· | ·) =
[
Oh(oh | sh)

]
oh,sh

∈ RO×S ,

where we denote by D(v) ∈ RS×S the diagonal matrix where the diagonal entries aligns with the
vector v ∈ RS .

Definition G.1 (Forward Emission Operator). For all h ∈ [H] and k > 0, we define the following
forward emission operator,

Uh = Oh+kTh+k−1(·)Õh+k−1(·) · · ·Th(·)Õh(·)

=
[
1(oh+k)

⊤Oh+kTh+k−1(ah+k−1)Õh+k−1(oh+k−1)

· · ·Th(ah)Õh(oh)1(sh)
]
τh+k
h ,sh

∈ R(Ok+1·Ak)×S ,

where we index the column of Uh by the state sh ∈ S, and the row of Uh by the observation and
action arrays

ah+k−1
h = (ah, . . . , ah+k−1) ∈ Ak, oh+k

h = (oh, . . . , oh+k) ∈ Ok+1.

Lemma G.2 (Forward Emission Operator). It holds for all h ∈ [H] that

Uh =
[
P(τh+k

h | sh)
]
τh+k
h ,sh

∈ R(Ok+1·Ak)×S .

Proof. See §H.1 for a detailed proof.

Lemma G.2 characterizes the semantic meaning of the forward emission operator Uh+1. More
specifically, Lemma G.2 allows us to write Uh+1 in the following operator form,

Uh = P(oh+k
h = ·︸ ︷︷ ︸

(a)

| sh = ·︸ ︷︷ ︸
(b)

, ah+k−1
h = ·︸ ︷︷ ︸

(c)

) ∈ R(Ok+1·Ak)×S ,

where (a) and (c) correspond to the row indices, and (b) corresponds to the column indices of the
forward emission matrix Uh. For a state distribution vector µh ∈ RS of state sh, it holds that

Uhµh = P(oh+k
h = · | ah+k−1

h = ·) ∈ ROk+1·Ak

,

which corresponds to the forward emission probability of oh+k
h = (oh, . . . , oh+k) given an action

sequence ah+k−1
h = (ah, . . . , ah+k−1).

Assumption G.3 (Future Sufficiency). We assume for some k > 0 that the forward emission opera-
tor Uh has full column rank for all h ∈ [H]. We denote by U†

h the left inverse of Uh for all h ∈ [H].
We assume further that ∥U†

h∥1 7→1 ≤ ν for all h ∈ [H].

Planning with Bellman Operator. In the sequel, we introduce the Bellman operators {Bh}h∈[H],
which plays a central role in solving the overcomplete POMDP. We define the Bellman operators as
follows.

Definition G.4 (Bellman Operator). For all h ∈ [H], we define the Bellman operator Bh as follows,

Bh(ah, oh) = Uh+1Th(ah)Õh(oh)U†
h, ∀(ah, oh) ∈ A×O.

Given the Bellman operators {Bh}h∈[H], we are able to estimate the probability of any given obser-
vation sequence (o1, a1, . . . , oH). In particular, the following lemma holds.

Lemma G.5. It holds for the Bellman operator defined in Definition G.4 that
P(τH−1

1 ) = 1(oH)⊤BH−1(aH−1, oH−1) . . .B1(a1, o1)b1, b1 = U1µ1.

Here 1(oH) is an indicator vector that takes value one at the indices (oH+k
H , aH+k−1

H ) for any dummy
observation sequence oH+k

H+1 and a randomly fixed action sequence aH+k−1
H . In addition, µ1 ∈ RS
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is the probability array of initial state distribution, and b1 ∈ ROk+1·Ak

is the probability distribution
of the first k steps, namely,

b1 = U1µ1 =
[
P(τk1 )

]
τk
h

∈ ROk+1·Ak

.

Proof. See §H.2 for a detailed proof.

Lemma G.5 allows us to estimate the probability of any given trajectory. In addition, for a determin-
istic policy π, it further holds that

Pπ(oH1 ) = P
(
oH1 | (aπ)H−1

1

)
, (G.1)

where (aπ)H−1
1 = (aπ1 , . . . , a

π
H−1) is the action sequence determined the observation sequence

oH−1
1 and the deterministic policy π. Thus, for a given deterministic policy π, one can evaluate the

policy π based on the Bellman operators as follows,

V π =
∑

oH−1
1 ∈OH

Pπ(oH1 ) ·
H∑

h=1

r(oh)

=
∑

oH−1
1 ∈OH

H∑
h=1

r(oh) · 1(oH)⊤BH−1(aH−1, oH−1) . . .B1(a1, o1)b1.

Estimating the Bellman Operator. To estimate the Bellman operators based on interactions, we
utilize the following identity of Bellman operators,

Bh(ah, oh)Xh(o
h+k
h ) = Yh(a

h+k
h−ℓ , oh). (G.2)

Here we define the probability tensors Xh and Yh as follows,
Xh(a

h−1
h−ℓ) = UhTh−1(ah−1)Õh−1(·) . . .Th−ℓ(ah−ℓ)Õh−ℓ(·)µh−ℓ,

Yh(a
h
h−ℓ, oh) = Uh+1Th(ah)Õh(oh)Th−1(ah−1)Õh−1(·) . . .Th−ℓ(ah−1)Õh−ℓ(·)µh−ℓ,

where µh−ℓ ∈ RS is a probability density array for the state sh−ℓ. The following lemma character-
izes the semantic meaning of the probability tensors Xh and Yh for all h ∈ [H].

Lemma G.6. Let Ph−ℓ(sh−ℓ = ·) = µh−1 ∈ RS be a probability density array for the state sh−ℓ.
It holds for all h ∈ [H] that

Xh(a
h−1
h−ℓ) =

[
P(τh+k

h−ℓ )
]
τh+k
h ,oh−1

h−ℓ

∈ R(Ak+1·Ok)×Oℓ

,

Yh(a
h
h−ℓ, oh) =

[
P(τh+k+1

h−ℓ )
]
τh+k+1
h+1 ,oh−1

h−ℓ

∈ R(Ak+1·Ok)×Oℓ

.

Proof. See §H.3 for a detailed proof.

G.2 ALGORITHM

We now introduce RTC under the tabular POMDPs. In particular, RTC iteratively (i) collects data
and fit the density of visitation trajectory, (ii) fits the Bellman operators and construct confidence
sets, and (iii) conducts optimistic planning. See Algorithm 2 for the summary.

We remark that the data collection process is identical to that for the low-rank POMDPs. Meanwhile,
in the tabular POMDPs, we estimate the density of visitation trajectory by count-based estimators
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as follows.

b̂t1 =
1

t
·

∑
ak
1∈Ak

( ∑
τk+1
1 ∈Dt(ak

1 )

1(τk+1
1 )

)
, (G.3)

X̂t
h(a

h−1
h−ℓ) =

1

t
·

∑
ah+k−1
h ∈Ak

( ∑
τh+k
h−ℓ ∈Dt(ah+k−1

h−ℓ )

1(τh+k
h )1(oh−1

h−ℓ)
⊤
)
, (G.4)

Ŷt
h(a

h
h−ℓ, oh) =

1

t
·

∑
ah+k
h+1∈Ak

( ∑
τh+k+1
h−ℓ ∈Dt(ah+k

h−ℓ )

1(τh+k+1
h+1 )1(oh−1

h−ℓ)
⊤
)
, (G.5)

In the sequel, we summarize the estimations of initial trajectory density and Bellman operators in
the t-th iterate by the parameter θt. Accordingly, we estimate the Bellman operator in the t-th iterate
by minimizing the following objective,

L̂t
h = sup

ah
h−ℓ∈Aℓ+1

∥Bθ
h(ah, oh)X̂t

h(a
h−1
h−ℓ)− Yt

h(a
h
h−ℓ, oh)∥1

We define the following confidence set of the parameter θ in the t-th iteration.

Ct =
{
θ ∈ Θ : max

h∈[H]

{
∥bθ1 − b̂t1∥1, L̂t

h

}
≤ βt ·

√
1/t, ∀h ∈ [H]

}
. (G.6)

where we set

βt = (1 + ν) · (k + ℓ) ·
√
A5k+1 ·Ok+ℓ · log(O ·A · T ·H/δ)/t.

Note that the initial density bθ1 and Bellman operators {Bθ
h}h∈[H] are sufficient for policy evaluation

since they recovers the visitation density of an arbitrary deterministic policy (Lemma G.7). We
conduct optimistic planning in the t-th iteration as follows,

πt = argmax
π∈Π,θt∈Ct

V π(θt),

where V π(θt) is the policy evaluation of π with parameter θt and Π is the set of all deterministic
policies.

Algorithm 2 Represent to Control for Tabular POMDP
Require: Number of iterates T ∈ N. A set of tuning parameters {βt}t∈[T ].

1: Initialization: Set π0 as a deterministic policy. Set the dataset D0
h(a

h+k
h−ℓ ) as an empty set for

all (h, ah+k
h−ℓ ) ∈ [H]×Ak+ℓ+1.

2: for t ∈ [T ] do
3: for (h, ah+k

h−ℓ ) ∈ [H]×Ak+ℓ+1 do
4: Start a new episode from the (1− ℓ)-th step.
5: Execute policy πt−1 till the (h− ℓ)-th step and receive the observations toh−ℓ

1−ℓ .
6: Execute the action sequence ah+k

h−ℓ regardless of the observations and receive the observa-
tions toh+k+1

h−ℓ+1 .
7: Update the dataset Dt

h(a
h+k
h−ℓ )← D

t−1
h (ah+k

h−ℓ ) ∪
{
toh+k+1

h−ℓ+1

}
.

8: end for
9: Update the density mappings X̂t

h and Ŷt
h by (G.4) and (G.5), respectively.

10: Update the initial density estimation b̂t1(τ
H
1 )← by (G.3).

11: Update the confidence set Ct by (G.6).
12: Update the policy πt ← argmaxπ∈Π maxθ∈Ct V π(θ).
13: end for
14: Output: policy set {πt}t∈[T ].

G.3 THEORY

In the sequel, we present the sample efficiency analysis of RTC for the tabular POMDPs.
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Calculating the Performance Difference. Similar to the analysis under the low-rank POMDPs, we
first calculate the performance difference of a policy between two different POMDPs defined by the
parameter θ and θ′, respectively. The following lemma is adopted from Jin et al. (2020a).

Lemma G.7 (Trajectory Density (Jin et al., 2020a)). It holds that
Pθ,π(oH−1

1 ) = Pθ
(
oH−1
1 | (aπ)H1

)
,

where (aπ)H1 = (aπ1 , . . . , a
π
H) and aπh = π(ah−1

1 , oh1 ) is the action taken by π in the h-th step for all
h ∈ [H].

Proof. See Jin et al. (2020b) for a detailed proof.

We now calculate the performance difference in the following lemma.

Lemma G.8 (Performance Difference). It holds for any policy π that
|V π(θ)− V π(θ′)|

≤ ν ·
√
S ·H ·

H−1∑
h=2

∑
oh1∈Oh

∥∥(Bθ
h(a

π
h, oh)− Bθ′

h (aπh, oh)
)
Bθ′

h−1(a
π
h−1, oh−1) . . .Bθ′

1 (aπ1 , o1)b
θ′

1

∥∥
1

+ ν ·
√
S ·H ·

∑
a1∈A

∑
o1∈O

∥∥(Bθ
1(a

π
1 , o1)− Bθ′

1 (aπ1 , o1)
)
bθ

′

1

∥∥
1
+ ν ·

√
S ·H · ∥bθ1 − bθ

′

1 ∥1,

where Bθ
h is the Bellman operator corresponding to the parameter θ for all h ∈ [H], and bθ1 =

Uθ
1,kµ1 is the initial trajectory distribution corresponding to the parameter θ. Here the action aπh =

π((aπ)H−1
1 , oH−1

1 ) is the action taken by π in the h-th step for all h ∈ [H].

Proof. See §H.4 for a detailed proof.

We define the following state density array,
µθ
h−1(a

h−1
h−ℓ , o

h−1
1 ;π) = Õθ

h−1(oh−1)Tθ
h−2(ah−2) · · ·Tθ

h−ℓ(ah−ℓ)Õθ
h−ℓ(oh−ℓ)︸ ︷︷ ︸

(i)

·Tθ
h−ℓ−1(a

π
h−ℓ−1) · · ·Tθ

1(a
π
1 )Õθ

1(o1)µ1︸ ︷︷ ︸
(ii)

=
[
Pθ,π(sh, o

h−1
1 | ah−1

h−ℓ)
]
sh∈S ∈ RS . (G.7)

Here the actions aπh−ℓ−1, . . . , a
π
1 in (ii) of (G.7) is determined by the observations array oh−ℓ−2

1 and
the policy π. Meanwhile, the action array ah−1

h−ℓ is the fixed action array that defines the state density
array µθ′

h−1(π, a
h−1
h−ℓ , o

h−1
1 ). In addition, we denote by Pθ the probability that corresponds to the

transition dynamics defined by the operators {Õθ
h,Tθ

h}h∈[H]. Based on (G.7), we further define the
following marginal state density array,

µ̃θ
h−1(a

h−1
h−ℓ ;π) =

∑
oh−1
1 ∈Oh−1

µθ
h−1(π, a

h−1
h−ℓ , o

h−1
1 )

=
[
Pθ,π(sh−1 | ah−1

h−ℓ)
]
sh∈S ∈ RS . (G.8)

The marginal state density array µ̃θ
h−1(a

h−1
h−ℓ ;π) captures the state distribution of sh−1 given the

following interaction protocol: (i) starting with the initial observation, interacting with the environ-
ment based on policy π till the (h − ℓ)-th step and observing oh−ℓ, and (ii) interacting with the
environment with a fixed action sequence ah−1

h−ℓ regardless of the observations till the (h− 1)-th step
and observing oh−1. We remark that such interaction protocol is identical to the sampling process in
Line 4–6 of Algorithm 2. The following lemma upper bounds the performance difference calculated
in Lemma G.8.
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Lemma G.9 (Upper Bound of Performance Difference). It holds for all π and h > 1 that∑
oh1∈Oh

∥∥(Bθ
h(a

π
h, oh)− Bθ′

h (aπh, oh)
)
Bθ′

h−1(a
π
h−1, oh−1) . . .Bθ′

1 (aπ1 , o1)b
θ′

1

∥∥
1

≤
∑

ah
h−ℓ∈Aℓ+1

∑
oh∈O

∑
sh−1∈S

∥∥(Bθ
h(ah, oh)− Bθ′

h (ah, oh)
)
Uθ′

h,kTθ′

h−1(sh−1, ah−1)
∥∥
1
· Pπ(sh−1 | ah−1

h−ℓ),

where the action aπh = π((aπ)h−1
1 , oh1 ) is the action taken by π in the h-th step for all h ∈ [H].Here

Tθ′

h−1(sh−1, ah−1) ∈ RS is the state distribution array [Tθ′

h−1(sh | sh−1, ah−1)]sh ∈ RS for all
h > 1.

Proof. See §H.5 for a detailed proof.

Confidence Set Analysis. We now analyze the confidence set utilized for optimistic planning. We
define the following visitation measure of mix policy in the t-th iteration for all t > 0,

Pt(sh) =
1

t
·
t−1∑
ω=0

Pπω

(sh),

where {πω}ω∈[t] is the set of policy returned by Algorithm 2. Meanwhile, recall that we define the
empirical density estimators,

b̂t1 =
1

t
·

∑
ak
1∈Ak

( ∑
τk+1
1 ∈Dt(ak

1 )

1(τk+1
1 )

)
,

X̂t
h(a

h−1
h−ℓ) =

1

t
·

∑
ah+k−1
h ∈Ak

( ∑
τh+k
h−ℓ ∈Dt(ah+k−1

h−ℓ )

1(τh+k
h )1(oh−1

h−ℓ)
⊤
)
,

Ŷt
h(a

h
h−ℓ, oh) =

1

t
·

∑
ah+k
h+1∈Ak

( ∑
τh+k+1
h−ℓ ∈Dt(ah+k

h−ℓ )

1(τh+k+1
h+1 )1(oh−1

h−ℓ)
⊤
)
,

where we denote by 1(x) the indicator vector that takes value one at the index x. Recall that we
define the confidence set as follows,

Ct =
{
θ ∈ Θ :max

{
∥bθ1 − b̂t1∥1, L̂t

h

}
≤ βt ·

√
1/t, ∀h ∈ [H]

}
.

where we set
βt = Ak · (k + ℓ) ·

√
log(O ·A · T ·H/δ).

Recall that in the t-th iteration of Algorithm 2, we update the policy πt as follows,
πt = argmax

π∈Π,θ∈Ct

V π(θ).

The following lemma shows that the empirical estimations aligns closely to the true density corre-
sponding to the exploration.

Lemma G.10 (Concentration Bound of Density Estimation). It holds for all t ∈ [T ] with probability
at least 1− δ that

max
{
∥Xt

h(a
h−1
h−ℓ)− X̂t

h(a
h−1
h−ℓ)∥F , ∥b1 − b̂

t
1∥2, ∥Yt

h(a
h
h−ℓ, oh)− Ŷt

h(a
h
h−ℓ, oh)∥F

}
= O

(
Ak · (k + ℓ) ·

√
log(O ·A · T ·H/δ)/t

)
with probability at least 1− δ.

Proof. See §H.6 for a detailed proof.

In what follows, we define the reverse emission operators for the tabular POMDPs.
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Definition G.11 (Revserse Emission). For all 1 < h ≤ H and ah−2
h−ℓ ∈ Aℓ−1, we define

Aπ
h−1,ℓ(a

h−2
h−ℓ) = Õh−1(oh−1 = ·)Th−2(ah−2) . . . · Õh−ℓ(oh−ℓ = ·)D

(
Pπ(sh−ℓ = ·)

)
= Õh−1(oh−1 = ·)

(
Πh−ℓ

i=h−2Ti(ai)Õi(oi = ·)
)
Õh−ℓ(oh−ℓ = ·)D

(
Pπ(sh−ℓ = ·)

)
∈ RS×Oℓ

.

By Definition G.11 and the identity in Lemma G.6, we have the following identity,

Xt
h(a

h−1
h−ℓ) = UhTh−1(ah−1)A

πt

h−1,ℓ(a
h−2
h−ℓ), ∀ah−1

h−ℓ ∈ A
ℓ. (G.9)

Here we denote by πt the mixed policy induced by the policies {πω}ω∈[t] obtained till the t-th
iteration of Algorithm 2.

Assumption G.12 (Past Sufficiency). We define the following matrix for all policy π, ah−2
h−ℓ ∈ Aℓ−1,

and 0 < h ≤ H ,
Cπ

h−1,ℓ(a
h−1
h−ℓ) = D(Pπ(sh−1 | ah−1

h−ℓ))
−1Aπ

h−1,ℓ ∈ RS×(Aℓ−1·Oℓ).

Here recall that D(v) is the diagonal matrix where the diagonal entries align with the vector v. We
assume that Cπ

h−1,ℓ has full row rank for all π, ah−1
h−ℓ ∈ Aℓ−1, and 0 < h ≤ H . We denote by

Cπ,†
h−1,ℓ(a

h−1
h−ℓ) the right inverse of Cπ

h−1,ℓ(a
h−1
h−ℓ). We assume further that

∥Cπ,†
h−1,ℓ(a

h−1
h−ℓ)

⊤∥17→1 ≤ γ
for an absolute constant γ > 0 for all π, ah−1

h−ℓ ∈ Aℓ−1, and 0 < h ≤ H .

Lemma G.13 (Good Event Probability). Under Assumptions G.3 and G.12, it holds with probability
at least 1− δ that θ∗ ∈ Ct. Moreover, it holds for all t ∈ [T ] with probability at least 1− δ that

∥b1 − b̂θ
t

1 ∥1 = O
(
ν · (k + ℓ) ·

√
A5k+1 ·Ok+ℓ · log(O ·A · T ·H/δ)/t

)
, (G.10)∥∥(Bθt

1 (a1, o1)− Bθ∗

1 (a1, o1)
)
b1
∥∥
1
= O

(
ν · (k + ℓ) ·

√
A5k+1 ·Ok+ℓ · log(O ·A · T ·H/δ)/t

)
,

(G.11)
Meanwhile, it holds for all 1 < h ≤ H and t ∈ [T ] with probability at least 1− δ that∑

sh−1∈S

∥∥(Bθt

h (ah, oh)− Bθ∗

h (ah, oh)
)
Uθ∗

h,kTθ∗

h−1(sh−1, ah−1)
∥∥
1
· Pt(sh−1 | ah−1

h−ℓ)

= O
(
γ · ν · (k + ℓ) ·

√
A5k+ℓ ·Ok+1 · log(O ·A · T ·H/δ)/t

)
(G.12)

for all 1 < h ≤ H . Here {Bθt

h }h∈[H] and bt1 are the updated Bellman operators and initial trajectory
distribution, respectively, in the t-th iterate of Algorithm 2.

Proof. See §H.7 for a detailed proof.

Sample Complexity Analysis. We are now ready to present the sample efficiency analysis of RTC
under the tabular POMDPs.

Theorem G.14. Let
T = O

(
poly(S,A,O,H) · γ2 · ν4 · (k + ℓ)2 · log(O ·A ·H/δ)/ϵ2

)
.

Under Assumptions G.3 and G.12, it holds with probability at least 1− δ that πT is ϵ-optimal. Here
poly(S,A,O,H) is a polynomial that takes the following order,

poly(S,A,O,H) = O(S2 ·A10k+2ℓ ·O2k+2ℓ ·H2).

Proof. It holds that

V ∗(θ∗)− V πt

(θ∗) =
1

T
·

T∑
t=1

V ∗(θ∗)− V πt

(θ∗). (G.13)

It suffices to upper bound the performance difference

V ∗(θ∗)− V πt

(θ∗)
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for all t ∈ [T ]. By Lemma G.13, it holds with probability at least 1− δ that θ∗ ∈ Ct for all t ∈ [T ].
Thus, by the update of πt in Algorithm 2, it holds with probability at least 1− δ that

V ∗(θ∗)− V πt

(θ∗) ≤ V πt

(θt)− V πt

(θ∗). (G.14)
It now suffices to upper bound the performance difference on the right-hand side of (G.14). By
Lemma G.8, we obtain
|V πt

(θt)− V π(θ∗)| (G.15)

≤ ν ·
√
S ·H ·

H−1∑
h=2

∑
oH−1
1 ∈Oh

∥∥(Bθt

h (ah, oh)− Bθ∗

h (ah, oh)
)
Bθ∗

h−1(ah−1, oh−1) . . .Bθ∗

1 (a1, o1)b
θ∗

1

∥∥
1︸ ︷︷ ︸

(i)

+ ν ·
√
S ·H ·

∑
a1∈A

∑
o1∈O

∥∥(Bθt

1 (a1, o1)− Bθ∗

1 (a1, o1)
)
bθ

∗

1

∥∥
1︸ ︷︷ ︸

(ii)

+ ν ·
√
S ·H · ∥bθ

t

1 − bθ
∗

1 ∥1︸ ︷︷ ︸
(iii)

.

In the sequel, we upper bound terms (i), (ii), and (iii) on the right-hand side of (G.15). By Lemma
G.13, it holds for all t ∈ [T ] with probability at least 1− δ that

(ii) =
∥∥(Bθt

1 (a1, o1)− Bθ∗

1 (a1, o1)
)
b1
∥∥
1
= O

(
ν · (k + ℓ) ·

√
A5k+1 ·Ok+ℓ · log(O ·A · T ·H/δ)/t

)
,

(iii) = ∥b1 − b̂θ
t

1 ∥1 = O
(
ν · (k + ℓ) ·

√
A5k+1 ·Ok+ℓ · log(O ·A · T ·H/δ)/t

)
. (G.16)

It remains to upper bound term (i) on the right-hand side of (G.15). By Lemma G.9, we obtain that

(i) =
∑

oH−1
1 ∈Oh

∥∥(Bθt

h (ah, oh)− Bθ∗

h (ah, oh)
)
Bθ∗

h−1(ah−1, oh−1) . . .Bθ∗

1 (a1, o1)b
θ′

1

∥∥
1

(G.17)

≤
∑

ah
h−ℓ∈Aℓ+1

∑
oh∈O

∑
sh−1∈S

∥∥(Bθt

h (ah, oh)− Bθ∗

h (ah, oh)
)
Uθ∗

h,kTθ∗

h−1(sh−1, ah−1)
∥∥
1
· Pπt

(sh−1 | ah−1
h−ℓ)

Meanwhile, by Lemma G.13, it holds for all h ∈ [T ] and t ∈ [T ] with probability at least 1− δ that∑
sh−1∈S

∥∥(Bθt

h (ah, oh)− Bθ∗

h (ah, oh)
)
Uθ∗

h,kTθ∗

h−1(sh−1, ah−1)
∥∥
1
· Pt(sh−1 | ah−1

h−ℓ) (G.18)

= O
(
γ · ν · (k + ℓ) ·

√
A5k+ℓ ·Ok+1 · log(O ·A · T ·H/δ)/t

)
,

where we define

Pt =
1

t
·
t−1∑
ω=0

Pπω

(G.19)

for t > 1. We remark that the upper bound in (G.18) does not match the right-hand side of (G.15).
The only difference is the probaility density of sh−1, which is Pπt

on the right-hand side of (G.15)
but Pt defined in (G.19) on the left-hand side of (G.18), respectively. To this end, we utilize the
same calculation trick as §E.3 and adopt Lemma E.5. By the upper bound in (G.18) and Lemma E.5
with

zt =
∥∥(Bθt

h (ah, oh)− Bθ∗

h (ah, oh)
)
Uθ∗

h,kTθ∗

h−1(sh−1, ah−1)
∥∥
1
,

wt = Pπt

(sh−1 | ah−1
h−ℓ),

we obtain for all sh−1 ∈ S that

1

T
·

T∑
t=1

∥∥(Bθt

h (ah, oh)− Bθ∗

h (ah, oh)
)
Uθ∗

h,kTθ∗

h−1(sh−1, ah−1)
∥∥
1
· Pπt

(sh−1 | ah−1
h−ℓ)

= O
(
γ · ν2 · (k + ℓ) ·

√
A5k+ℓ ·Ok+1 · log T · log(O ·A · T ·H/δ)/T

)
. (G.20)
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Thus,combining (G.14), (G.16), (G.17), and (G.20), we obtain

1

T
·

T∑
t=1

|V πt

(θt)− V π(θ∗)|

= O
(

poly(S,A,O,H) · γ · ν2 · (k + ℓ) ·
√

log T · log(O ·A · T ·H/δ)/T
)
,

with probability at least 1− δ, where we define

poly(S,A,O,H) = H ·
√
S3 ·A5k+3ℓ ·Ok+3.

By (G.13), it further holds with probability at least 1− δ that

V ∗(θ∗)− V πT

(θ∗) = O
(

poly(S,A,O,H) · γ · ν2 · (k + ℓ) ·
√
log T · log(O ·A · T ·H/δ)/T

)
.

Hence, by setting

T = O
(

poly(S,A,O,H) · γ2 · ν4 · (k + ℓ)2 · log(O ·A ·H/δ)/ϵ2
)
,

it holds with probability at least 1 − δ that V ∗(θ∗) − V πT

(θ∗) ≤ ϵ, which completes the proof of
Theorem G.14.

H PROOF OF TABULAR POMDP

In this section, we present the proof of the auxiliary results in §G.

H.1 PROOF OF LEMMA G.2

Proof. Recall that we define for all h ∈ [H] the following operators,

Õh(oh) = D
(
Oh(oh | ·)

)
= D

([
O(oh | sh)

]
sh

)
∈ RS×S ,

Th(ah) = Ph(· | ·, ah) =
[
Ph(sh+1 | sh, ah)

]
sh,sh+1

∈ RS×S ,

Oh = Oh(· | ·) =
[
Oh(oh | sh)

]
oh,sh

∈ RO×S ,

where we denote by D(v) ∈ RS×S the diagonal matrix where the diagonal entries aligns with the
vector v ∈ RS . Thus, it holds that

Õh(oh+1)1(sh) = Oh(oh | sh) · 1(sh) ∈ RS .

By further calculation, we have
Th(ah)Õh(oh)1(sh) =

[
Ph(sh+1 | ah, sh) ·Oh(oh | sh)

]
sh+1

=
[
P(sh+1, oh | ah, sh)

]
sh+1

∈ RS ,

where the second equality holds since we have Oh ⊥⊥ Sh+1 | sh, ah. It then holds that

Õh+1(oh+1)Th(ah)Õh(oh)1(sh) =
[
Oh+1(oh+1 | sh+1) · P(sh+1, oh | ah, sh)

]
sh+1

=
[
P(sh+1, oh+1, oh | ah, sh)

]
sh+1

∈ RS , (H.1)

where the second equality holds since the observation Oh+1 is independent of all the other random
variables in (H.1) given the state Sh+1 = sh+1. By further multiplying the right-hand side of (H.1)
by Th+1(ah+1), we obtain that

Th+1(ah+1)Õh+1(oh+1)Th(ah)Õh(oh)1(sh)

=

[ ∑
sh+1∈S

Ph+1(sh+2 | sh+1, ah+1) · P(sh+1, oh+1, oh | ah, sh)
]
sh+2

=

[ ∑
sh+1∈S

P(sh+2, sh+1, oh+1, oh | ah+1, ah, sh)

]
sh+2

=
[
P(sh+2, oh+1, oh | ah+1, ah, sh)

]
sh+2

∈ RS , (H.2)

where the second equality holds since the state Sh+2 is independent of all the other random variables
in (H.2) given the previous state Sh+1 = sh+1 and action Ah+1 = ah+1. By an iterative calculation
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similar to (H.1) and (H.2), we obtain that
Th+k−1(ah+k−1)Õh+k−1(oh+k−1) · · ·Th(ah)Õh(oh)1(sh)

=
[
P(sh+k, oh+k−1, . . . , oh | ah+k−1, . . . , ah, sh)

]
sh+k

∈ RS .

By further calculation, we obtain that
Oh+kTh+k−1(ah+k−1)Õh+k−1(oh+k−1) · · ·Th(ah)Õh(oh)1(sh)

=
[
P(oh+k, oh+k−1, . . . , oh | ah+k−1, . . . , ah, sh)

]
oh+k

∈ RO. (H.3)

Finally, by multiplying the right-hand side of (H.3) with the indicator vector 1(oh+k), we conclude
that

Uh =
[
1(oh+k)

⊤Oh+kTh+k−1(ah+k−1)Õh+k−1(oh+k−1)

· · ·Th(ah)Õh(oh)1(sh)
]
(oh+k

h ,ah+k−1
h ),sh

=
[
P(oh+k, oh+k−1, . . . , oh | ah+k−1, . . . , ah, sh)

]
(oh+k

h ,ah+k−1
h ),sh

=
[
P(τh+k

h | sh)
]
τh+k
h ,sh

∈ R(Ak·Ok+1)×S ,

which completes the proof of Lemma G.2.

H.2 PROOF OF LEMMA G.5

Proof. The proof is similar to that of Lemma G.2. By the definition of Bellman operators in Defini-
tion G.4, it holds that

1(oH)⊤BH−1(aH−1, oH−1) . . .B1(a1, o1)U1 =
(
ΠH−1

h=1 Uh+1Th(ah)Õh(oh)U†
h

)
U1

= 1(oH)⊤UH−1Π
H−1
h=1 Th(ah)Õh(oh), (H.4)

where µ1 is the probability array of initial state distribution. Following the same computation as the
proof of Lemma G.2 in §H.1, we obtain that

UH−1Π
H−1
h=1 Th(ah)Õh(oh)µ1 =

[
P(oH+k

1 | aH+k−1
1 )

]
(oH+k

1 ,aH+k−1
1 )

. (H.5)

Thus, multiplying the right-hand side of (H.5) by the indicator 1(oH) that takes value 1 for all
indices that contain oH and a fixed action sequence ah+k−1

h , we obtain that

1(oH)⊤UH−1Π
H−1
h=1 Th(ah)Õh(oh)µ1 = 1(oH)⊤

[
P(oH+k

1 | aH+k−1
1 )

]
(oH+k

1 ,aH+k−1
1 )

= P(oH1 | aH−1
1 ), (H.6)

which is as desired. Thus, combining (H.4) and (H.6), we complete the proof of Lemma G.5.

H.3 PROOF OF LEMMA G.6

Proof. The proof is similar to that of Lemma G.2. Recall that we define for all h ∈ [H] the following
operators,

Õh(oh) = D
(
Oh(oh | ·)

)
= D

([
O(oh | sh)

]
sh

)
∈ RS×S ,

Th(ah) = Ph(sh+1 = · | ·, ah) =
[
Ph(sh+1 | sh, ah)

]
sh,sh+1

∈ RS×S ,

Oh = Oh(· | ·) =
[
Oh(oh | sh)

]
oh,sh

∈ RO×S .

Recall that we define
Xh(a

h−1
h−ℓ) = UhTh−1(ah−1)Õh−1(·) . . .Th−ℓ(ah−ℓ)Õh−ℓ(·)µh−ℓ,

Yh(a
h
h−ℓ, oh) = Uh+1Th(ah)Õh(oh)Th−1(ah−1)Õh−1(·) . . .Th−ℓ(ah−1)Õh−ℓ(·)µh−ℓ.

We first show that the following equation holds,
Th−1(ah−1)Õh−1(·) . . .Th−ℓ(ah−ℓ)Õh−ℓ(·)µh−ℓ

= P(sh = ·, oh−1 = ·, . . . , oh−ℓ = · | ah−1, . . . , ah−ℓ). (H.7)
To see such a fact, note that for all oh−ℓ ∈ O, we have

Õh−ℓ(oh−ℓ)µh−ℓ =
[
Oh−ℓ(oh−ℓ | sh−ℓ) · P(sh−ℓ)

]
sh−ℓ

∈ RS . (H.8)
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It thus holds that

Th−ℓ(ah−ℓ)Õh−ℓ(oh−ℓ)µh−ℓ =

[ ∑
sh−ℓ∈S

P(sh−ℓ+1 | sh−ℓ, ah−ℓ) ·Oh−ℓ(oh−ℓ | sh−ℓ) · P(sh−ℓ)

]
sh−ℓ+1

=
[
P(sh−ℓ+1, oh−ℓ | ah−ℓ)

]
sh−ℓ+1

, (H.9)

where the second equality follows from the fact that Oh−ℓ ⊥⊥ Sh−ℓ+1 | sh−ℓ. Thus, by recursive
computation similar to (H.8) and (H.9), we obtain (H.7), namely,

Th−1(ah−1)Õh−1(·) . . .Th−ℓ(ah−ℓ)Õh−ℓ(·)µh−ℓ

= P(sh = ·, oh−1 = ·, . . . , oh−ℓ = · | ah−1, . . . , ah−ℓ)

=
[
P(τh−1

h−ℓ | sh)
]
sh,o

h−1
h−ℓ

∈ RS×Oℓ

(H.10)

Meanwhile, by Lemma G.2, we have

Uh =
[
P(τh+k

h | sh)
]
τh+k
h ,sh

∈ R(Ok+1·Ak)×S . (H.11)

Thus, it holds for all h ∈ [H] that

Xh(a
h−1
h−ℓ) = UhTh−1(ah−1)Õh−1(·) . . .Th−ℓ(ah−ℓ)Õh−ℓ(·)µh−ℓ

=

[∑
sh∈S

P(τh+k
h | sh) · P(sh, oh−1

h−ℓ | a
h−1
h−ℓ)

]
(oh+k

h ,ah+k−1
h ),oh−1

h−ℓ

=
[
P(τh+k

h−ℓ )
]
τh+k
h ,oh−1

h−ℓ

∈ R(Ok+1·Ak)×Oℓ

,

where the second equality follows from the fact that oh+k
h ⊥⊥ oh−1

h−ℓ | sh. The computation of
Xh(a

h−1
h−ℓ) is identical to that of Xh(a

h−1
h−ℓ). In conclusion, we have

Yh(a
h
h−ℓ, oh) = Uh+1Th(ah)Õh(oh)Th−1(ah−1)Õh−1(·) . . .Th−ℓ(ah−1)Õh−ℓ(·)µh−ℓ.

=
[
P(τh+k+1

h )
]
τh+k+1
h+1 ,oh−1

h−ℓ

∈ R(Ok+1·Ak)×Oℓ

,

which completes the proof of Lemma G.6.

H.4 PROOF OF LEMMA G.8

Proof. By Lemma G.5 and (G.1), we have

V π(θ) =
∑

oH−1
1 ∈OH

r(oH−1
1 ) · Pπ(oH−1

1 )

=
∑

oH−1
1 ∈OH

r(oH−1
1 ) · 1(oH)⊤Bθ

H−1(a
π
H−1, oH−1) . . .Bθ

1(a
π
1 , o1)b

θ
1. (H.12)

Here the actions aπh are taken based on the policy π and the past observations and actions taken
(o1, a

π
1 , . . . , a

π
h−1, oh). In addition, recall that we define bθ1 = Uθ

1µ1, where µ1 is the probability
array of initial state distribution. It thus follows from (H.12) that

V π(θ)− V π(θ′) =
∑

oH−1
1 ∈OH

H−1∑
h=1

r(oH−1
1 ) · 1(oH)⊤Bθ

H−1(a
π
H−1, oH−1) · · ·

· · ·
(
Bθ
h(a

π
h, oh)− Bθ′

h (aπh, oh)
)
Bθ′

h−1(a
π
h−1, oh−1) · · ·Bθ′

1 (aπ1 , o1)b
θ′

1

+
∑

oH−1
1 ∈OH

r(oH−1
1 ) · 1(oH)⊤Bθ

H−1(a
π
H−1, oH−1) . . .Bθ

1(a
π
1 , o1)(b

θ
1 − bθ

′

1 ).

(H.13)
In the sequel, we upper bound the absolute value of the right-hand side of (H.13). We define the
following vectors for all h ∈ [H − 1] for notational simplicity,

vh =
(
Bθ
h(a

π
h, oh)− Bθ′

h (aπh, oh)
)
Bθ′

h−1(a
π
h−1, oh−1) . . .Bθ′

1 (aπ1 , o1)b
θ′

1 ,

v0 = bθ1 − bθ
′

1 .
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Since 0 ≤ r(oH−1
1 ) ≤ H for all observation sequences oH−1

1 ∈ OH , we obtain that∣∣∣∣ ∑
oH−1
1 ∈OH

H−1∑
h=1

r(oH−1
1 ) · 1(oH)⊤Bθ

H−1(a
π
H−1, oH−1) . . .Bθ

h+1(a
π
h+1, oh+1)vh

∣∣∣∣
≤ H ·

∣∣∣∣ ∑
oH−1
1 ∈OH

H−1∑
h=1

1(oH)⊤Bθ
H−1(a

π
H−1, oH−1) . . .Bθ

h+1(a
π
h+1, oh+1)vh

∣∣∣∣.
Moreover, since the vector 1(oH) takes value in {0, 1} for all the indices, we further obtain that

H ·
∣∣∣∣ ∑
oH−1
1 ∈OH

H−1∑
h=1

1(oH)⊤Bθ
H−1(aH−1, oH−1) . . .Bθ

h+1(a
π
h+1, oh+1)vh

∣∣∣∣
≤ H ·

∑
oH−1
1 ∈OH

H−1∑
h=1

∥Bθ
H−1(a

π
H−1, oH−1) . . .Bθ

h+1(a
π
h+1, oh+1)vh∥1 (H.14)

It now suffices to upper bound the right-hand side of (H.14). By the definition of Bellman operators
in Definition G.4, we obtain for all h ∈ {0, . . . ,H − 1} that

∥Bθ
H−1(a

π
H−1, oH−1) . . .Bθ

h+1(a
π
h+1, oh+1)vh∥1

= ∥UhTH−1(a
π
H−1)ÕH−1(oH−1) . . .Th(a

π
h)Õh(oh)U†

hvh∥1 (H.15)
The following lemma upper bound the right-hand side of (H.15).

Lemma H.1. It holds for all aH−1
h ∈ AH−h, h ∈ [H], and u ∈ RS that∑

oH−1
h ∈OH−h

∥UhTH−1(aH−1)ÕH−1(oH−1) . . .Th(ah)Õh(oh)u∥1 ≤ ∥u∥1.

Proof. See §H.8 for a detailed proof.

Meanwhile, by Assumption G.3 and the fact that ∥A∥17→1 ≤
√
S∥A∥2 for any matrix A ∈ RS×N ,

we obtain that
∥U†

hvh∥1 ≤ ∥U
†
h∥17→1 · ∥vh∥1 ≤

√
S · ∥U†

h∥2 · ∥vh∥1 ≤ ν ·
√
S · ∥vh∥1 (H.16)

for all h ∈ [H]. Combining Lemma H.1, (H.14), (H.15), and (H.16), we obtain that

|V π(θ)− V π(θ′)| ≤ ν ·
√
S ·H ·

H−1∑
h=0

∑
oh1∈Oh

∥vh∥1

= ν ·
√
S ·H ·

H−1∑
h=1

∑
oh1∈Oh

∥∥(Bθ
h(ah, oh)− Bθ′

h (ah, oh)
)
Bθ′

h−1(ah−1, oh−1) . . .Bθ′

1 (a1, o1)b
θ′

1

∥∥
1

+ ν ·
√
S ·H ·

∥∥(Bθ
1(a1, o1)− Bθ′

1 (a1, o1)
)
bθ

′

1

∥∥
1
+ ν ·

√
S ·H · ∥bθ1 − bθ

′

1 ∥1,
which completes the proof of Lemma G.8.

H.5 PROOF OF LEMMA G.9

Proof. It holds for all policy π and the corresponding action sequence aπ1:h generated by π that∑
oh1∈Oh

∥∥(Bθ
h(a

π
h, oh)− Bθ′

h (aπh, oh)
)
Bθ′

h−1(a
π
h−1, oh−1) . . .Bθ′

1 (aπ1 , o1)b
θ′

1

∥∥
1

(H.17)

≤
∑

ah
h−ℓ∈Aℓ+1

∑
oh1∈Oh

∥∥(Bθ
h(ah, oh)− Bθ′

h (ah, oh)
)
Bθ′

h−1(ah−1, oh−1) . . .Bθ′

1 (a1, o1)b
θ′

1

∥∥
1

=
∑

ah
h−ℓ∈Aℓ+1

∑
oh1∈Oh

∥∥(Bθ
h(ah, oh)− Bθ′

h (ah, oh)
)
Uθ′

h,kTθ′

h−1(ah−1)µ
θ′

h−1(π, a
h−1
h−ℓ , o

h−1
1 )

∥∥
1
,
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where µθ′

h−1(π, a
h−1
h−ℓ , o

h−1
1 ) is the state distribution array defined in (G.7). Note that on the right-

hand side of (H.17), the state distribution array µθ′

h−1(π, a
h−1
h−ℓ , o

h−1
1 ) is the only term that is related

to policy π. In what follows, we define

Mh(θ, θ
′, ah, ah−1, oh) =

(
Bθ
h(ah, oh)− Bθ′

h (ah, oh)
)
Uθ′

h,kTθ′

h−1(ah−1) ∈ R(Ak+1·Ok)×S (H.18)
for notational simplicity. It holds that∑

oh1∈Oh

∥Mh(θ, θ
′, ah, ah−1, oh)µ

θ′

h−1(π, a
h−1
h−ℓ , o

h−1
1 )∥1

≤
∑

oh1∈Oh

∑
sh−1∈S

∥∥[Mh(θ, θ
′, ah, ah−1, oh)

]
sh−1
∥1 ·

[
µθ′

h−1(π, a
h−1
h−ℓ , o

h−1
1 )

]
sh−1

, (H.19)

where we denote by [Mh(θ, θ
′, ah, ah−1, oh)]sh−1

and [µθ′

h−1(π, a
h−1
h−ℓ , o

h−1
1 )]sh−1

the sh−1-th col-
umn of Mh(θ, θ

′, ah, ah−1, oh) and the sh−1-th entry of µθ′

h−1(π, a
h−1
h−ℓ , o

h−1
1 ), respectively. Recall

that we have [
µθ′

h−1(π, a
h−1
h−ℓ , o

h−1
1 )

]
sh−1

= Pθ(sh, o
h−1
1 | ah−1

h−ℓ , π).

Thus, by marginalizing over the observation sequence oh−1
1 , it holds that∑

oh−1
1 ∈Oh−1

[
µθ′

h−1(π, a
h−1
h−ℓ , o

h−1
1 )

]
sh−1

= Pθ′
(sh | ah−1

h−ℓ , π). (H.20)

Plugging (H.20) into (H.19), we obtain that∑
oh1∈Oh

∥Mh(θ, θ
′, ah, ah−1, oh)µ

θ′

h−1(π, a
h−1
h−ℓ , o

h−1
1 )∥1

≤
∑
oh∈O

∑
sh−1∈S

∥∥[Mh(θ, θ
′, ah, ah−1, oh)

]
sh−1
∥1 · Pθ′

(sh | ah−1
h−ℓ , π)

=
∑

ah
h−ℓ∈Aℓ+1

∑
oh∈O

∥∥(Bθ
h(ah, oh)− Bθ′

h (ah, oh)
)
Uθ′

h,kTθ′

h−1(ah−1)D
(
µ̃θ′

h−1(π, a
h−1
h−ℓ)

)∥∥
1
.

Thus, we complete the proof of Lemma G.9.

H.6 PROOF OF LEMMA G.10

Proof. Recall that we aim to recover the following density matrices in the estimation of Bellman
operators in §G.1,

b1 =
[
P(τk1 )

]
τk
1
∈ RAk·Ok+1

,

Xt
h(a

h−1
h−ℓ) =

[
Pt(τh+k

h−ℓ )
]
τh+k
h ,oh−1

h−ℓ

∈ R(Ak·Ok+1)×Oℓ

, (H.21)

Yt
h(a

h
h−ℓ, oh) =

[
Pt(τh+k+1

h−ℓ )
]
τh+k+1
h+1 ,oh−1

h−ℓ

∈ R(Ak·Ok+1)×Oℓ

. (H.22)

Here we denote by Pt the visitation measure of the mixed policy {πω}ω∈[t] generated by Algorithm
2. Alternatively, we can write the densities in (H.21) in the following vector product form,

Xt
h(a

h−1
h−ℓ) =

∑
τh+k
h ∈Ak×Ok+1

( ∑
oh−1
h−ℓ∈Oℓ

1(τh+k
h )1(oh−1

h−ℓ)
⊤ · Pt(τh+k

h−ℓ )

)
.

Recall that we adopt the following estimator of the probability density defined in (H.21),

X̂t
h(a

h−1
h−ℓ) =

1

t
·

∑
ah+k−1
h ∈Ak

( ∑
τh+k
h−ℓ ∈Dt(ah+k−1

h−ℓ )

1(τh+k
h−ℓ )1(o

h−1
h−ℓ)

⊤
)
. (H.23)

By the martingale concentration inequality (see e.g., Jin et al. (2019)) and the fact that
∥1(τh+k

h−ℓ )1(o
h−1
h−ℓ)

⊤∥F ≤ 1
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for all trajectory τh+k
h−ℓ ∈ Ak+ℓ × Ok+ℓ+1 and observation sequence oh−1

h−ℓ ∈ Oℓ, we obtain for all
h ∈ [H] and ah+k−1

h−ℓ ∈ Ak+ℓ that∥∥∥∥ ∑
oh+k
h−ℓ∈Ok+ℓ+1

1(τh+k
h )1(oh−1

h−ℓ)
⊤ · Pt(τh+k

h−ℓ )

− 1

t− 1

∑
τh+k
h−ℓ ∈Dt(ah+k−1

h−ℓ )

1(τh+k
h−ℓ )1(o

h−1
h−ℓ)

⊤
∥∥∥∥
F

≤ C · (k + ℓ) ·
√
log(O ·A · T/δ)/t

with probability at least 1 − δ/Ak, where C is a positive absolute constant. It thus holds for all
h ∈ [H], t ∈ [T ], and ah−1

h−ℓ ∈ Aℓ that

∥Xt
h(a

h−1
h−ℓ)− X̂t

h(a
h−1
h−ℓ)∥F ≤

∑
ah+k−1
h ∈Ak

∥∥∥∥ ∑
oh+k
h−ℓ∈Ok+ℓ+1

1(τh+k
h )1(oh−1

h−ℓ)
⊤ · Pt(τh+k

h−ℓ )

− 1

t− 1

∑
τh+k
h−ℓ ∈Dt(ah+k−1

h−ℓ )

1(τh+k
h−ℓ )1(o

h−1
h−ℓ)

⊤
∥∥∥∥
F

= O
(
Ak · (k + ℓ) ·

√
log(O ·A · T ·H/δ)/t

)
with probability at least 1− δ/2. Meanwhile, recall that we estimate Yt

h in (H.22) by the following
estimator,

Ŷt
h(a

h
h−ℓ, oh) =

1

t− 1
·

∑
ah+k
h+1∈Ak

∑
τh+k+1
h−ℓ ∈Dt(ah+k

h−ℓ )

1(τh+k+1
h+1 )1(oh−1

h−ℓ)
⊤, (H.24)

Following a similar computation, it holds for all h ∈ [H], t ∈ [T ], ah−1
h−ℓ ∈ Aℓ, ah ∈ A, and oh ∈ O

that
∥Yt

h(a
h
h−ℓ, oh)− Ŷt

h(a
h
h−ℓ, oh)∥F = O

(
Ak · (k + ℓ) ·

√
log(O ·A · T/δ)/t

)
with probability at least 1− δ/2. Similarly, it also holds for all h ∈ [H] and t ∈ [T ] that

∥b1 − b̂t1∥2 = O(Ak · k ·
√

log(O ·A · T/δ)/t)
with probability at least 1− δ/2. Thus, we complete the proof of Lemma G.10.

H.7 PROOF OF LEMMA G.13

Proof. In what follows, we prove (G.10)–(G.12) separately.

Part I: Proof of Upper Bound in (G.10). By Lemma G.10, it holds with probability at least 1− δ
that

∥b1 − b̂t1∥1 ≤
√
Ak ·Ok+1 · ∥b1 − b̂t1∥2 = O

(
(k + ℓ) ·

√
A3k ·Ok+1 · log(O ·A · T ·H/δ)/t

)
.

(H.25)

Meanwhile, by the update of bθ
t

1 in Algorithm 2, it holds with probability at least 1−δ that bθ
t

1 ∈ Ct,
namely,

∥bθ
t

1 − b̂t1∥2 ≤ C · ν · (k + ℓ) ·
√
A5k+1 ·Ok+ℓ · log(O ·A · T ·H/δ)/t. (H.26)

Combining (H.25) and (H.26), it holds with probability at least 1− δ that

∥b1 − bθ
t

1 ∥1 ≤ ∥b1 − b̂t1∥1 + ∥bθ
t

1 − b̂t1∥1 ≤
√
Ak ·Ok+1 ·

(
∥b1 − b̂t1∥2 + ∥bθ

t

1 − b̂t1∥2
)

= O
(
ν · (k + ℓ) ·

√
A5k+1 ·Ok+ℓ · log(O ·A · T ·H/δ)/t

)
,

which completes the proof of (G.10).

Part II: Proof of Upper Bound in (G.11). Recall that we define

b1 = U1µ1 =
[
P(τk+1

1 )
]
τk+1
1
∈ ROk+1·Ak

,

Xt
1(a

0
1−ℓ) =

[
Pt(τk+1

1−ℓ )
]
τk+1
1 ,o01−ℓ

∈ R(Ok+1·Ak)×Oℓ

.
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Thus, it holds for all action array a01−ℓ and t ∈ [T ] that

[b1]τk+1
1

= P(τk+1
1 ) =

∑
o01−ℓ∈Oℓ

Pt(τ01−ℓ) · Pt(τk+1
1−ℓ ). (H.27)

It thus holds for all a01−ℓ ∈ Aℓ that∥∥(Bθt

1 (a1, o1)− Bθ∗

1 (a1, o1)
)
b1∥1

=

∥∥∥∥(Bθt

1 (a1, o1)− Bθ∗

1 (a1, o1)
) ∑
o01−ℓ∈Oℓ

Pt(τ01−ℓ) ·
[
Xt

1(a
0
1−ℓ)

]
o01−ℓ

∥∥∥∥
1

≤
∥∥∥∥ ∑
o01−ℓ∈Oℓ

(
Bθt

1 (a1, o1)− Bθ∗

1 (a1, o1)
)[
Xt

1(a
0
1−ℓ)

]
o01−ℓ

∥∥∥∥
1

=
∥∥(Bθt

1 (a1, o1)− Bθ∗

1 (a1, o1)
)
Xt

1(a
0
1−ℓ)

∥∥
1
, (H.28)

Here with a slight abuse of notation, we denote by
[
Xt

1(a
0
1−ℓ)

]
o01−ℓ

the o01−ℓ-th column of the matrix

Xt
1(a

0
1−ℓ) ∈ R(Ok+1·Ak)×Oℓ

. Meanwhile, the inequality follows from the fact that 0 ≤ Pt(τ01−ℓ) ≤
1 for all t ∈ [T ] and τ01−ℓ ∈ Aℓ × Oℓ. It remains to establish high confidence bound for the
right-hand side of (H.28). To this end, we first obtain by triangle inequality that∥∥(Bθt

1 (a1, o1)− Bθ∗

1 (a1, o1)
)
Xt

1(a
0
1−ℓ)

∥∥
1
≤ (i) + (ii) + (iii) + (iv),

(H.29)
where we define

(i) =
∥∥Bθt

1 (a1, o1)
(
X̂t

1(a
0
1−ℓ)− Xt

1(a
0
1−ℓ)

)∥∥
1
,

(ii) = ∥Bθt

1 (a1, o1)X̂t
1(a

0
1−ℓ)− Ŷt

1(a
1
1−ℓ, o1)∥1,

(iii) = ∥Ŷt
1(a

1
1−ℓ, o1)− Yt

1(a
1
1−ℓ, o1)∥1,

(iv) = ∥Bθ∗

1 (a1, o1)Xt
1(a

0
1−ℓ)− Yt

1(a
1
1−ℓ, o1)∥1.

In what follows, we upper bound terms (i)–(iv) on the right-hand side of (H.29). By the definition
of parameter space and the concentration inequality in Lemma G.10, we obtain that

(i) =
∥∥Bθt

1 (a1, o1)
(
X̂t

1(a
0
1−ℓ)− Xt

1(a
0
1−ℓ)

)∥∥
1

≤ ∥Bθt

1 (a1, o1)∥17→1 · ∥X̂t
1(a

0
1−ℓ)− Xt

1(a
0
1−ℓ)∥1

= O
(
ν ·A2k ·

√
Ak+1 ·Ok+ℓ · (k + ℓ) ·

√
log(O ·A · T ·H/δ)/T

)
, (H.30)

where the third equality follows from the fact that ∥Bθt

1 (a1, o1)∥17→1 ≤ ν · Ak and the fact that
∥x∥1 ≤

√
mn · ∥x∥2 for x ∈ Rm×n. Meanwhile, by the definition of confidence set Ct in (G.6) and

the fact that θt ∈ Ct, we obtain that
(ii) = ∥Bθt

1 (a1, o1)X̂t
1(a

0
1−ℓ)− Ŷt

h(a
h
h−ℓ, oh)∥1

= O
(
ν ·A2k ·

√
Ak+1 ·Ok+ℓ · (k + ℓ) ·

√
log(O ·A · T ·H/δ)/T

)
. (H.31)

By the concentration inequality in Lemma G.10, we further obtain that
(iii) = ∥Ŷt

h(a
h
h−ℓ, oh)− Yt

h(a
h
h−ℓ, oh)∥1

= O
(√
Ak+1 ·Ok+ℓ ·Ak · (k + ℓ) ·

√
log(O ·A · T ·H/δ)/T

)
. (H.32)

Finally, by the identity of Bellman operators in (G.2), we have
(iv) = ∥Bθ∗

1 (a1, o1)Xt
1(a

0
1−ℓ)− Yt

h(a
h
h−ℓ, oh)∥F = 0. (H.33)

Plugging (H.30), (H.31), (H.32), and (H.33) into (H.29), it holds for all a1 ∈ A, o1 ∈ O, and
a01−ℓ ∈ Aℓ with probability at least 1− δ that∥∥(Bθt

1 (a1, o1)− Bθ∗

1 (a1, o1)
)
Xt

1(a
0
1−ℓ)

∥∥
1

= O
(
ν · (k + ℓ) ·

√
A5k+1 ·Ok+ℓ · log(O ·A · T ·H/δ)/t

)
,

which completes the proof of (G.11).
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Part III: Proof of Upper Bound in (G.12). Under Assumption G.12, it holds for all 1 < h ≤ H
that ∑

sh−1∈S

∥∥(Bθt

h (ah, oh)− Bθ∗

h (ah, oh)
)
Uθ∗

h,kTθ∗

h−1(sh−1, ah−1)
∥∥
1
· Pt(sh−1 | ah−1

h−ℓ)

=
∥∥(Bθ

h(ah, oh)− Bθ′

h (ah, oh)
)
Uθ′

h,kTθ′

h−1(ah−1)D
(
µ̃θ′

h−1(π
t, ah−1

h−ℓ)
)∥∥

1

=
∥∥(Bθ

h(ah, oh)− Bθ′

h (ah, oh)
)
Uθ′

h,kTθ′

h−1(ah−1)A
πt

h−1,ℓ(a
h−2
h−ℓ)C

πt,†
h−1,ℓ(a

h−1
h−ℓ)

∥∥
1
, (H.34)

where Aπt

h−1,ℓ is the reverse emission operator defined in (G.11) and Cπt,†
h−1,ℓ is the right inverse of

Cπt

h−1,ℓ in Assumption G.12. Meanwhile, by Assumption G.12, it holds that∥∥(Bθ
h(ah, oh)− Bθ′

h (ah, oh)
)
Uθ′

h,kTθ′

h−1(ah−1)A
πt

h−1,ℓ(a
h−2
h−ℓ)C

πt,†
h−1,ℓ(a

h−1
h−ℓ)

∥∥
1

≤ γ · ∥
(
Bθ
h(ah, oh)− Bθ′

h (ah, oh)
)
Uθ′

h,kTθ′

h−1(ah−1)A
πt

h−1,ℓ(a
h−1
h−ℓ)

∥∥
1
. (H.35)

By the identity of Xt
h(a

h−1
h−ℓ) in (G.9), we further obtain that

∥
(
Bθ
h(ah, oh)− Bθ′

h (ah, oh)
)
Uθ′

h,kTθ′

h−1(ah−1)A
πt

h−1,ℓ

∥∥
1

= ∥
(
Bθ
h(ah, oh)− Bθ′

h (ah, oh)
)
Xt

h(a
h−1
h−ℓ)

∥∥
1
. (H.36)

We now upper bound the right-hand side of (H.36). The calculation is similar to that in Part II of the
proof. By triangle inequality, we obtain

∥
(
Bθ
h(ah, oh)− Bθ′

h (ah, oh)
)
Xt

h(a
h−1
h−ℓ)

∥∥
1
≤ (v) + (vi) + (vii) + (viii), (H.37)

where we define
(v) =

∥∥Bθt

h (ah, oh)
(
X̂t

h(a
h−1
h−ℓ)− Xt

h(a
h−1
h−ℓ)

)∥∥
1
,

(vi) = ∥Bθt

h (ah, oh)X̂t
h(a

h−1
h−ℓ)− Ŷt

h(a
h
h−ℓ, oh)∥1,

(vii) = ∥Ŷt
h(a

h
h−ℓ, oh)− Yt

h(a
h
h−ℓ, oh)∥1,

(viii) = ∥Bθ∗

h (ah, oh)Xt
h(a

h−1
h−ℓ)− Yt

h(a
h
h−ℓ, oh)∥1.

In what follows, we upper bound terms (v)–(viii) on the right-hand side of (H.37). By the definition
of parameter space and the concentration inequality in Lemma G.10, we obtain that

(v) =
∥∥Bθt

h (ah, oh)
(
X̂t

1(a
h−1
h−ℓ)− Xt

h(a
h−1
h−ℓ)

)∥∥
1

≤ ∥Bθt

h (ah, oh)∥17→1 · ∥X̂t
h(a

h−1
h−ℓ)− Xt

h(a
h−1
h−ℓ)∥1

= O
(
ν ·
√
A5k+1 ·Ok+ℓ · (k + ℓ) ·

√
log(O ·A · T ·H/δ)/T

)
. (H.38)

Meanwhile, by the definition of confidence set Ct in (G.6) and the fact that θt ∈ Ct, we obtain that

(vi) = ∥Bθt

h (ah, oh)X̂t
h(a

h−1
h−ℓ)− Ŷt

h(a
h
h−ℓ, oh)∥1

= O
(
ν ·
√
A5k+1 ·Ok+ℓ · (k + ℓ) ·

√
log(O ·A · T ·H/δ)/T

)
. (H.39)

By the concentration inequality in Lemma G.10, we further obtain that
(vii) = ∥Ŷt

h(a
h
h−ℓ, oh)− Yt

h(a
h
h−ℓ, oh)∥1

= O
(√
A3k+1 ·Ok+ℓ · (k + ℓ) ·

√
log(O ·A · T ·H/δ)/T

)
. (H.40)

Finally, by the identity of Bellman operators in (G.2), we have
(viii) = ∥Bθ∗

h (ah, oh)Xt
h(a

h−1
h−ℓ)− Yt

h(a
h
h−ℓ, oh)∥1 = 0. (H.41)

Plugging (H.38), (H.39), (H.40), and (H.41) into (H.37), it holds for all ah ∈ A, oh ∈ O, and
ah−1
h−ℓ ∈ Aℓ with probability at least 1− δ that

∥
(
Bθ
h(ah, oh)− Bθ′

h (ah, oh)
)
Xt

h(a
h−1
h−ℓ)

∥∥
1

= O
(
ν ·
√
A5k+1 ·Ok+ℓ · (k + ℓ) ·

√
log(O ·A · T ·H/δ)/T

)
. (H.42)
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Combining (H.34), (H.35), (H.36), and (H.42), we conclude that∑
sh−1∈S

∥∥(Bθt

h (ah, oh)− Bθ∗

h (ah, oh)
)
Uθ∗

h,kTθ∗

h−1(sh−1, ah−1)
∥∥
1
· Pt(sh−1 | ah−1

h−ℓ)

=
∥∥(Bθ

h(ah, oh)− Bθ′

h (ah, oh)
)
Uθ′

h,kTθ′

h−1(ah−1)A
π
h−1,ℓ(a

h−2
h−ℓ)C

π,†
h−1,ℓ(a

h−2
h−ℓ)

∥∥
1

≤ γ · ∥
(
Bθ
h(ah, oh)− Bθ′

h (ah, oh)
)
Xt

h(a
h−1
h−ℓ)

∥∥
1

= O
(
γ · ν · (k + ℓ) ·

√
A5k+ℓ ·Ok+1 · log(O ·A · T ·H/δ)/t

)
,

where the first inequality follows from (H.35) and (H.36). Thus, we complete the proof of (G.11).

H.8 PROOF OF LEMMA H.1

Proof. Recall that we define

Õh(oh) = D
(
Oh(oh | ·)

)
= D

([
O(oh | sh)

]
sh

)
∈ RS×S ,

where we denote by D(v) ∈ RS×S the diagonal matrix where the diagonal entries aligns with the
vector v ∈ RS . Thus, it holds for all h ∈ [H] that∑

oh∈O
∥Th(ah)Õh(oh)u∥1 ≤

∑
oh∈O

∥Õh(oh)u∥1 =
∑
oh∈O

∑
sh∈S

Oh(oh | sh) · |u(sh)|

=
∑
sh∈S

|u(sh)| = ∥u∥1,

where the first inequality follows from the fact that Th(ah) is a transition matrix. Here we denote
by u(sh) the sh-th entry of u ∈ RS . Inductively, we obtain that∑

oH−1
h ∈OH−h

∥TH−1(aH−1)ÕH−1(oH−1) . . .Th(ah)Õh(oh)u∥1 ≤ ∥u∥1. (H.43)

Meanwhile, note that Uh is a transition matrix. Thus, it holds for all h ∈ [H] that

∥UhTH−1(aH−1)ÕH−1(oH−1) . . .Th(ah)Õh(oh)u∥1
≤ ∥TH−1(aH−1)ÕH−1(oH−1) . . .Th(ah)Õh(oh)u∥1 (H.44)

Combining (H.43) and (H.44), we conclude∑
oH−1
h ∈OH−h

∥UhTH−1(aH−1)ÕH−1(oH−1) . . .Th(ah)Õh(oh)u∥1 ≤ ∥u∥1,

which completes the proof of Lemma H.1.
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