
A Technical Appendices and Supplementary Material432

A.1 Ablation Studies433

We conduct three ablations of the style–content disentanglement model : (1) Depth of Mamba blocks:434

we vary the number of Mamba [13] blocks to measure how model depth affects performance. (2)435

Encoder Architecture: we replace Mamba blocks with alternative encoders of comparable parameter436

count such as transformer encoder [44] or BiLSTM [2] to test the architecture specfic gains. (3)437

Training Objectives: we compare the sum of all the training objectives with variants that remove438

individual loss function to quantify each component’s contribution. All models are trained on the439

same splits and we report Accuracy, F1, AUC, and MCC as mean ± std over five runs.440

Effect of Mamba Layer Depth. In this ablation study, we investigate the effect of encoder depth441

by comparing Mamba-based architectures with varying numbers of layers (one, two, four, six and442

eight). The detailed results are presented in Table 4. Overall, our findings indicate that stacking443

multiple Mamba layers consistently outperforms the single-layer variant. Specifically, the two-layer444

architecture yields improvements of 1.71 , 1.81 , 0.21, and 3.44 points in Accuracy, F1, AUC445

and MCC respectively relative to the single-layer baseline. Moreover, the two-layer configuration446

also outperforms the four-layer model by 0.11, 0.12, and 0.23 points in Accuracy, F1, and MCC.447

The six-layer model performs comparably to the two-layer model with a drop of 0.05 points in448

MCC, suggesting diminishing returns beyond a certain depth. Finally, the eight-layer architecture449

underperforms the two-layer variant, with reductions of 0.18 and 0.19 and 0.36 points in Accuracy,F-1450

and MCC respectively.451

Encoder No. of layers Accuracy (%) F1 (%) AUC (%) MCC (%)

Transformer encoder [44] 2 99.75 ± 0.09 99.74 ± 0.10 99.99 ± 0.00 99.50 ± 0.19
Bi-LSTM [2] 2 99.41 ± 0.15 99.38 ± 0.16 99.99 ± 0.00 98.83 ± 0.30
Mamba [13] 2 99.82 ± 0.15 99.81 ± 0.16 100.00 ± 0.00 99.64 ± 0.34

Mamba [13] 1 98.11 ± 0.22 98.00 ± 0.23 99.79 ± 0.03 96.20 ± 0.44
Mamba [13] 4 99.71 ± 0.01 99.69 ± 0.11 100.00 ± 0.00 99.41 ± 0.20
Mamba [13] 6 99.80 ± 0.09 99.79 ± 0.10 100.00 ± 0.00 99.59 ± 0.19
Mamba [13] 8 99.64 ± 0.09 99.62 ± 0.10 100.00 ± 0.00 99.28 ± 0.19

Table 4: Ablation study of encoder architectures. We assess different encoder designs for our
style–content disentanglement pipeline, comparing the original two-block Mamba encoder with a
single Mamba block, a two-layer Bi-LSTM, a two-layer Transformer, and deeper Mamba variants
(four, six, and eight blocks). The two-block Mamba encoder achieves the best performance, suggesting
it offers the right balance between capacity and generalization.

Encoder Ablation To evaluate the specific contribution of the encoder, we replace the two-layer452

Mamba stack with two alternatives of the same depth: (i) a two-layer BiLSTM and (ii) a two-layer453

Transformer encoder, holding all other components and training settings fixed. Relative to Mamba,454

the BiLSTM variant reduces Accuracy, F1, AUC, and MCC by 0.41, 0.43, 0.01, and 0.81 points,455

respectively. The Transformer variant shows similar declines of 0.07, 0.07, 0.01, and 0.14 points on456

the same metrics. These results indicate that the two-layer Mamba encoder is the strongest among457

the tested options, consistent with better modeling of long-range dependencies.458

Effect of Training Objectives. We study the impact of the training objective on detection by459

training the style–content model with different combinations of the losses defined in Section 3.3:460

reconstruction (Lrec), classification (Lcls), and mutual-information regularization (Lmi). All other461

settings (architecture, data splits, optimization) are held fixed, and results are reported as mean ± stan-462

dard deviation over five runs (Table 5). The full objective L =,Lrec + Lcls + Lmi yields the strongest463

performance across Accuracy, F1, AUC, and MCC. Training with Lmi alone gives the lowest MCC464

83.28 ± 0.96, and the combination Lrec+Lmi remains weaker than any setting that includes Lcls, un-465

derscoring the need for explicit supervision on stylistic labels. These results suggest complementary466

roles for the three terms: Lcls aligns the style representation with the authorship label space, Lrec467

13



maintains content fidelity and stabilizes training, and Lmi limits leakage between style and content468

representations. We therefore adopt the full objective in the main experiments.469

Lrecon Lcls Lmi Acc. (%) F1 (%) AUC (%) MCC (%)

✓ × × 98.58 ± 0.39 98.50 ± 0.41 99.87 ± 0.03 97.15 ± 0.78

× ✓ × 99.80 ± 0.15 99.79 ± 0.16 100.00 ± 0.00 99.59 ± 0.29

× × ✓ 91.34 ± 0.52 91.35 ± 0.49 97.22 ± 0.17 83.28 ± 0.96

✓ ✓ × 99.73 ± 0.10 99.71 ± 0.11 100.00 ± 0.00 99.46 ± 0.20

✓ × ✓ 98.11 ± 0.22 97.99 ± 0.23 99.88 ± 0.05 96.20 ± 0.44

× ✓ ✓ 99.77 ± 0.14 99.76 ± 0.15 100.00 ± 0.00 99.55 ± 0.28

✓ ✓ ✓ 99.82 ± 0.15 99.81 ± 0.16 100.00 ± 0.00 99.64 ± 0.34

Table 5: Effect of training objectives. We perform an ablation study on different combinations
of training objectives for authorship detection. A ✓ indicates inclusion and a × exclusion of the
corresponding loss. Results show that omitting reconstruction and classification losses severely
degrades performance, while the full pipeline combining reconstruction, classification, and mutual
information losses achieves the best detection accuracy, highlighting the complementary role of these
objectives.

A.2 Latent space visualization using t-SNE plots470

To illustrate the effect of disentangling style from content, we visualize the learned representations471

with t-SNE (two-dimensional projection), as shown in Fig. 4. Each point corresponds to a report-level472

embedding produced by the encoder. In the style space, human-generated embeddings (blue) and473

LLM-generated embeddings (red) form well-separated groups, indicating that authorship-related cues474

are concentrated in the style representation. We use t-SNE only as a qualitative visualization. The475

observed separation in the style projection agrees with our quantitative authorship results, and serves476

as a visual check that the model’s style encoder captures stable, source-specific patterns.477

(a) T2T – GPT-4o (b) T2T – Mixtral-8x7B (c) T2T – MedGemma-27B (d) I2T – R2Gen (e) I2T - MedGemma-4B

Figure 4: Latent space visualization. We show t-SNE projections of the learned style and content
latent representations across models. In both the text-to-text (T2T) and image-to-text (I2T) settings,
human-authored reports (blue) and LLM-generated reports (red) form distinct clusters, indicating
that the framework successfully disentangles stylistic signals. The clear separation of human and
LLM clusters across all five models further demonstrates the strength of this disentanglement.

A.3 Dataset Samples478

We present representative examples from our generated dataset for both text-to-text (T2T) and image-479

to-text (I2T) categories in Table 6 and Figure 5. Colored spans (blue, red, teal) mark lexical and480

semantic divergences relative to the reference, allowing a side-by-side view of how models rewrite or481

summarize the same findings. In the text-to-text cases, models tend to follow stable report templates482

and differ mainly in word choices and clause order, for example, preferring “cardiac silhouette” versus483

“heart size,” inserting phrases such as “no evidence of,” or reordering statements about effusions and484

pneumothorax. These substitutions are often clinically equivalent but reduce n-gram overlap and485

slightly shift the perceived level of certainty.486
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Reference
Report GPT-4o [33] Mixtral-8x7B [1] MedGemma-27B [11]

the heart size and pulmonary
vascularity appear within normal
limits. a large hiatal hernia is
noted. the lungs are free of focal
airspace disease. no
pneumothorax or pleural
effusion is seen. degenerative
changes are present in the spine.

the cardiac silhouette and
pulmonary vasculature are

within normal limits. there is a
large hiatal hernia observed. the
lung fields are clear of any focal

airspace disease. no
pneumothorax or pleural

effusion. degenerative changes
are noted in the spine.

the heart size and pulmonary
vascularity are within normal

ranges. a significant hiatal
hernia is detected. the lungs are
clear of any localized airspace
disease. no pneumothorax or
pleural effusion. degenerative
alterations are visible in the

spine.

The cardiac silhouette is within
normal limits. The chest
radiograph demonstrates

findings consistent with streaky
airspace disease. No

pneumothorax or pleural
effusion is identified.

left lower lobe calcified
granuloma.heart size normal. no
pleural effusion or
pneumothorax. mild medial
right atelectasis. mild
emphysema.

the chest x-ray reveals a
calcified granuloma in the left

lower lobe. the heart size
appears within normal limits. no

pleural effusion or
pneumothorax. mild atelectasis
in the right medial lung region,

with mild emphysematous
changes.

There is a calcified granuloma in
the left lower lobe. The cardiac

silhouette is within normal
limits. No pleural effusion or

pneumothorax. Mild atelectasis
in the medial aspect of the right
lung. Findings consistent with

mild emphysema.

the chest x-ray demonstrates a
calcified granuloma in the left

lower lobe, with a normal heart
size. no pleural effusion or

pneumothorax. mild atelectasis
in the medial right portion of the
lung, with mild emphysematous

changes.

cardiac and mediastinal contours
are within normal limits. the
lungs are clear. bony structures
are intact

the cardiac silhouette and
mediastinal contours appear

normal. the pulmonary fields are
clear, and the osseous structures

are intact.

the cardiac and mediastinal
borders are observed to be

within normal parameters. no
abnormalities are detected
within the lung fields. the

osseous structures are intact,
with no evidence of fracture or

other trauma.

the cardiac and mediastinal
borders are observed to be

within normal parameters. no
abnormalities are detected
within the lung fields. the

osseous structures are intact,
with no evidence of fracture or

other trauma.

the lungs are clear bilaterally.
specifically, no evidence of focal
consolidation, pneumothorax, or
pleural effusion. cardio
mediastinal silhouette is
unremarkable. visualized
osseous structures of the thorax
are without acute abnormality.

the bilateral lung fields are clear,
with no signs of focal

consolidation, pneumothorax, or
pleural effusion observed. the
cardiomediastinal silhouette
appears unremarkable. the

visualized bony structures of the
thorax do not demonstrate any

acute abnormalities.

the lungs show no signs of
abnormalities bilaterally, with

no focal consolidation,
pneumothorax, or pleural

effusion observed. the cardiac
and mediastinal shadow is
unremarkable. the thoracic

osseous structures are devoid of
any acute changes.

The lungs are clear bilaterally
without evidence of

consolidation, pneumothorax, or
pleural effusion. The

cardiomediastinal silhouette is
within normal limits. Visualized
thoracic osseous structures are

unremarkable.

well circumscribed 11 mm right
upper lobe nodule, unchanged
appearance from previous
examination 7 years ago. the
trachea is midline. negative for
pneumothorax, pleural effusion.
the heart size is normal.
redemonstrated syndesmophyte.

the chest x-ray reveals a
well-defined 11 mm nodule

located in the right upper lobe,
with no change in appearance
since the previous examination
conducted seven years ago. the

trachea is positioned at the
midline. there is no evidence of

pneumothorax or pleural
effusion. cardiac silhouette
appears normal in size. a

syndesmophyte is again noted.

the chest x-ray reveals a
well-defined 11 millimeter

nodule in the right upper lobe,
with no alteration in appearance

compared to the examination
conducted 7 years prior. the

trachea is centrally located. no
evidence of pneumothorax or

pleural effusion is detected. the
heart size is within normal

limits. a syndesmophyte is once
again visualized.

A well-circumscribed 11 mm
nodule is identified in the right

upper lobe, stable in appearance
compared to a prior examination
from 7 years ago. The trachea is
midline. No pneumothorax or

pleural effusion is present.
Cardiac silhouette is within

normal limits. A syndesmophyte
is again noted.

Table 6: Text-to-text (T2T) examples from our chest radiology dataset. We present five examples
from our generated dataset for different instruction-tuned LLMs. Colored words highlight lexical
and semantic differences from the reference reports in the IU-Xray dataset [28]. A homogeneous
reporting style is observed in the LLM-generated reports, mainly through paraphrasing. We use
violet for GPT-4o [33], magenta for Mixtral-8x7B [1], and teal for MedGemma-27B [11] to show the
lexical differences.

By contrast, image-to-text outputs show greater variation in phrasing and brevity, reflecting the added487

difficulty of linking visual cues to text. Descriptions may generalize findings (“clear lungs” vs. “no488

focal airspace disease”) or omit modifiers such as laterality and degree (“mild,” “streaky”), which489

contributes to lower lexical overlap with the references. Overall, the qualitative patterns in Table 6490

reflect the quantitative results.491

A.4 Dataset Generation Hyperparameters492

We construct our synthetic dataset using a diverse set of large language models (LLMs), including493

GPT-4o, Mixtral-8x7B, and MedGemma-27B. To ensure variability and control over text generation,494

we employ several key hyperparameters, namely temperature, top_p, and max_new_tokens [16].495
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Figure 5: Dataset samples from Image-to-Text settings. We showcase three examples from our
generated dataset designed using vision-language model (VLM). Each example includes the input
image(s), the corresponding ground truth report, and a standardized prompt. Both the reference and
generated reports are provided. Words that appear in both reports are highlighted in green, words
unique to the reference report are shown in violet, and words unique to the generated report are
shown in orange. The prompt text is highlighted in blue.
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Model Top-p Temperature Max new tokens Min words / sample Max words / sample Avg words / sample

GPT-4o 1.0 0.7 512 8 155 41.10
Mixtral-8x7B 0.90 0.6 256 7 154 43.54
MedGemma-27B 0.90 0.7 256 9 130 36.08
R2Gen – – – 14 46 31.85
Medgemma-4B – – 384 17 126 36.02

Table 7: Data generation hyperparameters. We report the hyperparameters used to generate
synthetic radiology reports across LLMs along with word-level statistics of the outputs. Decoding
was performed with temperatures of 0.6–0.7 and top-p values of 0.9-1.0, balancing diversity with
clinical consistency. Average word counts are also provided, highlighting differences in verbosity
and style across models.

The temperature parameter adjusts the sharpness of the probability distribution over the vocabulary,496

thereby influencing the degree of randomness in token selection; lower values promote more de-497

terministic outputs, whereas higher values encourage greater diversity. The top_p parameter, also498

referred to as nucleus sampling, restricts token selection to the smallest subset of candidates whose499

cumulative probability mass exceeds a specified threshold p, balancing quality and diversity in the500

generated text. Finally, the max_new_tokens parameter sets an upper bound on the number of tokens501

generated, thereby constraining the overall length of each synthetic report. We employ a temperature502

range of 0.6 to 0.7, which calibrates the LLMs to avoid outputs that are either overly random or503

excessively deterministic, thereby maintaining both variability and consistency across generations.504

The values are listed in Table 7.505

A.5 Discussion, Limitations, and Future Work506

Our novel dataset for chest radiology report generation with large language models (LLMs) and image-507

to-text models achieves strong lexical performance. The detection pipeline, leveraging style–content508

disentanglement, yields consistently high MCC scores in the range 92%–100% across both same-and509

cross-LLM evaluations. Ablation studies show that our proposed BERT–Mamba encoder with two510

mamba blocks outperforms Bi-LSTM and Transformer baselines, while combining reconstruction,511

classification, and mutual information losses achieves the best MCC, underscoring their importance512

for effective disentanglement. While text-to-text (T2T) systems often match the wording and structure513

of reference reports, image-to-text (I2T) systems lacks the similar lexical fidelity. The main difficulty514

is linking visual cues in radiographs to precise language: small or low-contrast findings are easy to515

miss, and models can struggle with laterality, negation, and uncertainty. As next steps, we plan to516

fine-tune vision–language models with radiology-specific signals such as section labels and structured517

findings. We also plan extend the dataset to other categories in radiology and include a broader set of518

instruction-tuned and vision models.519
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