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APPENDIX FOR DISTRIBUTION CALIBRATION FOR
FEW-SHOT LEARNING BY BAYESIAN RELATION IN-
FERENCE

A APPENDIX

A.1 EXPERIMENT CONFIGURATION AND DETAILS

A.1.1 BASELINE METHODS DETAILS

To validate the effectiveness of the proposed model, we compare it with different baseline methods
for few-shot learning. The baseline methods we compare are shown as follows:

* MAML ( ): An algorithm for meta-learning which is model-agnostic.

* Prototypical Networks(PN) ( ): A classical Metric-Based meta-learning
method.

* Matching Networks(MN) ( ): A classical Metric-Based meta-learning
method which use LSTM to augment the network.

* Distribution Calibration(DC) ( ): A method for distribution calibration
based on manually set Euclidean distances.

¢ PatchProto + tSF(tSF) ( ): A transformer-based semantic filter with Patch-

Proto network for few-shot classification.

* GAP ( ): A meta-learning method with a geometry-adaptive preconditioner.

A.1.2 TRAINING DETAILS

The details of the resources for training and the versions of the software are provided in Table 1.

Table 1: The hardware and software configuration for training.

Python 3.7.11
Software PyTorch 1.10.0
numpy 1.21.2
CPU Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
Hardware RAM 128 GB
GPU GeForce RTX 2080

A.1.3 IMPLEMENTATION DETAILS

For the training stage, we use the Adam optimizer and set the learning rate to le-4. We train the
network for 500 epochs and save the best performing model on the validation set for testing. We
conduct experiments on the 5-way-K-shot setting. The average accuracy of 150 episodes is reported
as the final result. The details of the hyperparameters are provided in Table 2.

A.2 CODE AND DATASET

The code of BDC and the code to preprocess the Dermnet dataset is available at:
https://anonymous.4open.science/r/BDC-F873.
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Table 2: The configuration of hyper-parameters for training.

Hyper-parameter ~ Value

N_Gaus 1000
Edge_Dim 256
Epoch 500
Batch_Size 64

Learning_Rate le-4
Lambdal Se-5
Lambda2 4e-5
Weight_Decay 3e-5

We divide the images in Dermnet dataset' into secondary classes based on their names and removed
all classes with less than 10 images to ensure that the Sway-5shot task could be completed. Finally,
we divide the dataset into 344 classes with 17,206 images. We select the classes with the highest
number of images from each of the 23 broad classes as the base classes, and the remaining 321
classes are randomly divided into training set, validation set and test set in the ratio of 7:1.5:1.5.

A.3 PROOFS OF KEY THEOREMS

A.3.1 THEOREM 1

Let NV (i, 0%) denotes a Gaussian distribution with 1 < 1/2, and let B(n, \) denotes a Binomial
distribution with n — 400 and A — 0, where n is increasing while A is decreasing. There exists a
real constant m such that if m = n and if we define:

Ji(z) = KL (N(T,T(l —1))|N (,u, 02))
fa(z) = KL(N (z, 2(1 — 2)) [N (nA, nA(1 — X))
f3 = min fo(z), where z € (0,1)

according to exist works Huang et al. (2020), we have that: f(x) attains its minimum on the interval
(0,1) and fo(x) — f5 is bounded on the interval (0,v/2/2 — 1/2), with:

—/ 2 2
LHEVIEE - where | = 22

r=m= 2 ) 1—2p

Suppose we are given a Gaussian distribution N (ﬁi, 51»2), whose parameter /i; is specifically param-
eterized by the neural network that can guarantee that ji; < 1/2. By De Moivre Laplace theorem,
we have that A (n\;, n); (1 — \;) is a good approximation for B (n, ;). They are asymptotically
equivalent as n increases. Let m; = n);, direct parameterization of both the infinite parameter n
and the near-zero parameter \; ; can be avoided by adopting a re-parametrization trick Kingma &
Welling (2013). This trick draws samples from such Binomial distribution via its Gaussian proxy

N (mi,m; (1 —my)).

A.4 THEOREM 2

Suppose we are given two Binomial distributions, B(n, A)andB (n, A°) with n. = +00,A° — 0
and A — 0, where n is increasing while A and \° are decreasing. There exists a real constant m and
another real constant m(?), such that if m = nAandm©® = nA\© andif A > A9, we have:

'https://dermnet.com
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B m
KL (B(n,\)||B (n,A%) < mlog O
1—m+m?/2

1 —m© +m(0?/2

+ (1 —m)log

By Theorem 2 which is proofed in previous work Huang et al. (2020), we have a closed-form
solution that is irrelevant to n for the ELBO.

A.5 MODEL ARCHITECTURES OF SELF-DISTRIBUTION CALIBRATION

Self-distribution Calibration (SDC) is a variant of Bayesian Distribution Calibration (BDC) used in
ablation experiment. It attempts to fit the distribution of its class from the input data itself. The
specific calculation flow chart of SDC is as figure 1.
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Figure 1: The specific calculation flow chart of SDC. Specifically, we use three f,, f%, f,, projection
heads to project the input feature x into the query q = f, (x), key k = fi (x), value v = f, (x).
The attention matrix Att = qk ' . Meanwhile, we propose Gaussian attention transform operation
to ensure that a sufficient number of output features can be generated. Specifically, we use two linear
neural networks fi,can, fstq fitting a Gaussian distribution with mean and standard deviation. Then
we generate a Gaussian random matrix G of the same dimension as the attention matrix based on this
T

mean and standard deviation. The output feature & = softmax (Att ® %) v. Here operation ®
denotes dot product and operation ® denotes multiplication. With the self-attention module as well
as the Gaussian attention transform module, we can obtain a sufficient number of output features.
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A.6 PIPELINE GRAPH OF BAYESIAN DISTRIBUTION CALIBRATION MODEL

Figure 2 shows the overall of our Bayesian Distribution Calibration (BDC). The input of BDC
is image data. The images first pass through the Backbone Network to generate features. Then
the generated features pass through the Bayesian Relation Inference module to infer the relations
between the input features and base node features. For the training phase, we generate a single
fusion feature for each input feature for classification, and for the validation and testing phases, we
generate a large number of fusion features for distribution calibration through multi-view Gaussian
graph generation method.
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Figure 2: The pipeline graph of Bayesian Distribution Calibration.

A.7 SUPPLEMENTARY EXPERIMENT RESULTS AND FURTUER DISCUSSION

A.7.1 MORE INTUITIVE VISUAL ANALYSIS

In the proposed model, we use classes with a large amount of data as the base classes, which have
the advantage that the features of the base classes can portray the overall distribution of the classes
well. However, since there are also large differences between the images within each category (e.g.,
differences in the site of onset or even symptoms), this approach to base class selection results in the
generated relation between target and base classes being less intuitively, and some relation ambiguity
may occur. To solve this problem, we consider setting the base classes to some specific images to
obtain more intuitive inter-class relations. Specifically, we selected the most representative image
from each of the 23 classes with more obvious differences from other classes as the base classes,
and infer the relation through these images. For any input image of the target class, the generated
relation intensity graph is the relation between that image and the 23 base class images, which can
be more intuitively expressed through visual analysis of the relations found by the Bayesian relation
inference module. The visualization result is shown in Figure 3 and the accuracy result on 5-way
1-shot and 5-way 5-shot tasks is shown in table 3.

In the upper part of Figure 3, we show the results of the visual analysis using single image as a
base classes. We average the multi-view Gaussian graphs and visualize the relationship between the
target image and different base class images in the form of heatmaps, and select three images with
strong positive and negative correlations respectively for further visualization analysis. It is worth
noting that the target picture and the picture with serial number 16 belong to the same category in
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the Dermnet dataset, which indicates that the proposed Bayesian distribution calibration method can
effectively capture the potential relations between different objects. As can be seen from Table 3,
using a single image as the base classes on the 5-way 1-shot and 5-way S-shot tasks has a small
decrease in accuracy (about 1% at 5-way 1-shot and 2% at 5-way 5-shot) compared to using a large
number of images as base classes, which indicates that the proposed method does not require a large
number of images for base classes. A small number of base class images can also provide a good
distributional calibration for the target imags.

A.7.2 VISUAL ANALYSIS ON ROBUSTNESS

In the proposed model, we use base classes that are strongly related to the task (e.g. for the Dermnet
skin disease dataset, we use some of the dermatology classes in the dataset as base classes). In
practice, there may not be enough data to be used as base classes, so the performance of the model
in the absence of data strongly related to the task as base classes is important. To explore the
robustness of the Bayesian Distribution Calibration model, we replace the base classes with animal
data that are not relevant to skin diseases to explore the ability of the Bayesian relation inference
component to infer potential relations between target class and base classes that is very different
from the target class. The visualization result is shown in Figure 3 and the accuracy result on 5-way
1-shot and 5-way 5-shot tasks is shown in table 3.

The bottom half of Figure 3 shows the visualization result using animal image data as base classes.
From the result, it is seen that the categories that have strong correlations with the target images are
cat, horse and tiger. Intuitively, these three base categories have strong visual similarities, where
the two categories of cat and tiger belong to the same family of felines, which can prove that the
proposed Bayesian distribution calibration model is able to capture potential relations of the different
categories. As can be seen from Table 3, the results using animal data as base classes still achieve
high level of accuracy, which can prove that the proposed model is robust to the selection of base
classes.

Table 3: Performance of Bayesian distribution calibration(BDC) on Dermnet dataset with various
base classes

Method Swaylshot(%) SwaySshot(%)
BDC + Single image 49.56 68.04
BDC + Animal image 48.99 67.25
BDC(Ours) 50.59 70.03

A.7.3 EXPERIMENT RESULTS ON MINIIMAGENET DATASET

The task of skin disease classification is famous and important. However, there are other datasets
concerning ImageNet, Food-101 and so on. We further perform experiments on minilmageNet
for few-shot classification tasks to validate the effectiveness of the proposed Bayesian relational
inference model.

Table 4: Comparison of Bayesian distribution calibration(BDC) and baselines on minilmageNet
dataset

Method Swaylshot(%) Sway5shot(%)

MN 49.02 70.11
PN 48.26 69.24
DC 68.01 82.45
tSF 68.84 84.38
GAP 69.35 83.85
BDC(Ours) 70.08 84.52
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Figure 3: Schematic representation of the results of relation inference obtained using single image

or animal data.

A.7.4 COMPARISON OF CONVENTIONAL ALGORITHMS AND FEW-SHOT LEARNING
ALGORITHMS
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In few-shot learning algorithms, training a model using conventional algorithms can be difficult due
to the large number of categories and the fact that the data for most of the categories is scarce. We
divide the test set of the Dermnet dataset in a ratio of 8:2 into a new training and test set. Then
we generate a conventional algorithm model by replacing the few-shot classification part of the
Bayesian relational inference model( Multi-view Gaussian graph generation component and logistic
regression classifier) with a linear classification head. We freeze the Bayesian relation inference
module and fine-tune the classification head on the new training set and test it on the new test. We
compare the accuracy of this algorithm with that of the few-shot learning algorithms on the 5-way
1-shot task. The experiment result is shown in Table 5.

Table 5: Comparison of few-shot algorithms and conventional algorithm on Dermnet dataset

Method Acc(%)
MAML 44.05
PN 43.76
MN 44.23
DC 48.99
tSF 49.38
GAP 48.92
BDC + Conventional Algorthms ~ 43.50
BDC(Ours) 50.59

Specifically, we adopt a three-layer artificial neural network as the linear classification head of the
conventional algorithm, trained for 1500 epochs using the Adam optimizer with the learning rate
of 0.0008. The result shows that the conventional algorithm’s accuracy is similar to that of the
early few-shot algorithms on the 5-way 1-shot task. It is worth noting that traing the conventional
algorithm is time-consuming and overall performs less well than the few-shot algorithms.
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