Under review as a conference paper at ICLR 2023

A APPENDIX

This appendix contains the proofs of all lemmas.

Lemma 2: Every equivalence class in P> (X) is of the form {y, 5" (), 0"t 0 6™ (1), "2 0 5" F1 o
8" (w), ...} where p is a unique distribution in P™(X) such that p is not a single-atom Dirac
distribution.

Proof. This follows directly from the definition of the equivalence relation, since for € P*(X’) and
v € P7(X) such that there exists k € N, i, j < k with 6% (1) = §7% (1), we have by definition that
Flo... 06 (u) = "1 o--.067(v) are single-atom Dirac distributions, and two single-atom
Dirac distributions are identical if and only if they have the same atom. That is, either v = 6% (1) if
i<jorp=0div)ifj <i.

Lemma 3: Suppose that X is a compact T1 spac@consisting of at least two distinct points. Then
P (X) is non-compact with respect to the final topology.

Proof. For eachn > 1, fix some p,, € P™(X) such that p,, is not a single-atom Dirac distribution.
Let P = {[un]}n>1 be the subset of equivalence classes of these distributions in P°°(X’). Then for
any subset Q C P and any n > 1, (A™)~1(Q) N P™(X) consists of at most one point. Because X is
T1, each P™(X), m € Nis T1, hence (A™)~1(Q) N P"(X) is closed. Therefore, since P>°(X) is
the colimit of the sequence of P™(X’) spaces, every subset of P is closed. Therefore, P>°(X) cannot
be compact. O

Lemma 5: If X is Hausdorff, then so is P(X).

Proof. Suppose that p, v € P(X) such that ;1 # v. Then there exists some Borel set E C X
such that u(E) # v(FE). Without loss of generality, suppose u(E) < v(E). Let a € R such that
u(E) < a < v(E). Consider the characteristic function of E, 1, defined as 1g(z) = lifz € E
and 1g(x) = 0 otherwise. Then observe that the following two sets are disjoint open sets with
respect to the weak topology on P(X):

L. E<y = {n € P(X)In(E) < a}
2. Exq = {n e P(X)n(E) > a}

Thenyu € E<,andv € E~, and E., N Es, = (. O

Lemma 6: W° is a metric on Py (X)

Proof. Let p € PJ'(X) and v € PJ(X) with m > n such that y and v are not single-atom

Dirac distributions (so they could be either different distributions or points in X’). By definition,
We([u], [v]) = W (p, vim), where vy, is the unique element in the intersection [v] N P;". Then
because W)™ is a metric, W™ (14, Vi) > 0 with W) (u, v, ) = 0 if and only if y = v,,,. However, if
I = Vp,, then because we have chosen m so that p is not a single-atom Dirac distribution, v,, is not a
single-atom Dirac distribution. Therefore since v, € [v] and [v] is the unique non-single-atom Dirac
distribution (or point in X) in [v], we have y = vy, = v. Similarly, W ([u], [v]) = W ([V], [u])
because W' (u, v) = Wy (v, u) for every n € N. All that remains is to verify the triangle inequality.
Let [u], [V], [n] € P°(X) such that p € [u] NP (X)), v e [V NPy (X), and i € [7] NP (X).
Without loss of generality, suppose that 7,,) < 7[,. Then we have the following three cases:

1. T < T < Tyt In this case, we have the following:
Wo ([, [V]) + W (W], [n]) = W (s vy ) + W™ (v ) (26)
= W;M (ur[n] ) VT[V,,]) + W;;M] (VT[V,,] ) 77) 2 W;[n] (:ur[r,]] ) 77) = Wpoo([ﬂ]v [77])

“This is equivalent to saying that for every = € X, the set {z} is a closed subset of X
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2. 1y < 1y < 1pypc Inthis case, we have:
W ([ul, ) + W2 (], [n]) = W' (g, v) + W () 27)
= W (phrgy s V) + W™ Wy m) = W™ (i, om) = Wo ([, [0])

3. r < 1y < 1t Inthis case, we have:
W (), ) + WE (), [n) = W™ G, v) + W (v, (28)

p
2 W;M (MT[,,] ) 771'[”]) = W;C([HL [77])

O

Lemma 8: Any space X may be embedded continuously in HzP(X) via the following map, for any
r€Xandi € L:

cd(z)(1) := 0g. (29)

That is, cd is the composition of the map sending each point x to the single-atom Dirac distribution
centered at x and the constant-valued map sending each point in L to the aforementioned distribution.

Proof. Let E C HzP(X) open with respect to the compact-open topology. That is, £ =
Usea (ﬂ?:zl V(Ky,,U,,)) for some indexing set A (possibly uncountable), positive natural num-
bers n,, compact subsets K;, C Z, and open subsets U;, C P(X'). We must see if the set cd~!(E)

is open in X.
s, € Y (ﬂ V(Kta,Uta)>} (30)
t

a€A \t,=1

cd Y (E) = {x ex

U{IEX

a€cA

Cs, € ﬁ V(Ktht(,)} = U {ze)(

ta=1 a€A

0y € ﬁ Uta}

ta=1

(i)

a€A to=1

Note that ﬂZ::l U, is a finite intersection of open sets and hence open, so because § : X — P(X)
is continuous, § 1 ( Z:: 1 Uta) is open, and hence so is the final set in Equation O

Lemma 9: Suppose that X is Hausdorff. Then each map (cd)™ defined above is a homeomorphism
onto its image.

Proof. 1tis sufficient to show that that map ¢ : P(X) — HzP(X) sending each distribution in P(X)
to the constant function ¢, with ¢, (i) = p for every i € Z, is a homeomorphism onto its image,
because c¢d : X — H7P(X) may then be written as the product of maps which are homeomorphisms
onto their images; namely, cd(z) = c o §(z). To this end, first note that the map c is well-defined,
since for each u € P(X), ¢, is a continuous function. Furthermore, ¢ is injective, since for any
w,v € P(X),if ¢, = ¢, then for every ¢ € Z, we have that u = ¢, (i) = ¢, (i) = v. Clearly
c is surjective onto its image. It remains to show that c=! : ¢(P(X)) — P(X) is continuous.
Suppose that E C P(X) is an open set with respect to the weak topology. We would like to show
that ¢(F) is open with respect to the subspace topology on ¢(P(X)). Since X is Hausdorff, P(X)
is Hausdorff, and there exist disjoint open neighborhoods INV,, for each u € E. Let K C 1 be
an arbitrary non-empty compact subset. Then |, p V (K, N,,) € HzP(X) is open and ¢(E) =

c(P(X)N (U per VN, #)), hence c¢(E) is open with respect to the subspace topology. Therefore

c is a homeomorphism onto its image, and hence so is cd. The claim of the lemma then follows
inductively by replacing X’ with HzP(X). O
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Lemma 10: The following diagram commutes:

P(T) x HeP™(X) “%5 P(T) x P(HLP™(X))

idx (cd)"i l&lom

P(T) x HePP () — 22"y P23 P (X))

Here my : P(Z) x P(HZP™(X)) — P(HLP™(X)) is projection onto the second coordinate; i.e.
ma(p, v) = 1.

Proof. Start with any (u, f) € P(Z) x HzP™(X). Then we have:

push o (id x (cd)")(n, f) = push(p, cs;) = c5, (k) 3D
Note that for any measurable £ C P(HzP"(X), we have that c§ (p)(E) = u(cgfl (E)). Since c5,
is the constant map sending every element in Z to the single-atom Dirac distribution ¢, we have
that cgfl(E) =Tifé; € Fand cé_fl(E) = () otherwise. Therefore, u(cgfl (E)) =1if 6y € E and
u(cgfl(E)) = 0 otherwise. That is, push o (id x (cd)")(p, f) = ds,-

On the other hand, we have:
(6" o ma) o (id x 0°)(u, f) = 6" o ma(p, 05) = 6*(55) = s - (32)

Lemma 11: The following diagram commutes:
T x HrP™(X) —2— HP™(X)

idx (cd)"l Ls

7 x /HIPnJ’_l(X) i) P(Hzpn(X))

Proof. This follows from Lemma by taking only single-atom Dirac distributions in P(Z); alterna-
tively, one can check directly that for every ¢ € Z and h € HzP"™(X), we have:

doma(i,h) =0(h) =6 = cs, (1) = ev(i,ed™(h)) = ev o (id x (ed)™)(i, h). (33)

O

Lemma 12: The maps defined in Equation are homeomorphisms onto their images.

Proof. We prove the claim by induction. Clearly f; is a homeomorphism onto its image. As well, we
already know by Lemma@] that the maps ¢ : P (HzP" (X)) — HzP" T (X) are homeomorphisms
onto their images. Now, assume that f,, is a homeomorphism onto its image. It is well-known that
the push-forward of a homeomorphism f : A — B is a homeomorphism push(f) : P(A) — P(B)
with respect to the weak topology for any Borel spaces .4, B. Thus, f,+1 is a composition of two
homeomorphisms onto their images, and is therefore a homeomorphism onto its image. O

Lemma 13: The map f is a continuous bijection onto its image.
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Proof. Let f, : P"(X) — HzP>®(X) be the map p — [fn(12)]. Then the following diagram
commutes:

Pi(X) & PI(X)

Thus, f is a continuous bijective map. O

Lemma 14: The map gy, o (id, X fn) : I™ x P*(X) — P"™(X) defined by (i1, ...,in, 1)
In(81y ooy in, fu(1)) is equal to the projection map 7,11 : I™ x P™"(X) — P™(X) defined by
7Tn+1(i17 72717”) = M-

Proof. We proceed by induction. For n = 0, we have gg o (idg X fo) : {-} x X — X is the identity
map (identifying Z° = {-} with an arbitrary one-point set, and noting that X and {-} x X may be
identified with each other). Hence, gg o (idy X fo)(-,2) = x for every € X. Now, suppose that
Gn o (idy, X fn) = mpy1. Let E C P"(X) be a Borel subset, and suppose (i1, ..., in+1) € Z"*! and
w € P"T1(X). Then we have the following:

gn+1 © (1dny1 X frg1) (i1, s ingr, ) (E) = gnga(in, ooy ins1s fs1(0))(E) (34)
= push(gn)(0i, @ -+ @ &;,, @ push(fn)(1))(E)
= (0, @ -+ @ i, @ push(fn)(1r)) {15 s Jns h) € T X HLP™(X)|gn (1, s Giny h) € EY)
= push(fn)(1r) {h € HP™"(X)|gn(i1,...,0n, h) € E})
= pn({v € P"(X)|gn (i1, in, fu(v)) € E})
=pu{v e P"(X)|(gn o (idy X fn)(i1, ey in, V) € E})
= pu({v € P"(X)|Tnt1(ir, .. in,v) € E}) = pu(E)

15



