A APPENDIX

This appendix contains the proofs of all lemmas.

Lemma 2: Every equivalence class in $\mathcal{P}^{\infty}(\mathcal{X})$ is of the form $\{\mu, \delta^n(\mu), \delta^{n+1} \circ \delta^n(\mu), \delta^{n+2} \circ \delta^{n+1} \circ \delta^n(\mu), ...\}$ where μ is a unique distribution in $\mathcal{P}^n(\mathcal{X})$ such that μ is not a single-atom Dirac distribution.

Proof. This follows directly from the definition of the equivalence relation, since for $\mu \in \mathcal{P}^i(\mathcal{X})$ and $\nu \in \mathcal{P}^j(\mathcal{X})$ such that there exists $k \in \mathbb{N}$, $i, j \leq k$ with $\delta^{ik}(\mu) = \delta^{jk}(\nu)$, we have by definition that $\delta^{k-1} \circ \cdots \circ \delta^i(\mu) = \delta^{k-1} \circ \cdots \circ \delta^j(\nu)$ are single-atom Dirac distributions, and two single-atom Dirac distributions are identical if and only if they have the same atom. That is, either $\nu = \delta^{ij}(\mu)$ if $i \leq j$ or $\mu = \delta^{ji}(\nu)$ if $j \leq i$.

Lemma 3: Suppose that \mathcal{X} is a compact T1 space⁹ consisting of at least two distinct points. Then $\mathcal{P}^{\infty}(\mathcal{X})$ is non-compact with respect to the final topology.

Proof. For each $n \ge 1$, fix some $\mu_n \in \mathcal{P}^n(\mathcal{X})$ such that μ_n is not a single-atom Dirac distribution. Let $P = \{[\mu_n]\}_{n\ge 1}$ be the subset of equivalence classes of these distributions in $\mathcal{P}^\infty(\mathcal{X})$. Then for any subset $Q \subseteq P$ and any $n \ge 1$, $(\Delta^n)^{-1}(Q) \cap \mathcal{P}^n(\mathcal{X})$ consists of at most one point. Because \mathcal{X} is T1, each $\mathcal{P}^m(\mathcal{X})$, $m \in \mathbb{N}$ is T1, hence $(\Delta^n)^{-1}(Q) \cap \mathcal{P}^n(\mathcal{X})$ is closed. Therefore, since $\mathcal{P}^\infty(\mathcal{X})$ cannot be compact. \Box

Lemma 5: If X *is Hausdorff, then so is* $\mathcal{P}(X)$ *.*

Proof. Suppose that $\mu, \nu \in \mathcal{P}(\mathcal{X})$ such that $\mu \neq \nu$. Then there exists some Borel set $E \subseteq \mathcal{X}$ such that $\mu(E) \neq \nu(E)$. Without loss of generality, suppose $\mu(E) < \nu(E)$. Let $a \in \mathbb{R}$ such that $\mu(E) < a < \nu(E)$. Consider the characteristic function of E, $\mathbf{1}_E$, defined as $\mathbf{1}_E(x) = 1$ if $x \in E$ and $\mathbf{1}_E(x) = 0$ otherwise. Then observe that the following two sets are disjoint open sets with respect to the weak topology on $\mathcal{P}(\mathcal{X})$:

1. $E_{\leq a} := \{\eta \in \mathcal{P}(\mathcal{X}) | \eta(E) < a\}$

2.
$$E_{>a} := \{\eta \in \mathcal{P}(\mathcal{X}) | \eta(E) > a\}$$

Then $\mu \in E_{\langle a \rangle}$ and $\nu \in E_{\langle a \rangle}$ and $E_{\langle a \rangle} \cap E_{\langle a \rangle} = \emptyset$.

Lemma 6: W_p^{∞} is a metric on $\mathcal{P}_p^{\infty}(\mathcal{X})$

Proof. Let $\mu \in \mathcal{P}_p^m(\mathcal{X})$ and $\nu \in \mathcal{P}_p^n(\mathcal{X})$ with $m \geq n$ such that μ and ν are not single-atom Dirac distributions (so they could be either different distributions or points in \mathcal{X}). By definition, $W_p^{\infty}([\mu], [\nu]) = W_p^m(\mu, \nu_m)$, where ν_m is the unique element in the intersection $[\nu] \cap \mathcal{P}_p^m$. Then because W_p^m is a metric, $W_p^m(\mu, \nu_m) \geq 0$ with $W_p^m(\mu, \nu_m) = 0$ if and only if $\mu = \nu_m$. However, if $\mu = \nu_m$, then because we have chosen m so that μ is not a single-atom Dirac distribution, ν_m is not a single-atom Dirac distribution. Therefore since $\nu_m \in [\nu]$ and $[\nu]$ is the unique non-single-atom Dirac distribution (or point in \mathcal{X}) in $[\nu]$, we have $\mu = \nu_m = \nu$. Similarly, $W_p^{\infty}([\mu], [\nu]) = W_p^{\infty}([\nu], [\mu])$ because $W_p^n(\mu, \nu) = W_p^n(\nu, \mu)$ for every $n \in \mathbb{N}$. All that remains is to verify the triangle inequality. Let $[\mu], [\nu], [\eta] \in \mathcal{P}_p^{\infty}(\mathcal{X})$ such that $\mu \in [\mu] \cap \mathcal{P}_p^{r[\mu]}(\mathcal{X}), \nu \in [\nu] \cap \mathcal{P}_p^{r[\nu]}(\mathcal{X})$, and $\eta \in [\eta] \cap \mathcal{P}_p^{r[\eta]}(\mathcal{X})$. Without loss of generality, suppose that $r_{[\mu]} \leq r_{[\eta]}$. Then we have the following three cases:

1.
$$r_{[\nu]} \leq r_{[\mu]} \leq r_{[\eta]}$$
: In this case, we have the following:
 $W_p^{\infty}([\mu], [\nu]) + W_p^{\infty}([\nu], [\eta]) = W_p^{r_{[\mu]}}(\mu, \nu_{r_{[\mu]}}) + W_p^{r_{[\eta]}}(\nu_{r_{[\eta]}}, \eta)$

$$= W_p^{r_{[\eta]}}(\mu_{r_{[\eta]}}, \nu_{r_{[\eta]}}) + W_p^{r_{[\eta]}}(\nu_{r_{[\eta]}}, \eta) \geq W_p^{r_{[\eta]}}(\mu_{r_{[\eta]}}, \eta) = W_p^{\infty}([\mu], [\eta])$$
(26)

_			

⁹This is equivalent to saying that for every $x \in \mathcal{X}$, the set $\{x\}$ is a closed subset of \mathcal{X} .

2. $r_{[\mu]} \leq r_{[\nu]} \leq r_{[\eta]}$: In this case, we have:

$$W_{p}^{\infty}([\mu], [\nu]) + W_{p}^{\infty}([\nu], [\eta]) = W_{p}^{r_{[\nu]}}(\mu_{r_{[\nu]}}, \nu) + W_{p}^{r_{[\eta]}}(\nu_{r_{[\eta]}}, \eta)$$

$$= W_{p}^{r_{[\eta]}}(\mu_{r_{[\eta]}}, \nu_{r_{[\eta]}}) + W_{p}^{r_{[\eta]}}(\nu_{r_{[\eta]}}, \eta) \ge W_{p}^{r_{[\eta]}}(\mu_{r_{[\eta]}}, \eta) = W_{p}^{\infty}([\mu], [\eta])$$
(27)

3.
$$r_{[\mu]} \leq r_{[\eta]} \leq r_{[\nu]}$$
: In this case, we have:

$$W_{p}^{\infty}([\mu], [\nu]) + W_{p}^{\infty}([\nu], [\eta]) = W_{p}^{r_{[\nu]}}(\mu_{r_{[\nu]}}, \nu) + W_{p}^{r_{[\nu]}}(\nu, \eta_{r_{[\nu]}})$$

$$\geq W_{p}^{r_{[\nu]}}(\mu_{r_{[\nu]}}, \eta_{r_{[\nu]}}) = W_{p}^{\infty}([\mu], [\eta])$$
(28)

Lemma 8: Any space \mathcal{X} may be embedded continuously in $\mathcal{H}_{\mathcal{I}}\mathcal{P}(\mathcal{X})$ via the following map, for any $x \in \mathcal{X}$ and $i \in \mathcal{I}$:

$$cd(x)(i) := \delta_x. \tag{29}$$

That is, cd is the composition of the map sending each point x to the single-atom Dirac distribution centered at x and the constant-valued map sending each point in I to the aforementioned distribution.

Proof. Let $E \subseteq \mathcal{H}_{\mathcal{I}}\mathcal{P}(\mathcal{X})$ open with respect to the compact-open topology. That is, $E = \bigcup_{a \in A} \left(\bigcap_{t_a=1}^{n_a} V(K_{t_a}, U_{t_a}) \right)$ for some indexing set A (possibly uncountable), positive natural numbers n_a , compact subsets $K_{t_a} \subseteq \mathcal{I}$, and open subsets $U_{t_a} \subseteq \mathcal{P}(\mathcal{X})$. We must see if the set $cd^{-1}(E)$ is open in \mathcal{X} .

$$cd^{-1}(E) = \left\{ x \in \mathcal{X} \middle| c_{\delta_x} \in \bigcup_{a \in A} \left(\bigcap_{t_a=1}^{n_a} V(K_{t_a}, U_{t_a}) \right) \right\}$$
(30)
$$= \bigcup_{a \in A} \left\{ x \in \mathcal{X} \middle| c_{\delta_x} \in \bigcap_{t_a=1}^{n_a} V(K_{t_a}, U_{t_a}) \right\} = \bigcup_{a \in A} \left\{ x \in \mathcal{X} \middle| \delta_x \in \bigcap_{t_a=1}^{n_a} U_{t_a} \right\}$$
$$= \bigcup_{a \in A} \delta^{-1} \left(\bigcap_{t_a=1}^{n_a} U_{t_a} \right)$$

Note that $\bigcap_{t_a=1}^{n_a} U_{t_a}$ is a finite intersection of open sets and hence open, so because $\delta : \mathcal{X} \to \mathcal{P}(\mathcal{X})$ is continuous, $\delta^{-1} \left(\bigcap_{t_a=1}^{n_a} U_{t_a} \right)$ is open, and hence so is the final set in Equation 30.

Lemma 9: Suppose that \mathcal{X} is Hausdorff. Then each map $(cd)^n$ defined above is a homeomorphism onto its image.

Proof. It is sufficient to show that that map $c : \mathcal{P}(\mathcal{X}) \to \mathcal{H}_{\mathcal{I}}\mathcal{P}(\mathcal{X})$ sending each distribution in $\mathcal{P}(\mathcal{X})$ to the constant function c_{μ} with $c_{\mu}(i) = \mu$ for every $i \in \mathcal{I}$, is a homeomorphism onto its image, because $cd : \mathcal{X} \to \mathcal{H}_{\mathcal{I}}\mathcal{P}(\mathcal{X})$ may then be written as the product of maps which are homeomorphisms onto their images; namely, $cd(x) = c \circ \delta(x)$. To this end, first note that the map c is well-defined, since for each $\mu \in \mathcal{P}(\mathcal{X})$, c_{μ} is a continuous function. Furthermore, c is injective, since for any $\mu, \nu \in \mathcal{P}(\mathcal{X})$, if $c_{\mu} = c_{\nu}$, then for every $i \in \mathcal{I}$, we have that $\mu = c_{\mu}(i) = c_{\nu}(i) = \nu$. Clearly c is surjective onto its image. It remains to show that $c^{-1} : c(\mathcal{P}(\mathcal{X})) \to \mathcal{P}(\mathcal{X})$ is continuous. Suppose that $E \subseteq \mathcal{P}(\mathcal{X})$ is an open set with respect to the weak topology. We would like to show that c(E) is open with respect to the subspace topology on $c(\mathcal{P}(\mathcal{X}))$. Since \mathcal{X} is Hausdorff, $\mathcal{P}(\mathcal{X})$ is Hausdorff, and there exist disjoint open neighborhoods N_{μ} for each $\mu \in E$. Let $K \subseteq \mathcal{I}$ be an arbitrary non-empty compact subset. Then $\bigcup_{\mu \in E} V(K, N_{\mu}) \subseteq \mathcal{H}_{\mathcal{I}}\mathcal{P}(\mathcal{X})$ is open and $c(E) = c(\mathcal{P}(\mathcal{X}) \cap \left(\bigcup_{\mu \in E} V(K, N_{\mu})\right)$, hence c(E) is open with respect to the subspace topology. Therefore c is a homeomorphism onto its image, and hence so is cd. The claim of the lemma then follows inductively by replacing \mathcal{X} with $\mathcal{H}_{\mathcal{I}}\mathcal{P}(\mathcal{X})$.

Lemma 10: The following diagram commutes:

Here $\pi_2 : \mathcal{P}(\mathcal{I}) \times \mathcal{P}(\mathcal{H}_{\mathcal{I}}\mathcal{P}^n(\mathcal{X})) \to \mathcal{P}(\mathcal{H}_{\mathcal{I}}\mathcal{P}^n(\mathcal{X}))$ is projection onto the second coordinate; i.e. $\pi_2(\mu, \nu) = \nu$.

Proof. Start with any
$$(\mu, f) \in \mathcal{P}(\mathcal{I}) \times \mathcal{H}_{\mathcal{I}} \mathcal{P}^n(\mathcal{X})$$
. Then we have:
 $push \circ (id \times (cd)^n)(\mu, f) = push(\mu, c_{\delta_f}) = c^*_{\delta_f}(\mu)$
(31)

Note that for any measurable $E \subseteq \mathcal{P}(\mathcal{H}_{\mathcal{I}}\mathcal{P}^n(\mathcal{X}))$, we have that $c^*_{\delta_f}(\mu)(E) = \mu(c^{-1}_{\delta_f}(E))$. Since c_{δ_f} is the constant map sending every element in \mathcal{I} to the single-atom Dirac distribution δ_f , we have that $c^{-1}_{\delta_f}(E) = \mathcal{I}$ if $\delta_f \in E$ and $c^{-1}_{\delta_f}(E) = \emptyset$ otherwise. Therefore, $\mu(c^{-1}_{\delta_f}(E)) = 1$ if $\delta_f \in E$ and $\mu(c^{-1}_{\delta_f}(E)) = 0$ otherwise. That is, $push \circ (id \times (cd)^n)(\mu, f) = \delta_{\delta_f}$.

On the other hand, we have:

$$(\delta^1 \circ \pi_2) \circ (id \times \delta^0)(\mu, f) = \delta^1 \circ \pi_2(\mu, \delta_f) = \delta^1(\delta_f) = \delta_{\delta_f}.$$
(32)

Lemma 11: The following diagram commutes:

$$\begin{array}{ccc} \mathcal{I} \times \mathcal{H}_{\mathcal{I}} \mathcal{P}^{n}(\mathcal{X}) & \xrightarrow{\pi_{2}} & \mathcal{H}_{\mathcal{I}} \mathcal{P}^{n}(\mathcal{X}) \\ \\ id \times (cd)^{n} & & \downarrow \delta \\ \mathcal{I} \times \mathcal{H}_{\mathcal{I}} \mathcal{P}^{n+1}(\mathcal{X}) & \xrightarrow{ev} & \mathcal{P}(\mathcal{H}_{\mathcal{I}} \mathcal{P}^{n}(\mathcal{X})) \end{array}$$

Proof. This follows from Lemma 10 by taking only single-atom Dirac distributions in $\mathcal{P}(\mathcal{I})$; alternatively, one can check directly that for every $i \in \mathcal{I}$ and $h \in \mathcal{H}_{\mathcal{I}}\mathcal{P}^n(\mathcal{X})$, we have:

$$\delta \circ \pi_2(i,h) = \delta(h) = \delta_h = c_{\delta_h}(i) = ev(i,cd^n(h)) = ev \circ (id \times (cd)^n)(i,h).$$

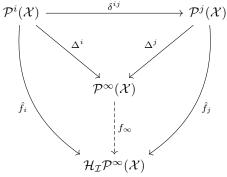
$$(33)$$

Lemma 12: The maps defined in Equation 18 are homeomorphisms onto their images.

Proof. We prove the claim by induction. Clearly f_0 is a homeomorphism onto its image. As well, we already know by Lemma 9 that the maps $c : \mathcal{P}(\mathcal{H}_{\mathcal{I}}\mathcal{P}^n(\mathcal{X})) \to \mathcal{H}_{\mathcal{I}}\mathcal{P}^{n+1}(\mathcal{X})$ are homeomorphisms onto their images. Now, assume that f_n is a homeomorphism onto its image. It is well-known that the push-forward of a homeomorphism $f : \mathcal{A} \to \mathcal{B}$ is a homeomorphism $push(f) : \mathcal{P}(\mathcal{A}) \to \mathcal{P}(\mathcal{B})$ with respect to the weak topology for any Borel spaces \mathcal{A}, \mathcal{B} . Thus, f_{n+1} is a composition of two homeomorphisms onto their images, and is therefore a homeomorphism onto its image. \Box

Lemma 13: The map f_{∞} is a continuous bijection onto its image.

Proof. Let $\hat{f}_n : \mathcal{P}^n(\mathcal{X}) \to \mathcal{H}_{\mathcal{I}}\mathcal{P}^\infty(\mathcal{X})$ be the map $\mu \mapsto [f_n(\mu)]$. Then the following diagram commutes:



Thus, f_{∞} is a continuous bijective map.

Lemma 14: The map $g_n \circ (id_n \times f_n) : \mathcal{I}^n \times \mathcal{P}^n(\mathcal{X}) \to \mathcal{P}^n(\mathcal{X})$ defined by $(i_1, ..., i_n, \mu) \mapsto g_n(i_1, ..., i_n, f_n(\mu))$ is equal to the projection map $\pi_{n+1} : \mathcal{I}^n \times \mathcal{P}^n(\mathcal{X}) \to \mathcal{P}^n(\mathcal{X})$ defined by $\pi_{n+1}(i_1, ..., i_n, \mu) = \mu$.

Proof. We proceed by induction. For n = 0, we have $g_0 \circ (id_0 \times f_0) : \{\cdot\} \times \mathcal{X} \to \mathcal{X}$ is the identity map (identifying $\mathcal{I}^0 = \{\cdot\}$ with an arbitrary one-point set, and noting that \mathcal{X} and $\{\cdot\} \times \mathcal{X}$ may be identified with each other). Hence, $g_0 \circ (id_0 \times f_0)(\cdot, x) = x$ for every $x \in \mathcal{X}$. Now, suppose that $g_n \circ (id_n \times f_n) = \pi_{n+1}$. Let $E \subseteq \mathcal{P}^n(\mathcal{X})$ be a Borel subset, and suppose $(i_1, ..., i_{n+1}) \in \mathcal{I}^{n+1}$ and $\mu \in \mathcal{P}^{n+1}(\mathcal{X})$. Then we have the following:

$$g_{n+1} \circ (id_{n+1} \times f_{n+1})(i_1, ..., i_{n+1}, \mu)(E) = g_{n+1}(i_1, ..., i_{n+1}, f_{n+1}(\mu))(E)$$
(34)

$$= push(g_n)(\delta_{i_1} \otimes \dots \otimes \delta_{i_n} \otimes push(f_n)(\mu))(E)$$

$$= (\delta_{i_1} \otimes \dots \otimes \delta_{i_n} \otimes push(f_n)(\mu)) (\{(j_1, ..., j_n, h) \in \mathcal{I}^n \times \mathcal{H}_{\mathcal{I}} \mathcal{P}^n(\mathcal{X}) | g_n(j_1, ..., j_n, h) \in E\})$$

$$= push(f_n)(\mu) (\{h \in \mathcal{H}_{\mathcal{I}} \mathcal{P}^n(\mathcal{X}) | g_n(i_1, ..., i_n, h) \in E\})$$

$$= \mu (\{\nu \in \mathcal{P}^n(\mathcal{X}) | g_n(i_1, ..., i_n, f_n(\nu)) \in E\})$$

$$= \mu (\{\nu \in \mathcal{P}^n(\mathcal{X}) | (g_n \circ (id_n \times f_n)(i_1, ..., i_n, \nu) \in E\})$$

$$= \mu (\{\nu \in \mathcal{P}^n(\mathcal{X}) | \pi_{n+1}(i_1, ..., i_n, \nu) \in E\}) = \mu(E)$$