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A APPENDIX

This appendix contains the proofs of all lemmas.

Lemma 2: Every equivalence class in P
1(X ) is of the form {µ, �

n(µ), �n+1
� �

n(µ), �n+2
� �

n+1
�

�
n(µ), ...} where µ is a unique distribution in P

n(X ) such that µ is not a single-atom Dirac

distribution.

Proof. This follows directly from the definition of the equivalence relation, since for µ 2 P
i(X ) and

⌫ 2 P
j(X ) such that there exists k 2 N, i, j  k with �

ik(µ) = �
jk(⌫), we have by definition that

�
k�1

� · · · � �
i(µ) = �

k�1
� · · · � �

j(⌫) are single-atom Dirac distributions, and two single-atom
Dirac distributions are identical if and only if they have the same atom. That is, either ⌫ = �

ij(µ) if
i  j or µ = �

ji(⌫) if j  i.

Lemma 3: Suppose that X is a compact T1 space
9

consisting of at least two distinct points. Then

P
1(X ) is non-compact with respect to the final topology.

Proof. For each n � 1, fix some µn 2 P
n(X ) such that µn is not a single-atom Dirac distribution.

Let P = {[µn]}n�1 be the subset of equivalence classes of these distributions in P
1(X ). Then for

any subset Q ✓ P and any n � 1, (�n)�1(Q)\P
n(X ) consists of at most one point. Because X is

T1, each P
m(X ), m 2 N is T1, hence (�n)�1(Q) \ P

n(X ) is closed. Therefore, since P
1(X ) is

the colimit of the sequence of Pn(X ) spaces, every subset of P is closed. Therefore, P1(X ) cannot
be compact.

Lemma 5: If X is Hausdorff, then so is P(X ).

Proof. Suppose that µ, ⌫ 2 P(X ) such that µ 6= ⌫. Then there exists some Borel set E ✓ X

such that µ(E) 6= ⌫(E). Without loss of generality, suppose µ(E) < ⌫(E). Let a 2 R such that
µ(E) < a < ⌫(E). Consider the characteristic function of E, 1E , defined as 1E(x) = 1 if x 2 E

and 1E(x) = 0 otherwise. Then observe that the following two sets are disjoint open sets with
respect to the weak topology on P(X ):

1. E<a := {⌘ 2 P(X )|⌘(E) < a}

2. E>a := {⌘ 2 P(X )|⌘(E) > a}

Then µ 2 E<a and ⌫ 2 E>a and E<a \ E>a = ;.

Lemma 6: W
1
p is a metric on P

1
p (X )

Proof. Let µ 2 P
m
p (X ) and ⌫ 2 P

n
p (X ) with m � n such that µ and ⌫ are not single-atom

Dirac distributions (so they could be either different distributions or points in X ). By definition,
W

1
p ([µ], [⌫]) = W

m
p (µ, ⌫m), where ⌫m is the unique element in the intersection [⌫] \ P

m
p . Then

because Wm
p is a metric, Wm

p (µ, ⌫m) � 0 with W
m
p (µ, ⌫m) = 0 if and only if µ = ⌫m. However, if

µ = ⌫m, then because we have chosen m so that µ is not a single-atom Dirac distribution, ⌫m is not a
single-atom Dirac distribution. Therefore since ⌫m 2 [⌫] and [⌫] is the unique non-single-atom Dirac
distribution (or point in X ) in [⌫], we have µ = ⌫m = ⌫. Similarly, W1

p ([µ], [⌫]) = W
1
p ([⌫], [µ])

because W
n
p (µ, ⌫) = W

n
p (⌫, µ) for every n 2 N. All that remains is to verify the triangle inequality.

Let [µ], [⌫], [⌘] 2 P
1
p (X ) such that µ 2 [µ]\P

r[µ]
p (X ), ⌫ 2 [⌫]\P

r[⌫]
p (X ), and ⌘ 2 [⌘]\P

r[⌘]
p (X ).

Without loss of generality, suppose that r[µ]  r[⌘]. Then we have the following three cases:

1. r[⌫]  r[µ]  r[⌘]: In this case, we have the following:
W

1
p ([µ], [⌫]) +W

1
p ([⌫], [⌘]) = W

r[µ]
p (µ, ⌫r[µ]

) +W
r[⌘]
p (⌫r[⌘]

, ⌘) (26)

= W
r[⌘]
p (µr[⌘]

, ⌫r[⌘]
) +W

r[⌘]
p (⌫r[⌘]

, ⌘) � W
r[⌘]
p (µr[⌘]

, ⌘) = W
1
p ([µ], [⌘])

9This is equivalent to saying that for every x 2 X , the set {x} is a closed subset of X .
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2. r[µ]  r[⌫]  r[⌘]: In this case, we have:
W

1
p ([µ], [⌫]) +W

1
p ([⌫], [⌘]) = W

r[⌫]
p (µr[⌫]

, ⌫) +W
r[⌘]
p (⌫r[⌘]

, ⌘) (27)

= W
r[⌘]
p (µr[⌘]

, ⌫r[⌘]
) +W

r[⌘]
p (⌫r[⌘]

, ⌘) � W
r[⌘]
p (µr[⌘]

, ⌘) = W
1
p ([µ], [⌘])

3. r[µ]  r[⌘]  r[⌫]: In this case, we have:
W

1
p ([µ], [⌫]) +W

1
p ([⌫], [⌘]) = W

r[⌫]
p (µr[⌫]

, ⌫) +W
r[⌫]
p (⌫, ⌘r[⌫]

) (28)

� W
r[⌫]
p (µr[⌫]

, ⌘r[⌫]
) = W

1
p ([µ], [⌘])

Lemma 8: Any space X may be embedded continuously in HIP(X ) via the following map, for any

x 2 X and i 2 I:

cd(x)(i) := �x. (29)

That is, cd is the composition of the map sending each point x to the single-atom Dirac distribution

centered at x and the constant-valued map sending each point in I to the aforementioned distribution.

Proof. Let E ✓ HIP(X ) open with respect to the compact-open topology. That is, E =S
a2A

�Tna

ta=1 V (Kta , Uta)
�

for some indexing set A (possibly uncountable), positive natural num-
bers na, compact subsets Kta ✓ I, and open subsets Uta ✓ P(X ). We must see if the set cd�1(E)
is open in X .

cd
�1(E) =

(
x 2 X

����c�x 2

[

a2A

 
na\

ta=1

V (Kta , Uta)

!)
(30)

=
[

a2A

(
x 2 X

����c�x 2

na\

ta=1

V (Kta , Uta)

)
=
[

a2A

(
x 2 X

�����x 2

na\

ta=1

Uta

)

=
[

a2A

�
�1

 
na\

ta=1

Uta

!

Note that
Tna

ta=1 Uta is a finite intersection of open sets and hence open, so because � : X ! P(X )

is continuous, ��1
�Tna

ta=1 Uta

�
is open, and hence so is the final set in Equation 30.

Lemma 9: Suppose that X is Hausdorff. Then each map (cd)n defined above is a homeomorphism

onto its image.

Proof. It is sufficient to show that that map c : P(X ) ! HIP(X ) sending each distribution in P(X )
to the constant function cµ with cµ(i) = µ for every i 2 I, is a homeomorphism onto its image,
because cd : X ! HIP(X ) may then be written as the product of maps which are homeomorphisms
onto their images; namely, cd(x) = c � �(x). To this end, first note that the map c is well-defined,
since for each µ 2 P(X ), cµ is a continuous function. Furthermore, c is injective, since for any
µ, ⌫ 2 P(X ), if cµ = c⌫ , then for every i 2 I, we have that µ = cµ(i) = c⌫(i) = ⌫. Clearly
c is surjective onto its image. It remains to show that c�1 : c(P(X )) ! P(X ) is continuous.
Suppose that E ✓ P(X ) is an open set with respect to the weak topology. We would like to show
that c(E) is open with respect to the subspace topology on c(P(X )). Since X is Hausdorff, P(X )
is Hausdorff, and there exist disjoint open neighborhoods Nµ for each µ 2 E. Let K ✓ I be
an arbitrary non-empty compact subset. Then

S
µ2E V (K,Nµ) ✓ HIP(X ) is open and c(E) =

c(P(X )\
⇣S

µ2E V (K,Nµ)
⌘

, hence c(E) is open with respect to the subspace topology. Therefore
c is a homeomorphism onto its image, and hence so is cd. The claim of the lemma then follows
inductively by replacing X with HIP(X ).
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Lemma 10: The following diagram commutes:

P(I)⇥HIP
n(X ) P(I)⇥ P(HIP

n(X ))

P(I)⇥HIP
n+1(X ) P

2(HIP
n(X ))

id⇥�0

id⇥(cd)n �1�⇡2

push

Here ⇡2 : P(I) ⇥ P(HIP
n(X )) ! P(HIP

n(X )) is projection onto the second coordinate; i.e.

⇡2(µ, ⌫) = ⌫.

Proof. Start with any (µ, f) 2 P(I)⇥HIP
n(X ). Then we have:

push � (id⇥ (cd)n)(µ, f) = push(µ, c�f ) = c
⇤
�f (µ) (31)

Note that for any measurable E ✓ P(HIP
n(X ), we have that c⇤�f (µ)(E) = µ(c�1

�f
(E)). Since c�f

is the constant map sending every element in I to the single-atom Dirac distribution �f , we have
that c�1

�f
(E) = I if �f 2 E and c

�1
�f

(E) = ; otherwise. Therefore, µ(c�1
�f

(E)) = 1 if �f 2 E and
µ(c�1

�f
(E)) = 0 otherwise. That is, push � (id⇥ (cd)n)(µ, f) = ��f .

On the other hand, we have:
(�1 � ⇡2) � (id⇥ �

0)(µ, f) = �
1
� ⇡2(µ, �f ) = �

1(�f ) = ��f . (32)

Lemma 11: The following diagram commutes:

I ⇥HIP
n(X ) HIP

n(X )

I ⇥HIP
n+1(X ) P(HIP

n(X ))

⇡2

id⇥(cd)n �

ev

Proof. This follows from Lemma 10 by taking only single-atom Dirac distributions in P(I); alterna-
tively, one can check directly that for every i 2 I and h 2 HIP

n(X ), we have:
� � ⇡2(i, h) = �(h) = �h = c�h(i) = ev(i, cdn(h)) = ev � (id⇥ (cd)n)(i, h). (33)

Lemma 12: The maps defined in Equation 18 are homeomorphisms onto their images.

Proof. We prove the claim by induction. Clearly f0 is a homeomorphism onto its image. As well, we
already know by Lemma 9 that the maps c : P (HIP

n(X )) ! HIP
n+1(X ) are homeomorphisms

onto their images. Now, assume that fn is a homeomorphism onto its image. It is well-known that
the push-forward of a homeomorphism f : A ! B is a homeomorphism push(f) : P(A) ! P(B)
with respect to the weak topology for any Borel spaces A,B. Thus, fn+1 is a composition of two
homeomorphisms onto their images, and is therefore a homeomorphism onto its image.

Lemma 13: The map f1 is a continuous bijection onto its image.
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Proof. Let f̂n : Pn(X ) ! HIP
1(X ) be the map µ 7! [fn(µ)]. Then the following diagram

commutes:
P

i(X ) P
j(X )

P
1(X )

HIP
1(X )

�ij

�i

f̂i

�j

f̂j

f1

Thus, f1 is a continuous bijective map.

Lemma 14: The map gn � (idn ⇥ fn) : I
n
⇥ P

n(X ) ! P
n(X ) defined by (i1, ..., in, µ) 7!

gn(i1, ..., in, fn(µ)) is equal to the projection map ⇡n+1 : In
⇥ P

n(X ) ! P
n(X ) defined by

⇡n+1(i1, ..., in, µ) = µ.

Proof. We proceed by induction. For n = 0, we have g0 � (id0 ⇥ f0) : {·}⇥ X ! X is the identity
map (identifying I

0 = {·} with an arbitrary one-point set, and noting that X and {·}⇥ X may be
identified with each other). Hence, g0 � (id0 ⇥ f0)(·, x) = x for every x 2 X . Now, suppose that
gn � (idn ⇥ fn) = ⇡n+1. Let E ✓ P

n(X ) be a Borel subset, and suppose (i1, ..., in+1) 2 I
n+1 and

µ 2 P
n+1(X ). Then we have the following:

gn+1 � (idn+1 ⇥ fn+1)(i1, ..., in+1, µ)(E) = gn+1(i1, ..., in+1, fn+1(µ))(E) (34)
= push(gn)(�i1 ⌦ · · ·⌦ �in ⌦ push(fn)(µ))(E)

= (�i1 ⌦ · · ·⌦ �in ⌦ push(fn)(µ)) ({(j1, ..., jn, h) 2 I
n
⇥HIP

n(X )|gn(j1, ..., jn, h) 2 E})

= push(fn)(µ) ({h 2 HIP
n(X )|gn(i1, ..., in, h) 2 E})

= µ ({⌫ 2 P
n(X )|gn(i1, ..., in, fn(⌫)) 2 E})

= µ ({⌫ 2 P
n(X )|(gn � (idn ⇥ fn)(i1, ..., in, ⌫) 2 E})

= µ ({⌫ 2 P
n(X )|⇡n+1(i1, ..., in, ⌫) 2 E}) = µ(E)
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